Version 41.2 by Xiaoling on 2022/06/02 16:36

Show last authors
1 (% style="text-align:center" %)
2 [[image:1653266934636-343.png||height="385" width="385"]]
3
4
5
6 **RS485-LN – RS485 to LoRaWAN Converter User Manual**
7
8
9 **Table of Contents:**
10
11
12
13
14
15 = 1.Introduction =
16
17 == 1.1 What is RS485-LN RS485 to LoRaWAN Converter ==
18
19 (((
20 (((
21 The Dragino RS485-LN is a (% style="color:blue" %)**RS485 to LoRaWAN Converter**(%%). It converts the RS485 signal into LoRaWAN wireless signal which simplify the IoT installation and reduce the installation/maintaining cost.
22 )))
23
24 (((
25 RS485-LN allows user to (% style="color:blue" %)**monitor / control RS485 devices**(%%) and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
26 )))
27
28 (((
29 (% style="color:blue" %)**For data uplink**(%%), RS485-LN sends user-defined commands to RS485 devices and gets the return from the RS485 devices. RS485-LN will process these returns according to user-define rules to get the final payload and upload to LoRaWAN server.
30 )))
31
32 (((
33 (% style="color:blue" %)**For data downlink**(%%), RS485-LN runs in LoRaWAN Class C. When there downlink commands from LoRaWAN server, RS485-LN will forward the commands from LoRaWAN server to RS485 devices.
34
35 (% style="color:blue" %)**Demo Dashboard for RS485-LN**(%%) connect to two energy meters: [[https:~~/~~/app.datacake.de/dashboard/d/58844a26-378d-4c5a-aaf5-b5b5b153447a>>url:https://app.datacake.de/dashboard/d/58844a26-378d-4c5a-aaf5-b5b5b153447a]]
36 )))
37 )))
38
39 [[image:1653267211009-519.png||height="419" width="724"]]
40
41
42 == 1.2 Specifications ==
43
44
45 **Hardware System:**
46
47 * STM32L072CZT6 MCU
48 * SX1276/78 Wireless Chip 
49 * Power Consumption (exclude RS485 device):
50 ** Idle: 32mA@12v
51 ** 20dB Transmit: 65mA@12v
52
53 **Interface for Model:**
54
55 * RS485
56 * Power Input 7~~ 24V DC. 
57
58 **LoRa Spec:**
59
60 * Frequency Range:
61 ** Band 1 (HF): 862 ~~ 1020 Mhz
62 ** Band 2 (LF): 410 ~~ 528 Mhz
63 * 168 dB maximum link budget.
64 * +20 dBm - 100 mW constant RF output vs.
65 * +14 dBm high efficiency PA.
66 * Programmable bit rate up to 300 kbps.
67 * High sensitivity: down to -148 dBm.
68 * Bullet-proof front end: IIP3 = -12.5 dBm.
69 * Excellent blocking immunity.
70 * Low RX current of 10.3 mA, 200 nA register retention.
71 * Fully integrated synthesizer with a resolution of 61 Hz.
72 * FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation.
73 * Built-in bit synchronizer for clock recovery.
74 * Preamble detection.
75 * 127 dB Dynamic Range RSSI.
76 * Automatic RF Sense and CAD with ultra-fast AFC.
77 * Packet engine up to 256 bytes with CRC.
78
79
80 == 1.3 Features ==
81
82 * LoRaWAN Class A & Class C protocol (default Class C)
83 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865/RU864
84 * AT Commands to change parameters
85 * Remote configure parameters via LoRa Downlink
86 * Firmware upgradable via program port
87 * Support multiply RS485 devices by flexible rules
88 * Support Modbus protocol
89 * Support Interrupt uplink (Since hardware version v1.2)
90
91 == 1.4 Applications ==
92
93 * Smart Buildings & Home Automation
94 * Logistics and Supply Chain Management
95 * Smart Metering
96 * Smart Agriculture
97 * Smart Cities
98 * Smart Factory
99
100 == 1.5 Firmware Change log ==
101
102 [[RS485-LN Image files – Download link and Change log>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/]]
103
104
105 == 1.6 Hardware Change log ==
106
107 (((
108 (((
109 v1.2: Add External Interrupt Pin.
