Show last authors
1 (% style="text-align:center" %)
2 [[image:1653266934636-343.png||height="385" width="385"]]
3
4
5
6 **RS485-LN – RS485 to LoRaWAN Converter User Manual**
7
8
9 **Table of Contents:**
10
11
12
13
14
15 = 1.Introduction =
16
17 == 1.1 What is RS485-LN RS485 to LoRaWAN Converter ==
18
19 (((
20 (((
21 The Dragino RS485-LN is a (% style="color:blue" %)**RS485 to LoRaWAN Converter**(%%). It converts the RS485 signal into LoRaWAN wireless signal which simplify the IoT installation and reduce the installation/maintaining cost.
22 )))
23
24 (((
25 RS485-LN allows user to (% style="color:blue" %)**monitor / control RS485 devices**(%%) and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
26 )))
27
28 (((
29 (% style="color:blue" %)**For data uplink**(%%), RS485-LN sends user-defined commands to RS485 devices and gets the return from the RS485 devices. RS485-LN will process these returns according to user-define rules to get the final payload and upload to LoRaWAN server.
30 )))
31
32 (((
33 (% style="color:blue" %)**For data downlink**(%%), RS485-LN runs in LoRaWAN Class C. When there downlink commands from LoRaWAN server, RS485-LN will forward the commands from LoRaWAN server to RS485 devices.
34
35 (% style="color:blue" %)**Demo Dashboard for RS485-LN**(%%) connect to two energy meters: [[https:~~/~~/app.datacake.de/dashboard/d/58844a26-378d-4c5a-aaf5-b5b5b153447a>>url:https://app.datacake.de/dashboard/d/58844a26-378d-4c5a-aaf5-b5b5b153447a]]
36 )))
37 )))
38
39 [[image:1653267211009-519.png||height="419" width="724"]]
40
41
42 == 1.2 Specifications ==
43
44
45 **Hardware System:**
46
47 * STM32L072CZT6 MCU
48 * SX1276/78 Wireless Chip 
49 * Power Consumption (exclude RS485 device):
50 ** Idle: 32mA@12v
51 ** 20dB Transmit: 65mA@12v
52
53 **Interface for Model:**
54
55 * RS485
56 * Power Input 7~~ 24V DC. 
57
58 **LoRa Spec:**
59
60 * Frequency Range:
61 ** Band 1 (HF): 862 ~~ 1020 Mhz
62 ** Band 2 (LF): 410 ~~ 528 Mhz
63 * 168 dB maximum link budget.
64 * +20 dBm - 100 mW constant RF output vs.
65 * +14 dBm high efficiency PA.
66 * Programmable bit rate up to 300 kbps.
67 * High sensitivity: down to -148 dBm.
68 * Bullet-proof front end: IIP3 = -12.5 dBm.
69 * Excellent blocking immunity.
70 * Low RX current of 10.3 mA, 200 nA register retention.
71 * Fully integrated synthesizer with a resolution of 61 Hz.
72 * FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation.
73 * Built-in bit synchronizer for clock recovery.
74 * Preamble detection.
75 * 127 dB Dynamic Range RSSI.
76 * Automatic RF Sense and CAD with ultra-fast AFC.
77 * Packet engine up to 256 bytes with CRC.
78
79 == 1.3 Features ==
80
81 * LoRaWAN Class A & Class C protocol (default Class C)
82 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865/RU864
83 * AT Commands to change parameters
84 * Remote configure parameters via LoRa Downlink
85 * Firmware upgradable via program port
86 * Support multiply RS485 devices by flexible rules
87 * Support Modbus protocol
88 * Support Interrupt uplink (Since hardware version v1.2)
89
90 == 1.4 Applications ==
91
92 * Smart Buildings & Home Automation
93 * Logistics and Supply Chain Management
94 * Smart Metering
95 * Smart Agriculture
96 * Smart Cities
97 * Smart Factory
98
99 == 1.5 Firmware Change log ==
100
101 [[RS485-LN Image files – Download link and Change log>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/]]
102
103
104 == 1.6 Hardware Change log ==
105
106 (((
107 (((
108 v1.2: Add External Interrupt Pin.
109
110 v1.0: Release
111
112
113 )))
114 )))
115
116 = 2. Power ON Device =
117
118 (((
119 The RS485-LN can be powered by 7 ~~ 24V DC power source. Connection as below
120
121 * Power Source VIN to RS485-LN VIN+
122 * Power Source GND to RS485-LN VIN-
123
124 (((
125 Once there is power, the RS485-LN will be on.
126 )))
127
128 [[image:1653268091319-405.png]]
129
130
131 )))
132
133 = 3. Operation Mode =
134
135 == 3.1 How it works? ==
136
137 (((
138 The RS485-LN is configured as LoRaWAN OTAA Class C mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the RS485-LN. It will auto join the network via OTAA.
