Version 36.3 by Xiaoling on 2022/06/02 16:06

Show last authors
1 (% style="text-align:center" %)
2 [[image:1653266934636-343.png||height="385" width="385"]]
3
4
5
6 **RS485-LN – RS485 to LoRaWAN Converter User Manual**
7
8
9 **Table of Contents:**
10
11
12
13
14
15 = 1.Introduction =
16
17 == 1.1 What is RS485-LN RS485 to LoRaWAN Converter ==
18
19 (((
20 (((
21 The Dragino RS485-LN is a (% style="color:blue" %)**RS485 to LoRaWAN Converter**(%%). It converts the RS485 signal into LoRaWAN wireless signal which simplify the IoT installation and reduce the installation/maintaining cost.
22 )))
23
24 (((
25 RS485-LN allows user to (% style="color:blue" %)**monitor / control RS485 devices**(%%) and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
26 )))
27
28 (((
29 (% style="color:blue" %)**For data uplink**(%%), RS485-LN sends user-defined commands to RS485 devices and gets the return from the RS485 devices. RS485-LN will process these returns according to user-define rules to get the final payload and upload to LoRaWAN server.
30 )))
31
32 (((
33 (% style="color:blue" %)**For data downlink**(%%), RS485-LN runs in LoRaWAN Class C. When there downlink commands from LoRaWAN server, RS485-LN will forward the commands from LoRaWAN server to RS485 devices.
34
35 (% style="color:blue" %)**Demo Dashboard for RS485-LN**(%%) connect to two energy meters: [[https:~~/~~/app.datacake.de/dashboard/d/58844a26-378d-4c5a-aaf5-b5b5b153447a>>url:https://app.datacake.de/dashboard/d/58844a26-378d-4c5a-aaf5-b5b5b153447a]]
36 )))
37 )))
38
39 [[image:1653267211009-519.png||height="419" width="724"]]
40
41
42 == 1.2 Specifications ==
43
44
45 **Hardware System:**
46
47 * STM32L072CZT6 MCU
48 * SX1276/78 Wireless Chip 
49 * Power Consumption (exclude RS485 device):
50 ** Idle: 32mA@12v
51 ** 20dB Transmit: 65mA@12v
52
53 **Interface for Model:**
54
55 * RS485
56 * Power Input 7~~ 24V DC. 
57
58 **LoRa Spec:**
59
60 * Frequency Range:
61 ** Band 1 (HF): 862 ~~ 1020 Mhz
62 ** Band 2 (LF): 410 ~~ 528 Mhz
63 * 168 dB maximum link budget.
64 * +20 dBm - 100 mW constant RF output vs.
65 * +14 dBm high efficiency PA.
66 * Programmable bit rate up to 300 kbps.
67 * High sensitivity: down to -148 dBm.
68 * Bullet-proof front end: IIP3 = -12.5 dBm.
69 * Excellent blocking immunity.
70 * Low RX current of 10.3 mA, 200 nA register retention.
71 * Fully integrated synthesizer with a resolution of 61 Hz.
72 * FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation.
73 * Built-in bit synchronizer for clock recovery.
74 * Preamble detection.
75 * 127 dB Dynamic Range RSSI.
76 * Automatic RF Sense and CAD with ultra-fast AFC.
77 * Packet engine up to 256 bytes with CRC.
78
79 == 1.3 Features ==
80
81 * LoRaWAN Class A & Class C protocol (default Class C)
82 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865/RU864
83 * AT Commands to change parameters
84 * Remote configure parameters via LoRa Downlink
85 * Firmware upgradable via program port
86 * Support multiply RS485 devices by flexible rules
87 * Support Modbus protocol
88 * Support Interrupt uplink (Since hardware version v1.2)
89
90 == 1.4 Applications ==
91
92 * Smart Buildings & Home Automation
93 * Logistics and Supply Chain Management
94 * Smart Metering
95 * Smart Agriculture
96 * Smart Cities
97 * Smart Factory
98
99 == 1.5 Firmware Change log ==
100
101 [[RS485-LN Image files – Download link and Change log>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/]]
102
103
104 == 1.6 Hardware Change log ==
105
106 (((
107 (((
108 v1.2: Add External Interrupt Pin.
109
110 v1.0: Release
111
112
113 )))
114 )))
115
116 = 2. Power ON Device =
117
118 (((
119 The RS485-LN can be powered by 7 ~~ 24V DC power source. Connection as below
120
121 * Power Source VIN to RS485-LN VIN+
122 * Power Source GND to RS485-LN VIN-
123
124 (((
125 Once there is power, the RS485-LN will be on.
126 )))
127
128 [[image:1653268091319-405.png]]
129
130
131 )))
132
133 = 3. Operation Mode =
134
135 == 3.1 How it works? ==
136
137 (((
138 The RS485-LN is configured as LoRaWAN OTAA Class C mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the RS485-LN. It will auto join the network via OTAA.