110
111 v1.0: Release
112
113
114 )))
115 )))
116
117 = 2. Power ON Device =
118
119 (((
120 The RS485-LN can be powered by 7 ~~ 24V DC power source. Connection as below
121
122 * Power Source VIN to RS485-LN VIN+
123 * Power Source GND to RS485-LN VIN-
124
125 (((
126 Once there is power, the RS485-LN will be on.
127 )))
128
129 [[image:1653268091319-405.png]]
130
131
132 )))
133
134 = 3. Operation Mode =
135
136 == 3.1 How it works? ==
137
138 (((
139 The RS485-LN is configured as LoRaWAN OTAA Class C mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the RS485-LN. It will auto join the network via OTAA.
140
141
142 )))
143
144 == 3.2 Example to join LoRaWAN network ==
145
146 Here shows an example for how to join the TTN V3 Network. Below is the network structure, we use [[LG308>>url:http://www.dragino.com/products/lora-lorawan-gateway/item/140-lg308.html]] as LoRaWAN gateway here. 
147
148 [[image:1653268155545-638.png||height="334" width="724"]]
149
150
151 (((
152 (((
153 The RS485-LN in this example connected to two RS485 devices for demonstration, user can connect to other RS485 devices via the same method. The connection is as below:
154 )))
155
156 (((
157 485A+ and 485B- of the sensor are connected to RS485A and RA485B of RS485-LN respectively.
158 )))
159
160 [[image:1653268227651-549.png||height="592" width="720"]]
161
162 (((
163 The LG308 is already set to connect to [[TTN V3 network >>path:eu1.cloud.thethings.network/]]. So what we need to now is only configure the TTN V3:
164 )))
165
166 (((
167 **Step 1**: Create a device in TTN V3 with the OTAA keys from RS485-LN.
168 )))
169
170 (((
171 Each RS485-LN is shipped with a sticker with unique device EUI:
172 )))
173 )))
174
175 [[image:1652953462722-299.png]]
176
177 (((
178 (((
179 User can enter this key in their LoRaWAN Server portal. Below is TTN V3 screen shot:
180 )))
181
182 (((
183 Add APP EUI in the application.
184 )))
185 )))
186
187 [[image:image-20220519174512-1.png]]
188
189 [[image:image-20220519174512-2.png||height="323" width="720"]]
190
191 [[image:image-20220519174512-3.png||height="556" width="724"]]
192
193 [[image:image-20220519174512-4.png]]
194
195 You can also choose to create the device manually.
196
197 [[image:1652953542269-423.png||height="710" width="723"]]
198
199 Add APP KEY and DEV EUI
200
201 [[image:1652953553383-907.png||height="514" width="724"]]
202
203
204 (((
205 **Step 2**: Power on RS485-LN and it will auto join to the TTN V3 network. After join success, it will start to upload message to TTN V3 and user can see in the panel.
206 )))
207
208 [[image:1652953568895-172.png||height="232" width="724"]]
209
210
211 == 3.3 Configure Commands to read data ==
212
213 (((
214 (((
215 There are plenty of RS485 devices in the market and each device has different command to read the valid data. To support these devices in flexible, RS485-LN supports flexible command set. User can use [[AT Commands>>path:#AT_COMMAND]] or LoRaWAN Downlink Command to configure what commands RS485-LN should send for each sampling and how to handle the return from RS485 devices.