139
140
141 )))
142
143 == 3.2 Example to join LoRaWAN network ==
144
145 Here shows an example for how to join the TTN V3 Network. Below is the network structure, we use [[LG308>>url:http://www.dragino.com/products/lora-lorawan-gateway/item/140-lg308.html]] as LoRaWAN gateway here. 
146
147 [[image:1653268155545-638.png||height="334" width="724"]]
148
149
150 (((
151 (((
152 The RS485-LN in this example connected to two RS485 devices for demonstration, user can connect to other RS485 devices via the same method. The connection is as below:
153 )))
154
155 (((
156 485A+ and 485B- of the sensor are connected to RS485A and RA485B of RS485-LN respectively.
157 )))
158
159 [[image:1653268227651-549.png||height="592" width="720"]]
160
161 (((
162 The LG308 is already set to connect to [[TTN V3 network >>path:eu1.cloud.thethings.network/]]. So what we need to now is only configure the TTN V3:
163 )))
164
165 (((
166 **Step 1**: Create a device in TTN V3 with the OTAA keys from RS485-LN.
167 )))
168
169 (((
170 Each RS485-LN is shipped with a sticker with unique device EUI:
171 )))
172 )))
173
174 [[image:1652953462722-299.png]]
175
176 (((
177 (((
178 User can enter this key in their LoRaWAN Server portal. Below is TTN V3 screen shot:
179 )))
180
181 (((
182 Add APP EUI in the application.
183 )))
184 )))
185
186 [[image:image-20220519174512-1.png]]
187
188 [[image:image-20220519174512-2.png||height="323" width="720"]]
189
190 [[image:image-20220519174512-3.png||height="556" width="724"]]
191
192 [[image:image-20220519174512-4.png]]
193
194 You can also choose to create the device manually.
195
196 [[image:1652953542269-423.png||height="710" width="723"]]
197
198 Add APP KEY and DEV EUI
199
200 [[image:1652953553383-907.png||height="514" width="724"]]
201
202
203 (((
204 **Step 2**: Power on RS485-LN and it will auto join to the TTN V3 network. After join success, it will start to upload message to TTN V3 and user can see in the panel.
205 )))
206
207 [[image:1652953568895-172.png||height="232" width="724"]]
208
209
210 == 3.3 Configure Commands to read data ==
211
212 (((
213 (((
214 There are plenty of RS485 devices in the market and each device has different command to read the valid data. To support these devices in flexible, RS485-LN supports flexible command set. User can use [[AT Commands>>path:#AT_COMMAND]] or LoRaWAN Downlink Command to configure what commands RS485-LN should send for each sampling and how to handle the return from RS485 devices.
215 )))
216
217 (((
218 (% style="color:red" %)Note: below description and commands are for firmware version >v1.1, if you have firmware version v1.0. Please check the [[user manual v1.0>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/&file=RS485-LN_UserManual_v1.0.1.pdf]] or upgrade the firmware to v1.1
219
220
221 )))
222 )))
223
224 === 3.3.1 onfigure UART settings for RS485 or TTL communication ===
225
226 To use RS485-LN to read data from RS485 sensors, connect the RS485-LN A/B traces to the sensors. And user need to make sure RS485-LN use the match UART setting to access the sensors. The related commands for UART settings are:
227
228 (% border="1" style="background-color:#ffffcc; color:green; width:782px" %)
229 |(% style="width:128px" %)(((
230 **AT Commands**
231 )))|(% style="width:305px" %)(((
232 **Description**
233 )))|(% style="width:346px" %)(((
234 **Example**
235 )))
236 |(% style="width:128px" %)(((
237 AT+BAUDR
238 )))|(% style="width:305px" %)(((
239 Set the baud rate (for RS485 connection). Default Value is: 9600.
240 )))|(% style="width:346px" %)(((
241 (((
242 AT+BAUDR=9600
243 )))
244
245 (((
246 Options: (1200,2400,4800,14400,19200,115200)
247 )))
248 )))
249 |(% style="width:128px" %)(((
250 AT+PARITY
251 )))|(% style="width:305px" %)(((
252 Set UART parity (for RS485 connection)
253 )))|(% style="width:346px" %)(((
254 (((
255 AT+PARITY=0
256 )))
257
258 (((
259 Option: 0: no parity, 1: odd parity, 2: even parity
260 )))
261 )))
262 |(% style="width:128px" %)(((
263 AT+STOPBIT
264 )))|(% style="width:305px" %)(((
265 (((
266 Set serial stopbit (for RS485 connection)
267 )))
268
269 (((
270
271 )))
272 )))|(% style="width:346px" %)(((
273 (((
274 AT+STOPBIT=0 for 1bit
275 )))
276
277 (((
278 AT+STOPBIT=1 for 1.5 bit
279 )))
280
281 (((
282 AT+STOPBIT=2 for 2 bits
283 )))
284 )))
285
286 === 3.3.2 Configure sensors ===
287
288 (((
289 (((
290 Some sensors might need to configure before normal operation. User can configure such sensor via PC and RS485 adapter or through RS485-LN AT Commands (% style="color:#4f81bd" %)**AT+CFGDEV**(%%). Each (% style="color:#4f81bd" %)**AT+CFGDEV **(%%)equals to send a RS485 command to sensors. This command will only run when user input it and won’t run during each sampling.