139
140
141 )))
142
143 == 3.2 Example to join LoRaWAN network ==
144
145 Here shows an example for how to join the TTN V3 Network. Below is the network structure, we use [[LG308>>url:http://www.dragino.com/products/lora-lorawan-gateway/item/140-lg308.html]] as LoRaWAN gateway here. 
146
147 [[image:1653268155545-638.png||height="334" width="724"]]
148
149
150 (((
151 (((
152 The RS485-LN in this example connected to two RS485 devices for demonstration, user can connect to other RS485 devices via the same method. The connection is as below:
153 )))
154
155 (((
156 485A+ and 485B- of the sensor are connected to RS485A and RA485B of RS485-LN respectively.
157 )))
158
159 [[image:1653268227651-549.png||height="592" width="720"]]
160
161 (((
162 The LG308 is already set to connect to [[TTN V3 network >>path:eu1.cloud.thethings.network/]]. So what we need to now is only configure the TTN V3:
163 )))
164
165 (((
166 **Step 1**: Create a device in TTN V3 with the OTAA keys from RS485-LN.
167 )))
168
169 (((
170 Each RS485-LN is shipped with a sticker with unique device EUI:
171 )))
172 )))
173
174 [[image:1652953462722-299.png]]
175
176 (((
177 (((
178 User can enter this key in their LoRaWAN Server portal. Below is TTN V3 screen shot:
179 )))
180
181 (((
182 Add APP EUI in the application.
183 )))
184 )))
185
186 [[image:image-20220519174512-1.png]]
187
188 [[image:image-20220519174512-2.png||height="323" width="720"]]
189
190 [[image:image-20220519174512-3.png||height="556" width="724"]]
191
192 [[image:image-20220519174512-4.png]]
193
194 You can also choose to create the device manually.
195
196 [[image:1652953542269-423.png||height="710" width="723"]]
197
198 Add APP KEY and DEV EUI
199
200 [[image:1652953553383-907.png||height="514" width="724"]]
201
202
203 (((
204 **Step 2**: Power on RS485-LN and it will auto join to the TTN V3 network. After join success, it will start to upload message to TTN V3 and user can see in the panel.
205 )))
206
207 [[image:1652953568895-172.png||height="232" width="724"]]
208
209
210 == 3.3 Configure Commands to read data ==
211
212 (((
213 (((
214 There are plenty of RS485 devices in the market and each device has different command to read the valid data. To support these devices in flexible, RS485-LN supports flexible command set. User can use [[AT Commands>>path:#AT_COMMAND]] or LoRaWAN Downlink Command to configure what commands RS485-LN should send for each sampling and how to handle the return from RS485 devices.
215 )))
216
217 (((
218 (% style="color:red" %)Note: below description and commands are for firmware version >v1.1, if you have firmware version v1.0. Please check the [[user manual v1.0>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/&file=RS485-LN_UserManual_v1.0.1.pdf]] or upgrade the firmware to v1.1
219
220
221 )))
222 )))
223
224 === 3.3.1 onfigure UART settings for RS485 or TTL communication ===
225
226 To use RS485-LN to read data from RS485 sensors, connect the RS485-LN A/B traces to the sensors. And user need to make sure RS485-LN use the match UART setting to access the sensors. The related commands for UART settings are:
227
228 (% border="1" style="background-color:#ffffcc; color:green; width:782px" %)
229 |(% style="width:128px" %)(((
230 **AT Commands**
231 )))|(% style="width:305px" %)(((
232 **Description**
233 )))|(% style="width:346px" %)(((
234 **Example**
235 )))
236 |(% style="width:128px" %)(((
237 AT+BAUDR
238 )))|(% style="width:305px" %)(((
239 Set the baud rate (for RS485 connection). Default Value is: 9600.
240 )))|(% style="width:346px" %)(((
241 (((
242 AT+BAUDR=9600
243 )))
244
245 (((
246 Options: (1200,2400,4800,14400,19200,115200)
247 )))
248 )))
249 |(% style="width:128px" %)(((
250 AT+PARITY
251 )))|(% style="width:305px" %)(((
252 Set UART parity (for RS485 connection)
253 )))|(% style="width:346px" %)(((
254 (((
255 AT+PARITY=0
256 )))
257
258 (((
259 Option: 0: no parity, 1: odd parity, 2: even parity
260 )))
261 )))
262 |(% style="width:128px" %)(((
263 AT+STOPBIT
264 )))|(% style="width:305px" %)(((
265 (((
266 Set serial stopbit (for RS485 connection)
267 )))
268
269 (((
270
271 )))
272 )))|(% style="width:346px" %)(((
273 (((
274 AT+STOPBIT=0 for 1bit
275 )))
276
277 (((
278 AT+STOPBIT=1 for 1.5 bit
279 )))
280
281 (((
282 AT+STOPBIT=2 for 2 bits
283 )))
284 )))
285
286 === 3.3.2 Configure sensors ===
287
288 (((
289 (((
290 Some sensors might need to configure before normal operation. User can configure such sensor via PC and RS485 adapter or through RS485-LN AT Commands (% style="color:#4f81bd" %)**AT+CFGDEV**(%%). Each (% style="color:#4f81bd" %)**AT+CFGDEV **(%%)equals to send a RS485 command to sensors. This command will only run when user input it and won’t run during each sampling.
