Version 41.3 by Xiaoling on 2022/06/02 16:36

Show last authors
1 (% style="text-align:center" %)
2 [[image:1653266934636-343.png||height="385" width="385"]]
3
4
5
6 **RS485-LN – RS485 to LoRaWAN Converter User Manual**
7
8
9 **Table of Contents:**
10
11
12
13
14
15 = 1.Introduction =
16
17 == 1.1 What is RS485-LN RS485 to LoRaWAN Converter ==
18
19 (((
20 (((
21 The Dragino RS485-LN is a (% style="color:blue" %)**RS485 to LoRaWAN Converter**(%%). It converts the RS485 signal into LoRaWAN wireless signal which simplify the IoT installation and reduce the installation/maintaining cost.
22 )))
23
24 (((
25 RS485-LN allows user to (% style="color:blue" %)**monitor / control RS485 devices**(%%) and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
26 )))
27
28 (((
29 (% style="color:blue" %)**For data uplink**(%%), RS485-LN sends user-defined commands to RS485 devices and gets the return from the RS485 devices. RS485-LN will process these returns according to user-define rules to get the final payload and upload to LoRaWAN server.
30 )))
31
32 (((
33 (% style="color:blue" %)**For data downlink**(%%), RS485-LN runs in LoRaWAN Class C. When there downlink commands from LoRaWAN server, RS485-LN will forward the commands from LoRaWAN server to RS485 devices.
34
35 (% style="color:blue" %)**Demo Dashboard for RS485-LN**(%%) connect to two energy meters: [[https:~~/~~/app.datacake.de/dashboard/d/58844a26-378d-4c5a-aaf5-b5b5b153447a>>url:https://app.datacake.de/dashboard/d/58844a26-378d-4c5a-aaf5-b5b5b153447a]]
36 )))
37 )))
38
39 [[image:1653267211009-519.png||height="419" width="724"]]
40
41
42 == 1.2 Specifications ==
43
44
45 **Hardware System:**
46
47 * STM32L072CZT6 MCU
48 * SX1276/78 Wireless Chip 
49 * Power Consumption (exclude RS485 device):
50 ** Idle: 32mA@12v
51 ** 20dB Transmit: 65mA@12v
52
53 **Interface for Model:**
54
55 * RS485
56 * Power Input 7~~ 24V DC. 
57
58 **LoRa Spec:**
59
60 * Frequency Range:
61 ** Band 1 (HF): 862 ~~ 1020 Mhz
62 ** Band 2 (LF): 410 ~~ 528 Mhz
63 * 168 dB maximum link budget.
64 * +20 dBm - 100 mW constant RF output vs.
65 * +14 dBm high efficiency PA.
66 * Programmable bit rate up to 300 kbps.
67 * High sensitivity: down to -148 dBm.
68 * Bullet-proof front end: IIP3 = -12.5 dBm.
69 * Excellent blocking immunity.
70 * Low RX current of 10.3 mA, 200 nA register retention.
71 * Fully integrated synthesizer with a resolution of 61 Hz.
72 * FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation.
73 * Built-in bit synchronizer for clock recovery.
74 * Preamble detection.
75 * 127 dB Dynamic Range RSSI.
76 * Automatic RF Sense and CAD with ultra-fast AFC.
77 * Packet engine up to 256 bytes with CRC.
78
79
80 == 1.3 Features ==
81
82 * LoRaWAN Class A & Class C protocol (default Class C)
83 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865/RU864
84 * AT Commands to change parameters
85 * Remote configure parameters via LoRa Downlink
86 * Firmware upgradable via program port
87 * Support multiply RS485 devices by flexible rules
88 * Support Modbus protocol
89 * Support Interrupt uplink (Since hardware version v1.2)
90
91
92 == 1.4 Applications ==
93
94 * Smart Buildings & Home Automation
95 * Logistics and Supply Chain Management
96 * Smart Metering
97 * Smart Agriculture
98 * Smart Cities
99 * Smart Factory
100
101 == 1.5 Firmware Change log ==
102
103 [[RS485-LN Image files – Download link and Change log>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/]]
104
105
106 == 1.6 Hardware Change log ==
107
108 (((
109 (((
110 v1.2: Add External Interrupt Pin.