291 )))
292 )))
293
294 (% border="1" style="background-color:#ffffcc; color:green; width:806px" %)
295 |**AT Commands**|(% style="width:418px" %)**Description**|(% style="width:256px" %)**Example**
296 |AT+CFGDEV|(% style="width:418px" %)(((
297 This command is used to configure the RS485/TTL devices; they won’t be used during sampling.
298
299 AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,
300
301 mm: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command
302 )))|(% style="width:256px" %)AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m
303
304 === 3.3.3 Configure read commands for each sampling ===
305
306 (((
307 During each sampling, we need confirm what commands we need to send to the RS485 sensors to read data. After the RS485 sensors send back the value, it normally include some bytes and we only need a few from them for a shorten payload.
308
309 To save the LoRaWAN network bandwidth, we might need to read data from different sensors and combine their valid value into a short payload.
310
311 This section describes how to achieve above goals.
312
313 During each sampling, the RS485-LN can support 15 commands to read sensors. And combine the return to one or several uplink payloads.
314
315
316 **Each RS485 commands include two parts:**
317
318 ~1. What commands RS485-LN will send to the RS485 sensors. There are total 15 commands from **AT+COMMAD1**, **ATCOMMAND2**,…, to **AT+COMMANDF**. All commands are of same grammar.
319
320 2. How to get wanted value the from RS485 sensors returns from by 1). There are total 15 AT Commands to handle the return, commands are **AT+DATACUT1**,**AT+DATACUT2**,…, **AT+DATACUTF** corresponding to the commands from 1). All commands are of same grammar.
321
322 3. Some RS485 device might has longer delay on reply, so user can use AT+CMDDL to set the timeout for getting reply after the RS485 command is sent. For example **AT+CMDDL1=1000** to send the open time to 1000ms
323
324
325 After we got the valid value from each RS485 commands, we need to combine them together with the command **AT+DATAUP**.
326
327
328 Below are examples for the how above AT Commands works.
329
330
331 **AT+COMMANDx : **This command will be sent to RS485 devices during each sampling, Max command length is 14 bytes. The grammar is:
332
333 (% border="1" style="background-color:#4bacc6; color:white; width:499px" %)
334 |(% style="width:496px" %)(((
335 **AT+COMMANDx=xx xx xx xx xx xx xx xx xx xx xx xx,m**
336
337 **xx xx xx xx xx xx xx xx xx xx xx xx: The RS485 command to be sent**
338
339 **m: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command**
340 )))
341
342 For example, if we have a RS485 sensor. The command to get sensor value is: 01 03 0B B8 00 02 46 0A. Where 01 03 0B B8 00 02 is the Modbus command to read the register 0B B8 where stored the sensor value. The 46 0A is the CRC-16/MODBUS which calculate manually.
343
344 In the RS485-LN, we should use this command AT+COMMAND1=01 03 0B B8 00 02,1 for the same.
345
346
347 **AT+DATACUTx : **This command defines how to handle the return from AT+COMMANDx, max return length is 45 bytes.
348
349 (% border="1" style="background-color:#4bacc6; color:white; width:725px" %)
350 |(% style="width:722px" %)(((
351 **AT+DATACUTx=a,b,c**
352
353 * **a: length for the return of AT+COMMAND**
354 * **b:1: grab valid value by byte, max 6 bytes. 2: grab valid value by bytes section, max 3 sections.**
355 * **c: define the position for valid value.  **
356 )))
357
358 **Examples:**
359
360 * Grab bytes:
361
362 [[image:image-20220602153621-1.png]]
363
364
365 * Grab a section.
366
367 [[image:image-20220602153621-2.png]]
368
369
370 * Grab different sections.
371
372 [[image:image-20220602153621-3.png]]
373
374
375 )))
376
377 === 3.3.4 Compose the uplink payload ===
378
379 (((
380 Through AT+COMMANDx and AT+DATACUTx we got valid value from each RS485 commands, Assume these valid value are RETURN1, RETURN2, .., to RETURNx. The next step is how to compose the LoRa Uplink Payload by these RETURNs. The command is **AT+DATAUP.**
381
382
383 )))
384
385 (((
386 (% style="color:#037691" %)**Examples: AT+DATAUP=0**
387
388
389 )))
390
391 (((
392 Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**A SIGNLE UPLINK**.
