Show last authors
1 (% style="text-align:center" %)
2 [[image:1653266934636-343.png||height="385" width="385"]]
3
4
5
6 **RS485-LN – RS485 to LoRaWAN Converter User Manual**
7
8
9 **Table of Contents:**
10
11
12
13
14
15 = 1.Introduction =
16
17 == 1.1 What is RS485-LN RS485 to LoRaWAN Converter ==
18
19 (((
20 (((
21 The Dragino RS485-LN is a (% style="color:blue" %)**RS485 to LoRaWAN Converter**(%%). It converts the RS485 signal into LoRaWAN wireless signal which simplify the IoT installation and reduce the installation/maintaining cost.
22 )))
23
24 (((
25 RS485-LN allows user to (% style="color:blue" %)**monitor / control RS485 devices**(%%) and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
26 )))
27
28 (((
29 (% style="color:blue" %)**For data uplink**(%%), RS485-LN sends user-defined commands to RS485 devices and gets the return from the RS485 devices. RS485-LN will process these returns according to user-define rules to get the final payload and upload to LoRaWAN server.
30 )))
31
32 (((
33 (% style="color:blue" %)**For data downlink**(%%), RS485-LN runs in LoRaWAN Class C. When there downlink commands from LoRaWAN server, RS485-LN will forward the commands from LoRaWAN server to RS485 devices.
34
35 (% style="color:blue" %)**Demo Dashboard for RS485-LN**(%%) connect to two energy meters: [[https:~~/~~/app.datacake.de/dashboard/d/58844a26-378d-4c5a-aaf5-b5b5b153447a>>url:https://app.datacake.de/dashboard/d/58844a26-378d-4c5a-aaf5-b5b5b153447a]]
36 )))
37 )))
38
39 [[image:1653267211009-519.png||height="419" width="724"]]
40
41
42 == 1.2 Specifications ==
43
44
45 **Hardware System:**
46
47 * STM32L072CZT6 MCU
48 * SX1276/78 Wireless Chip 
49 * Power Consumption (exclude RS485 device):
50 ** Idle: 32mA@12v
51 ** 20dB Transmit: 65mA@12v
52
53 **Interface for Model:**
54
55 * RS485
56 * Power Input 7~~ 24V DC. 
57
58 **LoRa Spec:**
59
60 * Frequency Range:
61 ** Band 1 (HF): 862 ~~ 1020 Mhz
62 ** Band 2 (LF): 410 ~~ 528 Mhz
63 * 168 dB maximum link budget.
64 * +20 dBm - 100 mW constant RF output vs.
65 * +14 dBm high efficiency PA.
66 * Programmable bit rate up to 300 kbps.
67 * High sensitivity: down to -148 dBm.
68 * Bullet-proof front end: IIP3 = -12.5 dBm.
69 * Excellent blocking immunity.
70 * Low RX current of 10.3 mA, 200 nA register retention.
71 * Fully integrated synthesizer with a resolution of 61 Hz.
72 * FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation.
73 * Built-in bit synchronizer for clock recovery.
74 * Preamble detection.
75 * 127 dB Dynamic Range RSSI.
76 * Automatic RF Sense and CAD with ultra-fast AFC.
77 * Packet engine up to 256 bytes with CRC.
78
79 == 1.3 Features ==
80
81 * LoRaWAN Class A & Class C protocol (default Class C)
82 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865/RU864
83 * AT Commands to change parameters
84 * Remote configure parameters via LoRa Downlink
85 * Firmware upgradable via program port
86 * Support multiply RS485 devices by flexible rules
87 * Support Modbus protocol
88 * Support Interrupt uplink (Since hardware version v1.2)
89
90 == 1.4 Applications ==
91
92 * Smart Buildings & Home Automation
93 * Logistics and Supply Chain Management
94 * Smart Metering
95 * Smart Agriculture
96 * Smart Cities
97 * Smart Factory
98
99 == 1.5 Firmware Change log ==
100
101 [[RS485-LN Image files – Download link and Change log>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/]]
102
103 == 1.6 Hardware Change log ==
104
105 (((
106 (((
107 v1.2: Add External Interrupt Pin.
108
109 v1.0: Release
110 )))
111 )))
112
113 = 2. Power ON Device =
114
115 (((
116 The RS485-LN can be powered by 7 ~~ 24V DC power source. Connection as below
117
118 * Power Source VIN to RS485-LN VIN+
119 * Power Source GND to RS485-LN VIN-
120
121 (((
122 Once there is power, the RS485-LN will be on.
123 )))
124
125 [[image:1653268091319-405.png]]
126 )))
127
128 = 3. Operation Mode =
129
130 == 3.1 How it works? ==
131
132 (((
133 The RS485-LN is configured as LoRaWAN OTAA Class C mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the RS485-LN. It will auto join the network via OTAA.
134 )))
135
136 == 3.2 Example to join LoRaWAN network ==
137
138 Here shows an example for how to join the TTN V3 Network. Below is the network structure, we use [[LG308>>url:http://www.dragino.com/products/lora-lorawan-gateway/item/140-lg308.html]] as LoRaWAN gateway here. 
139
140 [[image:1653268155545-638.png||height="334" width="724"]]
141
142 (((
143 The RS485-LN in this example connected to two RS485 devices for demonstration, user can connect to other RS485 devices via the same method. The connection is as below:
144
145 485A+ and 485B- of the sensor are connected to RS485A and RA485B of RS485-LN respectively.