111
112 v1.0: Release
113
114
115 )))
116 )))
117
118 = 2. Power ON Device =
119
120 (((
121 The RS485-LN can be powered by 7 ~~ 24V DC power source. Connection as below
122
123 * Power Source VIN to RS485-LN VIN+
124 * Power Source GND to RS485-LN VIN-
125
126 (((
127 Once there is power, the RS485-LN will be on.
128 )))
129
130 [[image:1653268091319-405.png]]
131
132
133 )))
134
135 = 3. Operation Mode =
136
137 == 3.1 How it works? ==
138
139 (((
140 The RS485-LN is configured as LoRaWAN OTAA Class C mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the RS485-LN. It will auto join the network via OTAA.
141
142
143 )))
144
145 == 3.2 Example to join LoRaWAN network ==
146
147 Here shows an example for how to join the TTN V3 Network. Below is the network structure, we use [[LG308>>url:http://www.dragino.com/products/lora-lorawan-gateway/item/140-lg308.html]] as LoRaWAN gateway here. 
148
149 [[image:1653268155545-638.png||height="334" width="724"]]
150
151
152 (((
153 (((
154 The RS485-LN in this example connected to two RS485 devices for demonstration, user can connect to other RS485 devices via the same method. The connection is as below:
155 )))
156
157 (((
158 485A+ and 485B- of the sensor are connected to RS485A and RA485B of RS485-LN respectively.
159 )))
160
161 [[image:1653268227651-549.png||height="592" width="720"]]
162
163 (((
164 The LG308 is already set to connect to [[TTN V3 network >>path:eu1.cloud.thethings.network/]]. So what we need to now is only configure the TTN V3:
165 )))
166
167 (((
168 **Step 1**: Create a device in TTN V3 with the OTAA keys from RS485-LN.
169 )))
170
171 (((
172 Each RS485-LN is shipped with a sticker with unique device EUI:
173 )))
174 )))
175
176 [[image:1652953462722-299.png]]
177
178 (((
179 (((
180 User can enter this key in their LoRaWAN Server portal. Below is TTN V3 screen shot:
181 )))
182
183 (((
184 Add APP EUI in the application.
185 )))
186 )))
187
188 [[image:image-20220519174512-1.png]]
189
190 [[image:image-20220519174512-2.png||height="323" width="720"]]
191
192 [[image:image-20220519174512-3.png||height="556" width="724"]]
193
194 [[image:image-20220519174512-4.png]]
195
196 You can also choose to create the device manually.
197
198 [[image:1652953542269-423.png||height="710" width="723"]]
199
200 Add APP KEY and DEV EUI
201
202 [[image:1652953553383-907.png||height="514" width="724"]]
203
204
205 (((
206 **Step 2**: Power on RS485-LN and it will auto join to the TTN V3 network. After join success, it will start to upload message to TTN V3 and user can see in the panel.
207 )))
208
209 [[image:1652953568895-172.png||height="232" width="724"]]
210
211
212 == 3.3 Configure Commands to read data ==
213
214 (((
215 (((
216 There are plenty of RS485 devices in the market and each device has different command to read the valid data. To support these devices in flexible, RS485-LN supports flexible command set. User can use [[AT Commands>>path:#AT_COMMAND]] or LoRaWAN Downlink Command to configure what commands RS485-LN should send for each sampling and how to handle the return from RS485 devices.