393 )))
394
395 (((
396 Final Payload is
397 )))
398
399 (((
400 (% style="color:#4f81bd" %)**Battery Info+PAYVER + VALID Value from RETURN1 + Valid Value from RETURN2 + … + RETURNx**
401 )))
402
403 (((
404 Where PAYVER is defined by AT+PAYVER, below is an example screen shot.
405 )))
406
407 [[image:1653269759169-150.png||height="513" width="716"]]
408
409
410 (% style="color:#037691" %)**Examples: AT+DATAUP=1**
411
412
413 Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**Multiply UPLINKs**.
414
415 Final Payload is
416
417 (% style="color:#4f81bd" %)**Battery Info+PAYVER + PAYLOAD COUNT + PAYLOAD# + DATA**
418
419 1. PAYVER: Defined by AT+PAYVER
420 1. PAYLOAD COUNT: Total how many uplinks of this sampling.
421 1. PAYLOAD#: Number of this uplink. (from 0,1,2,3…,to PAYLOAD COUNT)
422 1. DATA: Valid value: max 8 bytes for each uplink so each uplink <= 11 bytes. For the last uplink, DATA will might less than 8 bytes
423
424 [[image:image-20220602155039-4.png]]
425
426
427 So totally there will be 3 uplinks for this sampling, each uplink include 8 bytes DATA
428
429 DATA1=RETURN1 Valid Value + the first two of Valid value of RETURN10= **20 20 0a 33 90 41 02 aa**
430
431 DATA2=3^^rd^^ ~~ 10^^th^^ byte of Valid value of RETURN10= **05 81 0a 20 20 20 20 2d**
432
433 DATA3=the rest of Valid value of RETURN10= **30**
434
435
436 (% style="color:red" %)Notice: In firmware v1.3, the Max bytes has been changed according to the max bytes in different Frequency Bands for lowest SF. As below:
437
438 ~* For AU915/AS923 bands, if UplinkDwell time=0, max 51 bytes for each uplink.
439
440 * For AU915/AS923 bands, if UplinkDwell time=0, max 11 bytes for each uplink.
441
442 * For US915 band, max 11 bytes for each uplink.
443
444 ~* For all other bands: max 51 bytes for each uplink.
445
446
447 Below are the uplink payloads:
448
449 [[image:1654157178836-407.png]]
450
451
452 === 3.3.5 Uplink on demand ===
453
454 Except uplink periodically, RS485-LN is able to uplink on demand. The server send downlink command to RS485-LN and RS485 will uplink data base on the command.
455
456 Downlink control command:
457
458 **0x08 command**: Poll an uplink with current command set in RS485-LN.
459
460 **0xA8 command**: Send a command to RS485-LN and uplink the output from sensors.
461
462
463
464 === 3.3.6 Uplink on Interrupt ===
465
466 RS485-LN support external Interrupt uplink since hardware v1.2 release.
467
468 [[image:1654157342174-798.png]]
469
470 Connect the Interrupt pin to RS485-LN INT port and connect the GND pin to V- port. When there is a high voltage (Max 24v) on INT pin. Device will send an uplink packet.
471
472
473 == 3.4 Uplink Payload ==
474
475 (% border="1" style="background-color:#4bacc6; color:white; width:734px" %)
476 |**Size(bytes)**|(% style="width:120px" %)**2**|(% style="width:116px" %)**1**|(% style="width:386px" %)**Length depends on the return from the commands**
477 |Value|(% style="width:120px" %)(((
478 Battery(mV)
479
480 &
481
482 Interrupt _Flag
483 )))|(% style="width:116px" %)(((
484 PAYLOAD_VER
485
486
487 )))|(% style="width:386px" %)If the valid payload is too long and exceed the maximum support payload length in server, server will show payload not provided in the LoRaWAN server.
488
489 Below is the decoder for the first 3 bytes. The rest bytes are dynamic depends on different RS485 sensors.
490
491
492 == 3.5 Configure RS485-BL via AT or Downlink ==
493
494 User can configure RS485-LN via AT Commands or LoRaWAN Downlink Commands
495
496 There are two kinds of Commands:
497
498 * (% style="color:#4f81bd" %)**Common Commands**(%%): They should be available for each sensor, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
499
500 * (% style="color:#4f81bd" %)**Sensor Related Commands**(%%): These commands are special designed for RS485-LN.  User can see these commands below:
501
502
503
504 === 3.5.1 Common Commands ===
505
506 They should be available for each of Dragino Sensors, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
507
508
509 === 3.5.2 Sensor related commands: ===
510
511 ==== Choose Device Type (RS485 or TTL) ====
512
513 RS485-BL can connect to either RS485 sensors or TTL sensor. User need to specify what type of sensor need to connect.
514
515 * AT Command
516
517 **AT+MOD=1** ~/~/ Set to support RS485-MODBUS type sensors. User can connect multiply RS485 , Modbus sensors to the A / B pins.