291 )))
292 )))
293
294 (% border="1" style="background-color:#ffffcc; color:green; width:806px" %)
295 |**AT Commands**|(% style="width:418px" %)**Description**|(% style="width:256px" %)**Example**
296 |AT+CFGDEV|(% style="width:418px" %)(((
297 This command is used to configure the RS485/TTL devices; they won’t be used during sampling.
298
299 AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,
300
301 mm: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command
302 )))|(% style="width:256px" %)AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m
303
304 === 3.3.3 Configure read commands for each sampling ===
305
306 (((
307 During each sampling, we need confirm what commands we need to send to the RS485 sensors to read data. After the RS485 sensors send back the value, it normally include some bytes and we only need a few from them for a shorten payload.
308
309 To save the LoRaWAN network bandwidth, we might need to read data from different sensors and combine their valid value into a short payload.
310
311 This section describes how to achieve above goals.
312
313 During each sampling, the RS485-LN can support 15 commands to read sensors. And combine the return to one or several uplink payloads.
314
315
316 **Each RS485 commands include two parts:**
317
318 ~1. What commands RS485-LN will send to the RS485 sensors. There are total 15 commands from **AT+COMMAD1**, **ATCOMMAND2**,…, to **AT+COMMANDF**. All commands are of same grammar.
319
320 2. How to get wanted value the from RS485 sensors returns from by 1). There are total 15 AT Commands to handle the return, commands are **AT+DATACUT1**,**AT+DATACUT2**,…, **AT+DATACUTF** corresponding to the commands from 1). All commands are of same grammar.
321
322 3. Some RS485 device might has longer delay on reply, so user can use AT+CMDDL to set the timeout for getting reply after the RS485 command is sent. For example **AT+CMDDL1=1000** to send the open time to 1000ms
323
324
325 After we got the valid value from each RS485 commands, we need to combine them together with the command **AT+DATAUP**.
326
327
328 Below are examples for the how above AT Commands works.
329
330
331 **AT+COMMANDx : **This command will be sent to RS485 devices during each sampling, Max command length is 14 bytes. The grammar is:
332
333 (% border="1" style="background-color:#4bacc6; color:white; width:499px" %)
334 |(% style="width:496px" %)(((
335 **AT+COMMANDx=xx xx xx xx xx xx xx xx xx xx xx xx,m**
336
337 **xx xx xx xx xx xx xx xx xx xx xx xx: The RS485 command to be sent**
338
339 **m: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command**
340 )))
341
342 For example, if we have a RS485 sensor. The command to get sensor value is: 01 03 0B B8 00 02 46 0A. Where 01 03 0B B8 00 02 is the Modbus command to read the register 0B B8 where stored the sensor value. The 46 0A is the CRC-16/MODBUS which calculate manually.
343
344 In the RS485-LN, we should use this command AT+COMMAND1=01 03 0B B8 00 02,1 for the same.
345
346
347 **AT+DATACUTx : **This command defines how to handle the return from AT+COMMANDx, max return length is 45 bytes.
348
349 (% border="1" style="background-color:#4bacc6; color:white; width:725px" %)
350 |(% style="width:722px" %)(((
351 **AT+DATACUTx=a,b,c**
352
353 * **a: length for the return of AT+COMMAND**
354 * **b:1: grab valid value by byte, max 6 bytes. 2: grab valid value by bytes section, max 3 sections.**
355 * **c: define the position for valid value.  **
356 )))
357
358 **Examples:**
359
360 * Grab bytes:
361
362 [[image:image-20220602153621-1.png]]
363
364
365 * Grab a section.
366
367 [[image:image-20220602153621-2.png]]
368
369
370 * Grab different sections.
371
372 [[image:image-20220602153621-3.png]]
373
374
375 )))
376
377 === 3.3.4 Compose the uplink payload ===
378
379 (((
380 Through AT+COMMANDx and AT+DATACUTx we got valid value from each RS485 commands, Assume these valid value are RETURN1, RETURN2, .., to RETURNx. The next step is how to compose the LoRa Uplink Payload by these RETURNs. The command is **AT+DATAUP.**
381
382
383 )))
384
385 (((
386 (% style="color:#037691" %)**Examples: AT+DATAUP=0**
387
388
389 )))
390
391 (((
392 Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**A SIGNLE UPLINK**.
393 )))
394
395 (((
396 Final Payload is
397 )))
398
399 (((
400 (% style="color:#4f81bd" %)**Battery Info+PAYVER + VALID Value from RETURN1 + Valid Value from RETURN2 + … + RETURNx**
401 )))
402
403 (((
404 Where PAYVER is defined by AT+PAYVER, below is an example screen shot.
405 )))
406
407 [[image:1653269759169-150.png||height="513" width="716"]]
408
409
410 (% style="color:#037691" %)**Examples: AT+DATAUP=1**
411
412
413 Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**Multiply UPLINKs**.