217 )))
218
219 (((
220 (% style="color:red" %)Note: below description and commands are for firmware version >v1.1, if you have firmware version v1.0. Please check the [[user manual v1.0>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/&file=RS485-LN_UserManual_v1.0.1.pdf]] or upgrade the firmware to v1.1
221
222
223 )))
224 )))
225
226 === 3.3.1 onfigure UART settings for RS485 or TTL communication ===
227
228 To use RS485-LN to read data from RS485 sensors, connect the RS485-LN A/B traces to the sensors. And user need to make sure RS485-LN use the match UART setting to access the sensors. The related commands for UART settings are:
229
230 (% border="1" style="background-color:#ffffcc; color:green; width:782px" %)
231 |(% style="width:128px" %)(((
232 **AT Commands**
233 )))|(% style="width:305px" %)(((
234 **Description**
235 )))|(% style="width:346px" %)(((
236 **Example**
237 )))
238 |(% style="width:128px" %)(((
239 AT+BAUDR
240 )))|(% style="width:305px" %)(((
241 Set the baud rate (for RS485 connection). Default Value is: 9600.
242 )))|(% style="width:346px" %)(((
243 (((
244 AT+BAUDR=9600
245 )))
246
247 (((
248 Options: (1200,2400,4800,14400,19200,115200)
249 )))
250 )))
251 |(% style="width:128px" %)(((
252 AT+PARITY
253 )))|(% style="width:305px" %)(((
254 Set UART parity (for RS485 connection)
255 )))|(% style="width:346px" %)(((
256 (((
257 AT+PARITY=0
258 )))
259
260 (((
261 Option: 0: no parity, 1: odd parity, 2: even parity
262 )))
263 )))
264 |(% style="width:128px" %)(((
265 AT+STOPBIT
266 )))|(% style="width:305px" %)(((
267 (((
268 Set serial stopbit (for RS485 connection)
269 )))
270
271 (((
272
273 )))
274 )))|(% style="width:346px" %)(((
275 (((
276 AT+STOPBIT=0 for 1bit
277 )))
278
279 (((
280 AT+STOPBIT=1 for 1.5 bit
281 )))
282
283 (((
284 AT+STOPBIT=2 for 2 bits
285 )))
286 )))
287
288 === 3.3.2 Configure sensors ===
289
290 (((
291 (((
292 Some sensors might need to configure before normal operation. User can configure such sensor via PC and RS485 adapter or through RS485-LN AT Commands (% style="color:#4f81bd" %)**AT+CFGDEV**(%%). Each (% style="color:#4f81bd" %)**AT+CFGDEV **(%%)equals to send a RS485 command to sensors. This command will only run when user input it and won’t run during each sampling.
293 )))
294 )))
295
296 (% border="1" style="background-color:#ffffcc; color:green; width:806px" %)
297 |**AT Commands**|(% style="width:418px" %)**Description**|(% style="width:256px" %)**Example**
298 |AT+CFGDEV|(% style="width:418px" %)(((
299 This command is used to configure the RS485/TTL devices; they won’t be used during sampling.
300
301 AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,
302
303 mm: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command
304 )))|(% style="width:256px" %)AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m
305
306 === 3.3.3 Configure read commands for each sampling ===
307
308 (((
309 During each sampling, we need confirm what commands we need to send to the RS485 sensors to read data. After the RS485 sensors send back the value, it normally include some bytes and we only need a few from them for a shorten payload.
310
311 To save the LoRaWAN network bandwidth, we might need to read data from different sensors and combine their valid value into a short payload.
312
313 This section describes how to achieve above goals.
314
315 During each sampling, the RS485-LN can support 15 commands to read sensors. And combine the return to one or several uplink payloads.
316
317
318 **Each RS485 commands include two parts:**
319
320 ~1. What commands RS485-LN will send to the RS485 sensors. There are total 15 commands from **AT+COMMAD1**, **ATCOMMAND2**,…, to **AT+COMMANDF**. All commands are of same grammar.
321
322 2. How to get wanted value the from RS485 sensors returns from by 1). There are total 15 AT Commands to handle the return, commands are **AT+DATACUT1**,**AT+DATACUT2**,…, **AT+DATACUTF** corresponding to the commands from 1). All commands are of same grammar.