518
519 **AT+MOD=2** ~/~/ Set to support TTL Level sensors, User can connect one TTL Sensor to the TXD/RXD/GND pins.
520
521
522 * Downlink Payload
523
524 **0A aa**     à same as AT+MOD=aa
525
526
527
528 ==== [[RS485 Debug Command>>path:#downlink_A8]] (AT+CFGDEV) ====
529
530 This command is used to configure the RS485 or TTL sensors; they won’t be used during sampling.
531
532 * AT Command
533
534 AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m
535
536 m: 0: no CRC; 1: add CRC-16/MODBUS in the end of this command.
537
538
539
540 * Downlink Payload
541
542 Format: A8 MM NN XX XX XX XX YY
543
544 Where:
545
546 * MM: 1: add CRC-16/MODBUS ; 0: no CRC
547 * NN: The length of RS485 command
548 * XX XX XX XX: RS485 command total NN bytes
549 * YY: How many bytes will be uplink from the return of this RS485 command, if YY=0, RS485-BL will execute the downlink command without uplink; if YY>0, RS485-BL will uplink total YY bytes from the output of this RS485 command
550
551 **Example 1:**
552
553 To connect a Modbus Alarm with below commands.
554
555 * The command to active alarm is: 0A 05 00 04 00 01 4C B0. Where 0A 05 00 04 00 01 is the Modbus command to read the register 00 40 where stored the DI status. The 4C B0 is the CRC-16/MODBUS which calculate manually.
556
557 * The command to deactivate alarm is: 0A 05 00 04 00 00 8D 70. Where 0A 05 00 04 00 00 is the Modbus command to read the register 00 40 where stored the DI status. The 8D 70 is the CRC-16/MODBUS which calculate manually.
558
559 So if user want to use downlink command to control to RS485 Alarm, he can use:
560
561 **A8 01 06 0A 05 00 04 00 01 00**: to activate the RS485 Alarm
562
563 **A8 01 06 0A 05 00 04 00 00 00**: to deactivate the RS485 Alarm
564
565 A8 is type code and 01 means add CRC-16/MODBUS at the end, the 3^^rd^^ byte is 06, means the next 6 bytes are the command to be sent to the RS485 network, the final byte 00 means this command don’t need to acquire output.
566
567
568 **Example 2:**
569
570 Check TTL Sensor return:
571
572 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image024.png]]
573
574
575
576
577 ==== Set Payload version ====
578
579 This is the first byte of the uplink payload. RS485-BL can connect to different sensors. User can set the PAYVER field to tell server how to decode the current payload.
580
581 * AT Command:
582
583 AT+PAYVER: Set PAYVER field = 1
584
585
586 * Downlink Payload:
587
588 0xAE 01   à Set PAYVER field =  0x01
589
590 0xAE 0F   à Set PAYVER field =  0x0F
591
592
593 ==== Set RS485 Sampling Commands ====
594
595 AT+COMMANDx, AT+DATACUTx and AT+SEARCHx
596
597 These three commands are used to configure how the RS485-BL polling data from Modbus device. Detail of usage please see : [[polling RS485 device>>path:#polling_485]].
598
599
600 * AT Command:
601
602 AT+COMMANDx: Configure RS485 read command to sensor.
603
604 AT+DATACUTx: Configure how to handle return from RS485 devices.
605
606 AT+SEARCHx: Configure search command
607
608
609 * Downlink Payload:
610
611 0xAF downlink command can be used to set AT+COMMANDx or AT+DATACUTx.
612
613 Note: if user use AT+COMMANDx to add a new command, he also need to send AT+DATACUTx downlink.
614
615 Format: AF MM NN LL XX XX XX XX YY
616
617 Where:
618
619 * MM: the ATCOMMAND or AT+DATACUT to be set. Value from 01 ~~ 0F,
620 * NN: 0: no CRC; 1: add CRC-16/MODBUS ; 2: set the AT+DATACUT value.
621 * LL: The length of AT+COMMAND or AT+DATACUT command
622 * XX XX XX XX: AT+COMMAND or AT+DATACUT command
623 * YY: If YY=0, RS485-BL will execute the downlink command without uplink; if YY=1, RS485-BL will execute an uplink after got this command.