414
415 Final Payload is
416
417 (% style="color:#4f81bd" %)**Battery Info+PAYVER + PAYLOAD COUNT + PAYLOAD# + DATA**
418
419 1. PAYVER: Defined by AT+PAYVER
420 1. PAYLOAD COUNT: Total how many uplinks of this sampling.
421 1. PAYLOAD#: Number of this uplink. (from 0,1,2,3…,to PAYLOAD COUNT)
422 1. DATA: Valid value: max 8 bytes for each uplink so each uplink <= 11 bytes. For the last uplink, DATA will might less than 8 bytes
423
424 [[image:image-20220602155039-4.png]]
425
426
427 So totally there will be 3 uplinks for this sampling, each uplink include 8 bytes DATA
428
429 DATA1=RETURN1 Valid Value + the first two of Valid value of RETURN10= **20 20 0a 33 90 41 02 aa**
430
431 DATA2=3^^rd^^ ~~ 10^^th^^ byte of Valid value of RETURN10= **05 81 0a 20 20 20 20 2d**
432
433 DATA3=the rest of Valid value of RETURN10= **30**
434
435
436 (% style="color:red" %)Notice: In firmware v1.3, the Max bytes has been changed according to the max bytes in different Frequency Bands for lowest SF. As below:
437
438 ~* For AU915/AS923 bands, if UplinkDwell time=0, max 51 bytes for each uplink.
439
440 * For AU915/AS923 bands, if UplinkDwell time=0, max 11 bytes for each uplink.
441
442 * For US915 band, max 11 bytes for each uplink.
443
444 ~* For all other bands: max 51 bytes for each uplink.
445
446
447 Below are the uplink payloads:
448
449 [[image:1653270130359-810.png]]
450
451
452 (% style="color:red" %)**Notice: the Max bytes is according to the max support bytes in different Frequency Bands for lowest SF. As below:**
453
454 ~* For AU915/AS923 bands, if UplinkDwell time=0, max 51 bytes for each uplink ( so 51 -5 = 46 max valid date)
455
456 * For AU915/AS923 bands, if UplinkDwell time=1, max 11 bytes for each uplink ( so 11 -5 = 6 max valid date).
457
458 * For US915 band, max 11 bytes for each uplink ( so 11 -5 = 6 max valid date).
459
460 ~* For all other bands: max 51 bytes for each uplink  ( so 51 -5 = 46 max valid date).
461
462 === 3.3.5 Uplink on demand ===
463
464 Except uplink periodically, RS485-BL is able to uplink on demand. The server sends downlink command to RS485-BL and RS485 will uplink data base on the command.
465
466 Downlink control command:
467
468 [[0x08 command>>path:#downlink_08]]: Poll an uplink with current command set in RS485-BL.
469
470 [[0xA8 command>>path:#downlink_A8]]: Send a command to RS485-BL and uplink the output from sensors.
471
472
473
474 1.
475 11.
476 111. Uplink on Interrupt
477
478 Put the interrupt sensor between 3.3v_out and GPIO ext.[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image022.png]]
479
480 AT+INTMOD=0  Disable Interrupt
481
482 AT+INTMOD=1  Interrupt trigger by rising or falling edge.
483
484 AT+INTMOD=2  Interrupt trigger by falling edge. ( Default Value)
485
486 AT+INTMOD=3  Interrupt trigger by rising edge.
487
488
489 1.
490 11. Uplink Payload
491
492 |**Size(bytes)**|**2**|**1**|**Length depends on the return from the commands**
493 |Value|(((
494 Battery(mV)
495
496 &
497
498 Interrupt _Flag
499 )))|(((
500 PAYLOAD_VER
501
502
503 )))|If the valid payload is too long and exceed the maximum support payload length in server, server will show payload not provided in the LoRaWAN server.
504
505 Below is the decoder for the first 3 bytes. The rest bytes are dynamic depends on different RS485 sensors.
506
507
508 function Decoder(bytes, port) {
509
510 ~/~/Payload Formats of RS485-BL Deceive
511
512 return {
513
514 ~/~/Battery,units:V
515
516 BatV:((bytes[0]<<8 | bytes[1])&0x7fff)/1000,
517
518 ~/~/GPIO_EXTI 
519
520 EXTI_Trigger:(bytes[0] & 0x80)? "TRUE":"FALSE",
521
522 ~/~/payload of version
523
524 Pay_ver:bytes[2],
525
526 };
527
528 }
529
530
531
532
533
534
535
536 TTN V3 uplink screen shot.
537
538 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image023.png]]
539
540 1.
541 11. Configure RS485-BL via AT or Downlink
542
543 User can configure RS485-BL via [[AT Commands >>path:#_​Using_the_AT]]or LoRaWAN Downlink Commands
544
545 There are two kinds of Commands:
546
547 * **Common Commands**: They should be available for each sensor, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: http:~/~/wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands
548
549 * **Sensor Related Commands**: These commands are special designed for RS485-BL.  User can see these commands below:
550
551 1.