216 )))
217
218 (((
219 (% style="color:red" %)Note: below description and commands are for firmware version >v1.1, if you have firmware version v1.0. Please check the [[user manual v1.0>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/&file=RS485-LN_UserManual_v1.0.1.pdf]] or upgrade the firmware to v1.1
220
221
222 )))
223 )))
224
225 === 3.3.1 onfigure UART settings for RS485 or TTL communication ===
226
227 To use RS485-LN to read data from RS485 sensors, connect the RS485-LN A/B traces to the sensors. And user need to make sure RS485-LN use the match UART setting to access the sensors. The related commands for UART settings are:
228
229 (% border="1" style="background-color:#ffffcc; color:green; width:782px" %)
230 |(% style="width:128px" %)(((
231 **AT Commands**
232 )))|(% style="width:305px" %)(((
233 **Description**
234 )))|(% style="width:346px" %)(((
235 **Example**
236 )))
237 |(% style="width:128px" %)(((
238 AT+BAUDR
239 )))|(% style="width:305px" %)(((
240 Set the baud rate (for RS485 connection). Default Value is: 9600.
241 )))|(% style="width:346px" %)(((
242 (((
243 AT+BAUDR=9600
244 )))
245
246 (((
247 Options: (1200,2400,4800,14400,19200,115200)
248 )))
249 )))
250 |(% style="width:128px" %)(((
251 AT+PARITY
252 )))|(% style="width:305px" %)(((
253 Set UART parity (for RS485 connection)
254 )))|(% style="width:346px" %)(((
255 (((
256 AT+PARITY=0
257 )))
258
259 (((
260 Option: 0: no parity, 1: odd parity, 2: even parity
261 )))
262 )))
263 |(% style="width:128px" %)(((
264 AT+STOPBIT
265 )))|(% style="width:305px" %)(((
266 (((
267 Set serial stopbit (for RS485 connection)
268 )))
269
270 (((
271
272 )))
273 )))|(% style="width:346px" %)(((
274 (((
275 AT+STOPBIT=0 for 1bit
276 )))
277
278 (((
279 AT+STOPBIT=1 for 1.5 bit
280 )))
281
282 (((
283 AT+STOPBIT=2 for 2 bits
284 )))
285 )))
286
287 === 3.3.2 Configure sensors ===
288
289 (((
290 (((
291 Some sensors might need to configure before normal operation. User can configure such sensor via PC and RS485 adapter or through RS485-LN AT Commands (% style="color:#4f81bd" %)**AT+CFGDEV**(%%). Each (% style="color:#4f81bd" %)**AT+CFGDEV **(%%)equals to send a RS485 command to sensors. This command will only run when user input it and won’t run during each sampling.
292 )))
293 )))
294
295 (% border="1" style="background-color:#ffffcc; color:green; width:806px" %)
296 |**AT Commands**|(% style="width:418px" %)**Description**|(% style="width:256px" %)**Example**
297 |AT+CFGDEV|(% style="width:418px" %)(((
298 This command is used to configure the RS485/TTL devices; they won’t be used during sampling.
299
300 AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,
301
302 mm: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command
303 )))|(% style="width:256px" %)AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m
304
305 === 3.3.3 Configure read commands for each sampling ===
306
307 (((
308 During each sampling, we need confirm what commands we need to send to the RS485 sensors to read data. After the RS485 sensors send back the value, it normally include some bytes and we only need a few from them for a shorten payload.
309
310 To save the LoRaWAN network bandwidth, we might need to read data from different sensors and combine their valid value into a short payload.
311
312 This section describes how to achieve above goals.
313
314 During each sampling, the RS485-LN can support 15 commands to read sensors. And combine the return to one or several uplink payloads.
315
316
317 **Each RS485 commands include two parts:**
318
319 ~1. What commands RS485-LN will send to the RS485 sensors. There are total 15 commands from **AT+COMMAD1**, **ATCOMMAND2**,…, to **AT+COMMANDF**. All commands are of same grammar.
320
321 2. How to get wanted value the from RS485 sensors returns from by 1). There are total 15 AT Commands to handle the return, commands are **AT+DATACUT1**,**AT+DATACUT2**,…, **AT+DATACUTF** corresponding to the commands from 1). All commands are of same grammar.