624
625 Example:
626
627 **AF 03 01 06 0A 05 00 04 00 01 00**: Same as AT+COMMAND3=0A 05 00 04 00 01,1
628
629 **AF 03 02 06 10 01 05 06 09 0A 00**: Same as AT+DATACUT3=**16**,**1**,**5+6+9+10**
630
631 **AF 03 02 06 0B 02 05 07 08 0A 00**: Same as AT+DATACUT3=**11**,**2**,**5~~7+8~~10**
632
633
634 0xAB downlink command can be used for set AT+SEARCHx
635
636 Example: **AB aa 01 03 xx xx xx** (03 here means there are total 3 bytes after 03) So
637
638 * AB aa 01 03 xx xx xx  same as AT+SEARCHaa=1,xx xx xx
639 * AB aa 02 03 xx xx xx 02 yy yy(03 means there are 3 bytes after 03, they are xx xx xx;02 means there are 2 bytes after 02, they are yy yy) so the commands
640
641 **AB aa 02 03 xx xx xx 02 yy yy**  same as **AT+SEARCHaa=2,xx xx xx+yy yy**
642
643
644 ==== Fast command to handle MODBUS device ====
645
646 AT+MBFUN is valid since v1.3 firmware version. The command is for fast configure to read Modbus devices. It is only valid for the devices which follow the [[MODBUS-RTU protocol>>url:https://www.modbustools.com/modbus.html]].
647
648 This command is valid since v1.3 firmware version
649
650
651 AT+MBFUN has only two value:
652
653 * AT+MBFUN=1: Enable Modbus reading. And get response base on the MODBUS return
654
655 AT+MBFUN=1, device can auto read the Modbus function code: 01, 02, 03 or 04. AT+MBFUN has lower priority vs AT+DATACUT command. If AT+DATACUT command is configured, AT+MBFUN will be ignore.
656
657 * AT+MBFUN=0: Disable Modbus fast reading.
658
659 Example:
660
661 * AT+MBFUN=1 and AT+DATACUT1/AT+DATACUT2 are not configure (0,0,0).
662 * AT+COMMAND1= 01 03 00 10 00 08,1 ~-~-> read slave address 01 , function code 03, start address 00 01, quantity of registers 00 08.
663 * AT+COMMAND2= 01 02 00 40 00 10,1 ~-~-> read slave address 01 , function code 02, start address 00 40, quantity of inputs 00 10.
664
665 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image025.png]]
666
667
668 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image026.png]]
669
670
671 * Downlink Commands:
672
673 A9 aa -à Same as AT+MBFUN=aa
674
675
676 ==== RS485 command timeout ====
677
678 Some Modbus device has slow action to send replies. This command is used to configure the RS485-BL to use longer time to wait for their action.
679
680 Default value: 0, range:  0 ~~ 5 seconds
681
682
683 * AT Command:
684
685 AT+CMDDLaa=hex(bb cc)
686
687 Example:
688
689 **AT+CMDDL1=1000** to send the open time to 1000ms
690
691
692 * Downlink Payload:
693
694 0x AA aa bb cc
695
696 Same as: AT+CMDDLaa=hex(bb cc)
697
698 Example:
699
700 0xAA 01 03 E8  à Same as **AT+CMDDL1=1000 ms**
701
702
703 ==== [[Uplink>>path:#downlink_A8]] payload mode ====
704
705 Define to use one uplink or multiple uplinks for the sampling.
706
707 The use of this command please see: [[Compose Uplink payload>>path:#DataUP]]
708
709 * AT Command:
710
711 AT+DATAUP=0
712
713 AT+DATAUP=1
714
715
716 * Downlink Payload:
717
718 0xAD 00   à Same as AT+DATAUP=0
719
720 0xAD 01   à Same as AT+DATAUP=1
721
722
723 ==== Manually trigger an Uplink ====
724
725 Ask device to send an uplink immediately.
726
727 * Downlink Payload:
728
729 0x08 FF, RS485-BL will immediately send an uplink.
730
731
732 ==== Clear RS485 Command ====
733
734 The AT+COMMANDx and AT+DATACUTx settings are stored in special location, user can use below command to clear them.
735
736
737 * AT Command:
738
739 **AT+CMDEAR=mm,nn**   mm: start position of erase ,nn: stop position of erase
740
741 Etc. AT+CMDEAR=1,10 means erase AT+COMMAND1/AT+DATACUT1 to AT+COMMAND10/AT+DATACUT10
742
743 Example screen shot after clear all RS485 commands. 
744
745
746
747 The uplink screen shot is:
748
749 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image023.png]]
750
751
752 * Downlink Payload:
753
754 0x09 aa bb same as AT+CMDEAR=aa,bb
755
756
757 ==== Set Serial Communication Parameters ====
758
759 Set the Rs485 serial communication parameters:
760
761 * AT Command:
762
763 Set Baud Rate:
764
765 AT+BAUDR=9600    ~/~/ Options: (1200,2400,4800,14400,19200,115200)
766
767
768 Set UART parity
769
770 AT+PARITY=0    ~/~/ Option: 0: no parity, 1: odd parity, 2: even parity
771
772
773 Set STOPBIT
774
775 AT+STOPBIT=0    ~/~/ Option: 0 for 1bit; 1 for 1.5 bit ; 2 for 2 bits
776
777
778 * Downlink Payload:
779
780 A7 01 aa bb: Same  AT+BAUDR=hex(aa bb)*100
781
782 Example:
783
784 * A7 01 00 60   same as AT+BAUDR=9600
785 * A7 01 04 80  same as AT+BAUDR=115200
786
787 A7 02 aa: Same as  AT+PARITY=aa  (aa value: 00 , 01 or 02)
788
789 A7 03 aa: Same as  AT+STOPBIT=aa  (aa value: 00 , 01 or 02)
790
791
792 ==== Control output power duration ====
793
794 User can set the output power duration before each sampling.
795
796 * AT Command:
797
798 Example:
799
800 AT+3V3T=1000 ~/~/ 3V3 output power will open 1s before each sampling.
801
802 AT+5VT=1000 ~/~/ +5V output power will open 1s before each sampling.
803
804
805 * LoRaWAN Downlink Command:
806
807 07 01 aa bb  Same as AT+5VT=(aa bb)
808
809 07 02 aa bb  Same as AT+3V3T=(aa bb)
810
811
812
813
814 1.
815 11. Buttons
816
817 |**Button**|**Feature**
818 |**RST**|Reboot RS485-BL
819
820 1.
821 11. +3V3 Output
822
823 RS485-BL has a Controllable +3V3 output, user can use this output to power external sensor.
824
825 The +3V3 output will be valid for every sampling. RS485-BL will enable +3V3 output before all sampling and disable the +3V3 after all sampling. 
826
827
828 The +3V3 output time can be controlled by AT Command.
829
830 **AT+3V3T=1000**
831
832 Means set +3v3 valid time to have 1000ms. So, the real +3v3 output will actually have 1000ms + sampling time for other sensors.
833
834
835 By default, the AT+3V3T=0. This is a special case, means the +3V3 output is always on at any time
836
837
838 1.
839 11. +5V Output
840
841 RS485-BL has a Controllable +5V output, user can use this output to power external sensor.
842
843 The +5V output will be valid for every sampling. RS485-BL will enable +5V output before all sampling and disable the +5v after all sampling. 
844
845
846 The 5V output time can be controlled by AT Command.
847
848 **AT+5VT=1000**
849
850 Means set 5V valid time to have 1000ms. So, the real 5V output will actually have 1000ms + sampling time for other sensors.
851
852
853 By default, the AT+5VT=0. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
854
855
856
857
858 1.
859 11. LEDs
860
861 |**LEDs**|**Feature**
862 |**LED1**|Blink when device transmit a packet.
863
864 1.
865 11. Switch Jumper
866
867 |**Switch Jumper**|**Feature**
868 |**SW1**|(((
869 ISP position: Upgrade firmware via UART
870
871 Flash position: Configure device, check running status.
872 )))
873 |**SW2**|(((
874 5V position: set to compatible with 5v I/O.
875
876 3.3v position: set to compatible with 3.3v I/O.,
877 )))
878
879 +3.3V: is always ON
880
881 +5V: Only open before every sampling. The time is by default, it is AT+5VT=0.  Max open time. 5000 ms.
882
883 1. Case Study
884
885 User can check this URL for some case studies.
886
887 [[http:~~/~~/wiki.dragino.com/index.php?title=APP_RS485_COMMUNICATE_WITH_SENSORS>>url:http://wiki.dragino.com/index.php?title=APP_RS485_COMMUNICATE_WITH_SENSORS]]
888
889
890
891
892 1. Use AT Command
893 11. Access AT Command
894
895 RS485-BL supports AT Command set. User can use a USB to TTL adapter plus the 3.5mm Program Cable to connect to RS485-BL to use AT command, as below.
896
897 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image027.png]]
898
899
900 In PC, User needs to set **serial tool**(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to **9600** to access to access serial console of RS485-BL. The default password is 123456. Below is the output for reference:
901
902 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image028.png]]
903
904
905
906 More detail AT Command manual can be found at [[AT Command Manual>>path:#AT_COMMAND]]
907
908
909
910 1.
911 11. Common AT Command Sequence
912 111. Multi-channel ABP mode (Use with SX1301/LG308)
913
914 If device has not joined network yet:
915
916 AT+FDR
917
918 AT+NJM=0
919
920 ATZ
921
922
923 If device already joined network:
924
925 AT+NJM=0
926
927 ATZ
928
929 1.
930 11.
931 111. Single-channel ABP mode (Use with LG01/LG02)
932
933 AT+FDR   Reset Parameters to Factory Default, Keys Reserve
934
935 AT+NJM=0 Set to ABP mode
936
937 AT+ADR=0 Set the Adaptive Data Rate Off
938
939 AT+DR=5  Set Data Rate
940
941 AT+TDC=60000  Set transmit interval to 60 seconds
942
943 AT+CHS=868400000 Set transmit frequency to 868.4Mhz
944
945 AT+RX2FQ=868400000 Set RX2Frequency to 868.4Mhz (according to the result from server)
946
947 AT+RX2DR=5  Set RX2DR to match the downlink DR from server. see below
948
949 AT+DADDR=26 01 1A F1 Set Device Address to 26 01 1A F1, this ID can be found in the LoRa Server portal.
950
951 ATZ          Reset MCU
952
953 **Note:**
954
955 1. Make sure the device is set to ABP mode in the IoT Server.