552 11.
553 111. Common Commands:
554
555 They should be available for each of Dragino Sensors, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: [[http:~~/~~/wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands>>url:http://wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands]]
556
557
558 1.
559 11.
560 111. Sensor related commands:
561
562 ==== Choose Device Type (RS485 or TTL) ====
563
564 RS485-BL can connect to either RS485 sensors or TTL sensor. User need to specify what type of sensor need to connect.
565
566 * AT Command
567
568 **AT+MOD=1** ~/~/ Set to support RS485-MODBUS type sensors. User can connect multiply RS485 , Modbus sensors to the A / B pins.
569
570 **AT+MOD=2** ~/~/ Set to support TTL Level sensors, User can connect one TTL Sensor to the TXD/RXD/GND pins.
571
572
573 * Downlink Payload
574
575 **0A aa**     à same as AT+MOD=aa
576
577
578
579 ==== [[RS485 Debug Command>>path:#downlink_A8]] (AT+CFGDEV) ====
580
581 This command is used to configure the RS485 or TTL sensors; they won’t be used during sampling.
582
583 * AT Command
584
585 AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m
586
587 m: 0: no CRC; 1: add CRC-16/MODBUS in the end of this command.
588
589
590
591 * Downlink Payload
592
593 Format: A8 MM NN XX XX XX XX YY
594
595 Where:
596
597 * MM: 1: add CRC-16/MODBUS ; 0: no CRC
598 * NN: The length of RS485 command
599 * XX XX XX XX: RS485 command total NN bytes
600 * YY: How many bytes will be uplink from the return of this RS485 command, if YY=0, RS485-BL will execute the downlink command without uplink; if YY>0, RS485-BL will uplink total YY bytes from the output of this RS485 command
601
602 **Example 1:**
603
604 To connect a Modbus Alarm with below commands.
605
606 * The command to active alarm is: 0A 05 00 04 00 01 4C B0. Where 0A 05 00 04 00 01 is the Modbus command to read the register 00 40 where stored the DI status. The 4C B0 is the CRC-16/MODBUS which calculate manually.
607
608 * The command to deactivate alarm is: 0A 05 00 04 00 00 8D 70. Where 0A 05 00 04 00 00 is the Modbus command to read the register 00 40 where stored the DI status. The 8D 70 is the CRC-16/MODBUS which calculate manually.
609
610 So if user want to use downlink command to control to RS485 Alarm, he can use:
611
612 **A8 01 06 0A 05 00 04 00 01 00**: to activate the RS485 Alarm
613
614 **A8 01 06 0A 05 00 04 00 00 00**: to deactivate the RS485 Alarm
615
616 A8 is type code and 01 means add CRC-16/MODBUS at the end, the 3^^rd^^ byte is 06, means the next 6 bytes are the command to be sent to the RS485 network, the final byte 00 means this command don’t need to acquire output.
617
618
619 **Example 2:**
620
621 Check TTL Sensor return:
622
623 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image024.png]]
624
625
626
627
628 ==== Set Payload version ====
629
630 This is the first byte of the uplink payload. RS485-BL can connect to different sensors. User can set the PAYVER field to tell server how to decode the current payload.
631
632 * AT Command:
633
634 AT+PAYVER: Set PAYVER field = 1
635
636
637 * Downlink Payload:
638
639 0xAE 01   à Set PAYVER field =  0x01
640
641 0xAE 0F   à Set PAYVER field =  0x0F
642
643
644 ==== Set RS485 Sampling Commands ====
645
646 AT+COMMANDx, AT+DATACUTx and AT+SEARCHx
647
648 These three commands are used to configure how the RS485-BL polling data from Modbus device. Detail of usage please see : [[polling RS485 device>>path:#polling_485]].
649
650
651 * AT Command:
652
653 AT+COMMANDx: Configure RS485 read command to sensor.
654
655 AT+DATACUTx: Configure how to handle return from RS485 devices.
656
657 AT+SEARCHx: Configure search command
658
659
660 * Downlink Payload:
661
662 0xAF downlink command can be used to set AT+COMMANDx or AT+DATACUTx.
663
664 Note: if user use AT+COMMANDx to add a new command, he also need to send AT+DATACUTx downlink.
665
666 Format: AF MM NN LL XX XX XX XX YY
667
668 Where:
669
670 * MM: the ATCOMMAND or AT+DATACUT to be set. Value from 01 ~~ 0F,
671 * NN: 0: no CRC; 1: add CRC-16/MODBUS ; 2: set the AT+DATACUT value.
672 * LL: The length of AT+COMMAND or AT+DATACUT command
673 * XX XX XX XX: AT+COMMAND or AT+DATACUT command
674 * YY: If YY=0, RS485-BL will execute the downlink command without uplink; if YY=1, RS485-BL will execute an uplink after got this command.