322
323 3. Some RS485 device might has longer delay on reply, so user can use AT+CMDDL to set the timeout for getting reply after the RS485 command is sent. For example **AT+CMDDL1=1000** to send the open time to 1000ms
324
325
326 After we got the valid value from each RS485 commands, we need to combine them together with the command **AT+DATAUP**.
327
328
329 Below are examples for the how above AT Commands works.
330
331
332 **AT+COMMANDx : **This command will be sent to RS485 devices during each sampling, Max command length is 14 bytes. The grammar is:
333
334 (% border="1" style="background-color:#4bacc6; color:white; width:499px" %)
335 |(% style="width:496px" %)(((
336 **AT+COMMANDx=xx xx xx xx xx xx xx xx xx xx xx xx,m**
337
338 **xx xx xx xx xx xx xx xx xx xx xx xx: The RS485 command to be sent**
339
340 **m: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command**
341 )))
342
343 For example, if we have a RS485 sensor. The command to get sensor value is: 01 03 0B B8 00 02 46 0A. Where 01 03 0B B8 00 02 is the Modbus command to read the register 0B B8 where stored the sensor value. The 46 0A is the CRC-16/MODBUS which calculate manually.
344
345 In the RS485-LN, we should use this command AT+COMMAND1=01 03 0B B8 00 02,1 for the same.
346
347
348 **AT+DATACUTx : **This command defines how to handle the return from AT+COMMANDx, max return length is 45 bytes.
349
350 (% border="1" style="background-color:#4bacc6; color:white; width:725px" %)
351 |(% style="width:722px" %)(((
352 **AT+DATACUTx=a,b,c**
353
354 * **a: length for the return of AT+COMMAND**
355 * **b:1: grab valid value by byte, max 6 bytes. 2: grab valid value by bytes section, max 3 sections.**
356 * **c: define the position for valid value.  **
357 )))
358
359 **Examples:**
360
361 * Grab bytes:
362
363 [[image:image-20220602153621-1.png]]
364
365
366 * Grab a section.
367
368 [[image:image-20220602153621-2.png]]
369
370
371 * Grab different sections.
372
373 [[image:image-20220602153621-3.png]]
374
375
376 )))
377
378 === 3.3.4 Compose the uplink payload ===
379
380 (((
381 Through AT+COMMANDx and AT+DATACUTx we got valid value from each RS485 commands, Assume these valid value are RETURN1, RETURN2, .., to RETURNx. The next step is how to compose the LoRa Uplink Payload by these RETURNs. The command is **AT+DATAUP.**
382
383
384 )))
385
386 (((
387 (% style="color:#037691" %)**Examples: AT+DATAUP=0**
388
389
390 )))
391
392 (((
393 Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**A SIGNLE UPLINK**.
394 )))
395
396 (((
397 Final Payload is
398 )))
399
400 (((
401 (% style="color:#4f81bd" %)**Battery Info+PAYVER + VALID Value from RETURN1 + Valid Value from RETURN2 + … + RETURNx**
402 )))
403
404 (((
405 Where PAYVER is defined by AT+PAYVER, below is an example screen shot.
406 )))
407
408 [[image:1653269759169-150.png||height="513" width="716"]]
409
410
411 (% style="color:#037691" %)**Examples: AT+DATAUP=1**
412
413
414 Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**Multiply UPLINKs**.
415
416 Final Payload is
417
418 (% style="color:#4f81bd" %)**Battery Info+PAYVER + PAYLOAD COUNT + PAYLOAD# + DATA**
419
420 1. PAYVER: Defined by AT+PAYVER
421 1. PAYLOAD COUNT: Total how many uplinks of this sampling.