956 1. Make sure the LG01/02 gateway RX frequency is exactly the same as AT+CHS setting.
957 1. Make sure SF / bandwidth setting in LG01/LG02 match the settings of AT+DR. refer [[this link>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_Gateway/&file=LoRaWAN%201.0.3%20Regional%20Parameters.xlsx]] to see what DR means.
958 1. The command AT+RX2FQ and AT+RX2DR is to let downlink work. to set the correct parameters, user can check the actually downlink parameters to be used. As below. Which shows the RX2FQ should use 868400000 and RX2DR should be 5
959
960 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image029.png]]
961
962
963 1. FAQ
964 11. How to upgrade the image?
965
966 The RS485-BL LoRaWAN Controller is shipped with a 3.5mm cable, the cable is used to upload image to RS485-BL to:
967
968 * Support new features
969 * For bug fix
970 * Change LoRaWAN bands.
971
972 Below shows the hardware connection for how to upload an image to RS485-BL:
973
974 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image030.png]]
975
976 **Step1:** Download [[flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]].
977
978 **Step2**: Download the [[LT Image files>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/image/]].
979
980 **Step3: **Open flashloader; choose the correct COM port to update.
981
982
983 |(((
984 HOLD PRO then press the RST button, SYS will be ON, then click next
985 )))
986
987 |(((
988 Board detected
989 )))
990
991 |(((
992
993 )))
994
995 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image031.png]] [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image032.png]]
996
997
998
999 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image033.png]] [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image034.png]]
1000
1001
1002 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image035.png]] [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image036.png]]
1003
1004
1005 1.
1006 11. How to change the LoRa Frequency Bands/Region?
1007
1008 User can follow the introduction for [[how to upgrade image>>path:#upgrade_image]]. When download the images, choose the required image file for download.
1009
1010
1011
1012 1.
1013 11. How many RS485-Slave can RS485-BL connects?
1014
1015 The RS485-BL can support max 32 RS485 devices. Each uplink command of RS485-BL can support max 16 different RS485 command. So RS485-BL can support max 16 RS485 devices pre-program in the device for uplink. For other devices no pre-program, user can use the [[downlink message (type code 0xA8) to poll their info>>path:#downlink_A8]].
1016
1017
1018
1019
1020 1. Trouble Shooting     
1021 11. Downlink doesn’t work, how to solve it?
1022
1023 Please see this link for debug:
1024
1025 [[http:~~/~~/wiki.dragino.com/index.php?title=Main_Page#LoRaWAN_Communication_Debug>>url:http://wiki.dragino.com/index.php?title=Main_Page#LoRaWAN_Communication_Debug]] 
1026
1027
1028
1029 1.
1030 11. Why I can’t join TTN V3 in US915 /AU915 bands?
1031
1032 It might about the channels mapping. Please see for detail.
1033
1034 [[http:~~/~~/wiki.dragino.com/index.php?title=LoRaWAN_Communication_Debug#Notice_of_US915.2FCN470.2FAU915_Frequency_band>>url:http://wiki.dragino.com/index.php?title=LoRaWAN_Communication_Debug#Notice_of_US915.2FCN470.2FAU915_Frequency_band]]
1035
1036
1037
1038 1. Order Info
1039
1040 **Part Number: RS485-BL-XXX**
1041
1042 **XXX:**
1043
1044 * **EU433**: frequency bands EU433
1045 * **EU868**: frequency bands EU868
1046 * **KR920**: frequency bands KR920
1047 * **CN470**: frequency bands CN470
1048 * **AS923**: frequency bands AS923
1049 * **AU915**: frequency bands AU915
1050 * **US915**: frequency bands US915
1051 * **IN865**: frequency bands IN865
1052 * **RU864**: frequency bands RU864
1053 * **KZ865: **frequency bands KZ865
1054
1055 1. Packing Info
1056
1057 **Package Includes**:
1058
1059 * RS485-BL x 1
1060 * Stick Antenna for LoRa RF part x 1
1061 * Program cable x 1
1062
1063 **Dimension and weight**:
1064
1065 * Device Size: 13.5 x 7 x 3 cm
1066 * Device Weight: 105g
1067 * Package Size / pcs : 14.5 x 8 x 5 cm
1068 * Weight / pcs : 170g
1069
1070 1. Support
1071
1072 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1073 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to
1074
1075 [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]]
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0