675
676 Example:
677
678 **AF 03 01 06 0A 05 00 04 00 01 00**: Same as AT+COMMAND3=0A 05 00 04 00 01,1
679
680 **AF 03 02 06 10 01 05 06 09 0A 00**: Same as AT+DATACUT3=**16**,**1**,**5+6+9+10**
681
682 **AF 03 02 06 0B 02 05 07 08 0A 00**: Same as AT+DATACUT3=**11**,**2**,**5~~7+8~~10**
683
684
685 0xAB downlink command can be used for set AT+SEARCHx
686
687 Example: **AB aa 01 03 xx xx xx** (03 here means there are total 3 bytes after 03) So
688
689 * AB aa 01 03 xx xx xx  same as AT+SEARCHaa=1,xx xx xx
690 * AB aa 02 03 xx xx xx 02 yy yy(03 means there are 3 bytes after 03, they are xx xx xx;02 means there are 2 bytes after 02, they are yy yy) so the commands
691
692 **AB aa 02 03 xx xx xx 02 yy yy**  same as **AT+SEARCHaa=2,xx xx xx+yy yy**
693
694
695 ==== Fast command to handle MODBUS device ====
696
697 AT+MBFUN is valid since v1.3 firmware version. The command is for fast configure to read Modbus devices. It is only valid for the devices which follow the [[MODBUS-RTU protocol>>url:https://www.modbustools.com/modbus.html]].
698
699 This command is valid since v1.3 firmware version
700
701
702 AT+MBFUN has only two value:
703
704 * AT+MBFUN=1: Enable Modbus reading. And get response base on the MODBUS return
705
706 AT+MBFUN=1, device can auto read the Modbus function code: 01, 02, 03 or 04. AT+MBFUN has lower priority vs AT+DATACUT command. If AT+DATACUT command is configured, AT+MBFUN will be ignore.
707
708 * AT+MBFUN=0: Disable Modbus fast reading.
709
710 Example:
711
712 * AT+MBFUN=1 and AT+DATACUT1/AT+DATACUT2 are not configure (0,0,0).
713 * AT+COMMAND1= 01 03 00 10 00 08,1 ~-~-> read slave address 01 , function code 03, start address 00 01, quantity of registers 00 08.
714 * AT+COMMAND2= 01 02 00 40 00 10,1 ~-~-> read slave address 01 , function code 02, start address 00 40, quantity of inputs 00 10.
715
716 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image025.png]]
717
718
719 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image026.png]]
720
721
722 * Downlink Commands:
723
724 A9 aa -à Same as AT+MBFUN=aa
725
726
727 ==== RS485 command timeout ====
728
729 Some Modbus device has slow action to send replies. This command is used to configure the RS485-BL to use longer time to wait for their action.
730
731 Default value: 0, range:  0 ~~ 5 seconds
732
733
734 * AT Command:
735
736 AT+CMDDLaa=hex(bb cc)
737
738 Example:
739
740 **AT+CMDDL1=1000** to send the open time to 1000ms
741
742
743 * Downlink Payload:
744
745 0x AA aa bb cc
746
747 Same as: AT+CMDDLaa=hex(bb cc)
748
749 Example:
750
751 0xAA 01 03 E8  à Same as **AT+CMDDL1=1000 ms**
752
753
754 ==== [[Uplink>>path:#downlink_A8]] payload mode ====
755
756 Define to use one uplink or multiple uplinks for the sampling.
757
758 The use of this command please see: [[Compose Uplink payload>>path:#DataUP]]
759
760 * AT Command:
761
762 AT+DATAUP=0
763
764 AT+DATAUP=1
765
766
767 * Downlink Payload:
768
769 0xAD 00   à Same as AT+DATAUP=0
770
771 0xAD 01   à Same as AT+DATAUP=1
772
773
774 ==== Manually trigger an Uplink ====
775
776 Ask device to send an uplink immediately.
777
778 * Downlink Payload:
779
780 0x08 FF, RS485-BL will immediately send an uplink.
781
782
783 ==== Clear RS485 Command ====
784
785 The AT+COMMANDx and AT+DATACUTx settings are stored in special location, user can use below command to clear them.
786
787
788 * AT Command:
789
790 **AT+CMDEAR=mm,nn**   mm: start position of erase ,nn: stop position of erase