422 1. PAYLOAD#: Number of this uplink. (from 0,1,2,3…,to PAYLOAD COUNT)
423 1. DATA: Valid value: max 8 bytes for each uplink so each uplink <= 11 bytes. For the last uplink, DATA will might less than 8 bytes
424
425 [[image:image-20220602155039-4.png]]
426
427
428 So totally there will be 3 uplinks for this sampling, each uplink include 8 bytes DATA
429
430 DATA1=RETURN1 Valid Value + the first two of Valid value of RETURN10= **20 20 0a 33 90 41 02 aa**
431
432 DATA2=3^^rd^^ ~~ 10^^th^^ byte of Valid value of RETURN10= **05 81 0a 20 20 20 20 2d**
433
434 DATA3=the rest of Valid value of RETURN10= **30**
435
436
437 (% style="color:red" %)Notice: In firmware v1.3, the Max bytes has been changed according to the max bytes in different Frequency Bands for lowest SF. As below:
438
439 ~* For AU915/AS923 bands, if UplinkDwell time=0, max 51 bytes for each uplink.
440
441 * For AU915/AS923 bands, if UplinkDwell time=0, max 11 bytes for each uplink.
442
443 * For US915 band, max 11 bytes for each uplink.
444
445 ~* For all other bands: max 51 bytes for each uplink.
446
447
448 Below are the uplink payloads:
449
450 [[image:1654157178836-407.png]]
451
452
453 === 3.3.5 Uplink on demand ===
454
455 Except uplink periodically, RS485-LN is able to uplink on demand. The server send downlink command to RS485-LN and RS485 will uplink data base on the command.
456
457 Downlink control command:
458
459 **0x08 command**: Poll an uplink with current command set in RS485-LN.
460
461 **0xA8 command**: Send a command to RS485-LN and uplink the output from sensors.
462
463
464
465 === 3.3.6 Uplink on Interrupt ===
466
467 RS485-LN support external Interrupt uplink since hardware v1.2 release.
468
469 [[image:1654157342174-798.png]]
470
471 Connect the Interrupt pin to RS485-LN INT port and connect the GND pin to V- port. When there is a high voltage (Max 24v) on INT pin. Device will send an uplink packet.
472
473
474 == 3.4 Uplink Payload ==
475
476 (% border="1" style="background-color:#4bacc6; color:white; width:734px" %)
477 |**Size(bytes)**|(% style="width:120px" %)**2**|(% style="width:116px" %)**1**|(% style="width:386px" %)**Length depends on the return from the commands**
478 |Value|(% style="width:120px" %)(((
479 Battery(mV)
480
481 &
482
483 Interrupt _Flag
484 )))|(% style="width:116px" %)(((
485 PAYLOAD_VER
486
487
488 )))|(% style="width:386px" %)If the valid payload is too long and exceed the maximum support payload length in server, server will show payload not provided in the LoRaWAN server.
489
490 Below is the decoder for the first 3 bytes. The rest bytes are dynamic depends on different RS485 sensors.
491
492
493 == 3.5 Configure RS485-BL via AT or Downlink ==
494
495 User can configure RS485-LN via AT Commands or LoRaWAN Downlink Commands
496
497 There are two kinds of Commands:
498
499 * (% style="color:#4f81bd" %)**Common Commands**(%%): They should be available for each sensor, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
500
501 * (% style="color:#4f81bd" %)**Sensor Related Commands**(%%): These commands are special designed for RS485-LN.  User can see these commands below:
502
503 === 3.5.1 Common Commands ===
504
505 They should be available for each of Dragino Sensors, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
506
507
508 === 3.5.2 Sensor related commands ===
509
510 Response feature is added to the server's downlink, a special package with a FPort of 200 will be uploaded immediately after receiving the data sent by the server.
511
512 [[image:image-20220602163333-5.png||height="263" width="1160"]]
513
514 The first byte of this package represents whether the configuration is successful, 00 represents failure, 01 represents success. Except for the first byte, the other is the previous downlink. (All commands except A8 type commands are applicable)
515
516
517 3.5.3 Sensor related commands
518
519 ==== ====
520
521 ==== ====
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0