323
324 3. Some RS485 device might has longer delay on reply, so user can use AT+CMDDL to set the timeout for getting reply after the RS485 command is sent. For example **AT+CMDDL1=1000** to send the open time to 1000ms
325
326
327 After we got the valid value from each RS485 commands, we need to combine them together with the command **AT+DATAUP**.
328
329
330 Below are examples for the how above AT Commands works.
331
332
333 **AT+COMMANDx : **This command will be sent to RS485 devices during each sampling, Max command length is 14 bytes. The grammar is:
334
335 (% border="1" style="background-color:#4bacc6; color:white; width:499px" %)
336 |(% style="width:496px" %)(((
337 **AT+COMMANDx=xx xx xx xx xx xx xx xx xx xx xx xx,m**
338
339 **xx xx xx xx xx xx xx xx xx xx xx xx: The RS485 command to be sent**
340
341 **m: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command**
342 )))
343
344 For example, if we have a RS485 sensor. The command to get sensor value is: 01 03 0B B8 00 02 46 0A. Where 01 03 0B B8 00 02 is the Modbus command to read the register 0B B8 where stored the sensor value. The 46 0A is the CRC-16/MODBUS which calculate manually.
345
346 In the RS485-LN, we should use this command AT+COMMAND1=01 03 0B B8 00 02,1 for the same.
347
348
349 **AT+DATACUTx : **This command defines how to handle the return from AT+COMMANDx, max return length is 45 bytes.
350
351 (% border="1" style="background-color:#4bacc6; color:white; width:725px" %)
352 |(% style="width:722px" %)(((
353 **AT+DATACUTx=a,b,c**
354
355 * **a: length for the return of AT+COMMAND**
356 * **b:1: grab valid value by byte, max 6 bytes. 2: grab valid value by bytes section, max 3 sections.**
357 * **c: define the position for valid value.  **
358 )))
359
360 **Examples:**
361
362 * Grab bytes:
363
364 [[image:image-20220602153621-1.png]]
365
366
367 * Grab a section.
368
369 [[image:image-20220602153621-2.png]]
370
371
372 * Grab different sections.
373
374 [[image:image-20220602153621-3.png]]
375
376
377 )))
378
379 === 3.3.4 Compose the uplink payload ===
380
381 (((
382 Through AT+COMMANDx and AT+DATACUTx we got valid value from each RS485 commands, Assume these valid value are RETURN1, RETURN2, .., to RETURNx. The next step is how to compose the LoRa Uplink Payload by these RETURNs. The command is **AT+DATAUP.**
383
384
385 )))
386
387 (((
388 (% style="color:#037691" %)**Examples: AT+DATAUP=0**
389
390
391 )))
392
393 (((
394 Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**A SIGNLE UPLINK**.
395 )))
396
397 (((
398 Final Payload is
399 )))
400
401 (((
402 (% style="color:#4f81bd" %)**Battery Info+PAYVER + VALID Value from RETURN1 + Valid Value from RETURN2 + … + RETURNx**
403 )))
404
405 (((
406 Where PAYVER is defined by AT+PAYVER, below is an example screen shot.
407 )))
408
409 [[image:1653269759169-150.png||height="513" width="716"]]
410
411
412 (% style="color:#037691" %)**Examples: AT+DATAUP=1**
413
414
415 Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**Multiply UPLINKs**.
416
417 Final Payload is
418
419 (% style="color:#4f81bd" %)**Battery Info+PAYVER + PAYLOAD COUNT + PAYLOAD# + DATA**
420
421 1. PAYVER: Defined by AT+PAYVER
422 1. PAYLOAD COUNT: Total how many uplinks of this sampling.