791
792 Etc. AT+CMDEAR=1,10 means erase AT+COMMAND1/AT+DATACUT1 to AT+COMMAND10/AT+DATACUT10
793
794 Example screen shot after clear all RS485 commands. 
795
796
797
798 The uplink screen shot is:
799
800 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image023.png]]
801
802
803 * Downlink Payload:
804
805 0x09 aa bb same as AT+CMDEAR=aa,bb
806
807
808 ==== Set Serial Communication Parameters ====
809
810 Set the Rs485 serial communication parameters:
811
812 * AT Command:
813
814 Set Baud Rate:
815
816 AT+BAUDR=9600    ~/~/ Options: (1200,2400,4800,14400,19200,115200)
817
818
819 Set UART parity
820
821 AT+PARITY=0    ~/~/ Option: 0: no parity, 1: odd parity, 2: even parity
822
823
824 Set STOPBIT
825
826 AT+STOPBIT=0    ~/~/ Option: 0 for 1bit; 1 for 1.5 bit ; 2 for 2 bits
827
828
829 * Downlink Payload:
830
831 A7 01 aa bb: Same  AT+BAUDR=hex(aa bb)*100
832
833 Example:
834
835 * A7 01 00 60   same as AT+BAUDR=9600
836 * A7 01 04 80  same as AT+BAUDR=115200
837
838 A7 02 aa: Same as  AT+PARITY=aa  (aa value: 00 , 01 or 02)
839
840 A7 03 aa: Same as  AT+STOPBIT=aa  (aa value: 00 , 01 or 02)
841
842
843 ==== Control output power duration ====
844
845 User can set the output power duration before each sampling.
846
847 * AT Command:
848
849 Example:
850
851 AT+3V3T=1000 ~/~/ 3V3 output power will open 1s before each sampling.
852
853 AT+5VT=1000 ~/~/ +5V output power will open 1s before each sampling.
854
855
856 * LoRaWAN Downlink Command:
857
858 07 01 aa bb  Same as AT+5VT=(aa bb)
859
860 07 02 aa bb  Same as AT+3V3T=(aa bb)
861
862
863
864
865 1.
866 11. Buttons
867
868 |**Button**|**Feature**
869 |**RST**|Reboot RS485-BL
870
871 1.
872 11. +3V3 Output
873
874 RS485-BL has a Controllable +3V3 output, user can use this output to power external sensor.
875
876 The +3V3 output will be valid for every sampling. RS485-BL will enable +3V3 output before all sampling and disable the +3V3 after all sampling. 
877
878
879 The +3V3 output time can be controlled by AT Command.
880
881 **AT+3V3T=1000**
882
883 Means set +3v3 valid time to have 1000ms. So, the real +3v3 output will actually have 1000ms + sampling time for other sensors.
884
885
886 By default, the AT+3V3T=0. This is a special case, means the +3V3 output is always on at any time
887
888
889 1.
890 11. +5V Output
891
892 RS485-BL has a Controllable +5V output, user can use this output to power external sensor.
893
894 The +5V output will be valid for every sampling. RS485-BL will enable +5V output before all sampling and disable the +5v after all sampling. 
895
896
897 The 5V output time can be controlled by AT Command.
898
899 **AT+5VT=1000**
900
901 Means set 5V valid time to have 1000ms. So, the real 5V output will actually have 1000ms + sampling time for other sensors.
902
903
904 By default, the AT+5VT=0. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
905
906
907
908
909 1.
910 11. LEDs
911
912 |**LEDs**|**Feature**
913 |**LED1**|Blink when device transmit a packet.
914
915 1.
916 11. Switch Jumper
917
918 |**Switch Jumper**|**Feature**
919 |**SW1**|(((
920 ISP position: Upgrade firmware via UART
921
922 Flash position: Configure device, check running status.
923 )))
924 |**SW2**|(((
925 5V position: set to compatible with 5v I/O.
926
927 3.3v position: set to compatible with 3.3v I/O.,
928 )))
929
930 +3.3V: is always ON
931
932 +5V: Only open before every sampling. The time is by default, it is AT+5VT=0.  Max open time. 5000 ms.
933
934 1. Case Study
935
936 User can check this URL for some case studies.
937
938 [[http:~~/~~/wiki.dragino.com/index.php?title=APP_RS485_COMMUNICATE_WITH_SENSORS>>url:http://wiki.dragino.com/index.php?title=APP_RS485_COMMUNICATE_WITH_SENSORS]]
939
940
941
942
943 1. Use AT Command
944 11. Access AT Command
945
946 RS485-BL supports AT Command set. User can use a USB to TTL adapter plus the 3.5mm Program Cable to connect to RS485-BL to use AT command, as below.
947
948 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image027.png]]
949
950
951 In PC, User needs to set **serial tool**(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to **9600** to access to access serial console of RS485-BL. The default password is 123456. Below is the output for reference:
952
953 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image028.png]]
954
955
956
957 More detail AT Command manual can be found at [[AT Command Manual>>path:#AT_COMMAND]]
958
959
960
961 1.
962 11. Common AT Command Sequence
963 111. Multi-channel ABP mode (Use with SX1301/LG308)
964
965 If device has not joined network yet:
966
967 AT+FDR
968
969 AT+NJM=0
970
971 ATZ
972
973
974 If device already joined network:
975
976 AT+NJM=0
977
978 ATZ
979
980 1.
981 11.
982 111. Single-channel ABP mode (Use with LG01/LG02)
983
984 AT+FDR   Reset Parameters to Factory Default, Keys Reserve
985
986 AT+NJM=0 Set to ABP mode
987
988 AT+ADR=0 Set the Adaptive Data Rate Off
989
990 AT+DR=5  Set Data Rate
991
992 AT+TDC=60000  Set transmit interval to 60 seconds
993
994 AT+CHS=868400000 Set transmit frequency to 868.4Mhz
995
996 AT+RX2FQ=868400000 Set RX2Frequency to 868.4Mhz (according to the result from server)
997
998 AT+RX2DR=5  Set RX2DR to match the downlink DR from server. see below
999
1000 AT+DADDR=26 01 1A F1 Set Device Address to 26 01 1A F1, this ID can be found in the LoRa Server portal.
1001
1002 ATZ          Reset MCU
1003
1004 **Note:**
1005
1006 1. Make sure the device is set to ABP mode in the IoT Server.
1007 1. Make sure the LG01/02 gateway RX frequency is exactly the same as AT+CHS setting.
1008 1. Make sure SF / bandwidth setting in LG01/LG02 match the settings of AT+DR. refer [[this link>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_Gateway/&file=LoRaWAN%201.0.3%20Regional%20Parameters.xlsx]] to see what DR means.
1009 1. The command AT+RX2FQ and AT+RX2DR is to let downlink work. to set the correct parameters, user can check the actually downlink parameters to be used. As below. Which shows the RX2FQ should use 868400000 and RX2DR should be 5
1010
1011 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image029.png]]
1012
1013
1014 1. FAQ
1015 11. How to upgrade the image?
1016
1017 The RS485-BL LoRaWAN Controller is shipped with a 3.5mm cable, the cable is used to upload image to RS485-BL to:
1018
1019 * Support new features
1020 * For bug fix
1021 * Change LoRaWAN bands.
1022
1023 Below shows the hardware connection for how to upload an image to RS485-BL:
1024
1025 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image030.png]]
1026
1027 **Step1:** Download [[flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]].
1028
1029 **Step2**: Download the [[LT Image files>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/image/]].
1030
1031 **Step3: **Open flashloader; choose the correct COM port to update.
1032
1033
1034 |(((
1035 HOLD PRO then press the RST button, SYS will be ON, then click next
1036 )))
1037
1038 |(((
1039 Board detected
1040 )))
1041
1042 |(((
1043
1044 )))
1045
1046 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image031.png]] [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image032.png]]
1047
1048
1049
1050 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image033.png]] [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image034.png]]
1051
1052
1053 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image035.png]] [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image036.png]]
1054
1055
1056 1.
1057 11. How to change the LoRa Frequency Bands/Region?
1058
1059 User can follow the introduction for [[how to upgrade image>>path:#upgrade_image]]. When download the images, choose the required image file for download.
1060
1061
1062
1063 1.
1064 11. How many RS485-Slave can RS485-BL connects?
1065
1066 The RS485-BL can support max 32 RS485 devices. Each uplink command of RS485-BL can support max 16 different RS485 command. So RS485-BL can support max 16 RS485 devices pre-program in the device for uplink. For other devices no pre-program, user can use the [[downlink message (type code 0xA8) to poll their info>>path:#downlink_A8]].
1067
1068
1069
1070
1071 1. Trouble Shooting     
1072 11. Downlink doesn’t work, how to solve it?
1073
1074 Please see this link for debug:
1075
1076 [[http:~~/~~/wiki.dragino.com/index.php?title=Main_Page#LoRaWAN_Communication_Debug>>url:http://wiki.dragino.com/index.php?title=Main_Page#LoRaWAN_Communication_Debug]] 
1077
1078
1079
1080 1.
1081 11. Why I can’t join TTN V3 in US915 /AU915 bands?
1082
1083 It might about the channels mapping. Please see for detail.
1084
1085 [[http:~~/~~/wiki.dragino.com/index.php?title=LoRaWAN_Communication_Debug#Notice_of_US915.2FCN470.2FAU915_Frequency_band>>url:http://wiki.dragino.com/index.php?title=LoRaWAN_Communication_Debug#Notice_of_US915.2FCN470.2FAU915_Frequency_band]]
1086
1087
1088
1089 1. Order Info
1090
1091 **Part Number: RS485-BL-XXX**
1092
1093 **XXX:**
1094
1095 * **EU433**: frequency bands EU433
1096 * **EU868**: frequency bands EU868
1097 * **KR920**: frequency bands KR920
1098 * **CN470**: frequency bands CN470
1099 * **AS923**: frequency bands AS923
1100 * **AU915**: frequency bands AU915
1101 * **US915**: frequency bands US915
1102 * **IN865**: frequency bands IN865
1103 * **RU864**: frequency bands RU864
1104 * **KZ865: **frequency bands KZ865
1105
1106 1. Packing Info
1107
1108 **Package Includes**:
1109
1110 * RS485-BL x 1
1111 * Stick Antenna for LoRa RF part x 1
1112 * Program cable x 1
1113
1114 **Dimension and weight**:
1115
1116 * Device Size: 13.5 x 7 x 3 cm
1117 * Device Weight: 105g
1118 * Package Size / pcs : 14.5 x 8 x 5 cm
1119 * Weight / pcs : 170g
1120
1121 1. Support
1122
1123 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1124 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to
1125
1126 [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]]
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0