423 1. PAYLOAD#: Number of this uplink. (from 0,1,2,3…,to PAYLOAD COUNT)
424 1. DATA: Valid value: max 8 bytes for each uplink so each uplink <= 11 bytes. For the last uplink, DATA will might less than 8 bytes
425
426 [[image:image-20220602155039-4.png]]
427
428
429 So totally there will be 3 uplinks for this sampling, each uplink include 8 bytes DATA
430
431 DATA1=RETURN1 Valid Value + the first two of Valid value of RETURN10= **20 20 0a 33 90 41 02 aa**
432
433 DATA2=3^^rd^^ ~~ 10^^th^^ byte of Valid value of RETURN10= **05 81 0a 20 20 20 20 2d**
434
435 DATA3=the rest of Valid value of RETURN10= **30**
436
437
438 (% style="color:red" %)Notice: In firmware v1.3, the Max bytes has been changed according to the max bytes in different Frequency Bands for lowest SF. As below:
439
440 ~* For AU915/AS923 bands, if UplinkDwell time=0, max 51 bytes for each uplink.
441
442 * For AU915/AS923 bands, if UplinkDwell time=0, max 11 bytes for each uplink.
443
444 * For US915 band, max 11 bytes for each uplink.
445
446 ~* For all other bands: max 51 bytes for each uplink.
447
448
449 Below are the uplink payloads:
450
451 [[image:1654157178836-407.png]]
452
453
454 === 3.3.5 Uplink on demand ===
455
456 Except uplink periodically, RS485-LN is able to uplink on demand. The server send downlink command to RS485-LN and RS485 will uplink data base on the command.
457
458 Downlink control command:
459
460 **0x08 command**: Poll an uplink with current command set in RS485-LN.
461
462 **0xA8 command**: Send a command to RS485-LN and uplink the output from sensors.
463
464
465
466 === 3.3.6 Uplink on Interrupt ===
467
468 RS485-LN support external Interrupt uplink since hardware v1.2 release.
469
470 [[image:1654157342174-798.png]]
471
472 Connect the Interrupt pin to RS485-LN INT port and connect the GND pin to V- port. When there is a high voltage (Max 24v) on INT pin. Device will send an uplink packet.
473
474
475 == 3.4 Uplink Payload ==
476
477 (% border="1" style="background-color:#4bacc6; color:white; width:734px" %)
478 |**Size(bytes)**|(% style="width:120px" %)**2**|(% style="width:116px" %)**1**|(% style="width:386px" %)**Length depends on the return from the commands**
479 |Value|(% style="width:120px" %)(((
480 Battery(mV)
481
482 &
483
484 Interrupt _Flag
485 )))|(% style="width:116px" %)(((
486 PAYLOAD_VER
487
488
489 )))|(% style="width:386px" %)If the valid payload is too long and exceed the maximum support payload length in server, server will show payload not provided in the LoRaWAN server.
490
491 Below is the decoder for the first 3 bytes. The rest bytes are dynamic depends on different RS485 sensors.
492
493
494 == 3.5 Configure RS485-BL via AT or Downlink ==
495
496 User can configure RS485-LN via AT Commands or LoRaWAN Downlink Commands
497
498 There are two kinds of Commands:
499
500 * (% style="color:#4f81bd" %)**Common Commands**(%%): They should be available for each sensor, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
501
502 * (% style="color:#4f81bd" %)**Sensor Related Commands**(%%): These commands are special designed for RS485-LN.  User can see these commands below:
503
504 === 3.5.1 Common Commands ===
505
506 They should be available for each of Dragino Sensors, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
507
508
509 === 3.5.2 Sensor related commands ===
510
511 Response feature is added to the server's downlink, a special package with a FPort of 200 will be uploaded immediately after receiving the data sent by the server.
512
513 [[image:image-20220602163333-5.png||height="263" width="1160"]]
514
515 The first byte of this package represents whether the configuration is successful, 00 represents failure, 01 represents success. Except for the first byte, the other is the previous downlink. (All commands except A8 type commands are applicable)
516
517
518 3.5.3 Sensor related commands
519
520 ==== ====
521
522 ==== ====