146
147 [[image:1653268227651-549.png||height="592" width="720"]]
148
149 (((
150 The LG308 is already set to connect to [[TTN V3 network >>path:eu1.cloud.thethings.network/]]. So what we need to now is only configure the TTN V3:
151 )))
152
153 (((
154 **Step 1**: Create a device in TTN V3 with the OTAA keys from RS485-LN.
155 )))
156
157 (((
158 Each RS485-LN is shipped with a sticker with unique device EUI:
159 )))
160 )))
161
162 [[image:1652953462722-299.png]]
163
164 (((
165 (((
166 User can enter this key in their LoRaWAN Server portal. Below is TTN V3 screen shot:
167 )))
168
169 (((
170 Add APP EUI in the application.
171 )))
172 )))
173
174 [[image:image-20220519174512-1.png]]
175
176 [[image:image-20220519174512-2.png||height="323" width="720"]]
177
178 [[image:image-20220519174512-3.png||height="556" width="724"]]
179
180 [[image:image-20220519174512-4.png]]
181
182 You can also choose to create the device manually.
183
184 [[image:1652953542269-423.png||height="710" width="723"]]
185
186 Add APP KEY and DEV EUI
187
188 [[image:1652953553383-907.png||height="514" width="724"]]
189
190
191 (((
192 **Step 2**: Power on RS485-LN and it will auto join to the TTN V3 network. After join success, it will start to upload message to TTN V3 and user can see in the panel.
193 )))
194
195 [[image:1652953568895-172.png||height="232" width="724"]]
196
197 == 3.3 Configure Commands to read data ==
198
199 (((
200 (((
201 There are plenty of RS485 devices in the market and each device has different command to read the valid data. To support these devices in flexible, RS485-LN supports flexible command set. User can use [[AT Commands>>path:#AT_COMMAND]] or LoRaWAN Downlink Command to configure what commands RS485-LN should send for each sampling and how to handle the return from RS485 devices.
202 )))
203
204 (((
205 (% style="color:red" %)Note: below description and commands are for firmware version >v1.1, if you have firmware version v1.0. Please check the [[user manual v1.0>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/&file=RS485-LN_UserManual_v1.0.1.pdf]] or upgrade the firmware to v1.1
206 )))
207 )))
208
209 === 3.3.1 onfigure UART settings for RS485 or TTL communication ===
210
211 To use RS485-LN to read data from RS485 sensors, connect the RS485-LN A/B traces to the sensors. And user need to make sure RS485-LN use the match UART setting to access the sensors. The related commands for UART settings are:
212
213 (% border="1" style="background-color:#ffffcc; color:green; width:795px" %)
214 |(((
215 **AT Commands**
216 )))|(% style="width:285px" %)(((
217 **Description**
218 )))|(% style="width:347px" %)(((
219 **Example**
220 )))
221 |(((
222 AT+BAUDR
223 )))|(% style="width:285px" %)(((
224 Set the baud rate (for RS485 connection). Default Value is: 9600.
225 )))|(% style="width:347px" %)(((
226 (((
227 AT+BAUDR=9600
228 )))
229
230 (((
231 Options: (1200,2400,4800,14400,19200,115200)
232 )))
233 )))
234 |(((
235 AT+PARITY
236 )))|(% style="width:285px" %)(((
237 Set UART parity (for RS485 connection)
238 )))|(% style="width:347px" %)(((
239 (((
240 AT+PARITY=0
241 )))
242
243 (((
244 Option: 0: no parity, 1: odd parity, 2: even parity
245 )))
246 )))
247 |(((
248 AT+STOPBIT
249 )))|(% style="width:285px" %)(((
250 (((
251 Set serial stopbit (for RS485 connection)
252 )))
253
254 (((
255
256 )))
257 )))|(% style="width:347px" %)(((
258 (((
259 AT+STOPBIT=0 for 1bit
260 )))
261
262 (((
263 AT+STOPBIT=1 for 1.5 bit
264 )))
265
266 (((
267 AT+STOPBIT=2 for 2 bits
268 )))
269 )))
270
271 === 3.3.2 Configure sensors ===
272
273 (((
274 (((
275 Some sensors might need to configure before normal operation. User can configure such sensor via PC and RS485 adapter or through RS485-LN AT Commands (% style="color:#4f81bd" %)**AT+CFGDEV**(%%). Each (% style="color:#4f81bd" %)**AT+CFGDEV **(%%)equals to send a RS485 command to sensors. This command will only run when user input it and won’t run during each sampling.
276 )))
277 )))
278
279 (% border="1" style="background-color:#ffffcc; color:green; width:806px" %)
280 |**AT Commands**|(% style="width:418px" %)**Description**|(% style="width:256px" %)**Example**
281 |AT+CFGDEV|(% style="width:418px" %)(((
282 This command is used to configure the RS485/TTL devices; they won’t be used during sampling.
283
284 AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,
285
286 mm: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command
287 )))|(% style="width:256px" %)AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m
288
289 === 3.3.3 Configure read commands for each sampling ===
290
291 (((
292 RS485-BL is a battery powered device; it will sleep most of time. And wake up on each period and read RS485 / TTL sensor data and uplink.
293 )))
294
295 (((
296 During each sampling, we need to confirm what commands we need to send to the sensors to read data. After the RS485/TTL sensors send back the value, it normally includes some bytes and we only need a few from them for a shorten payload.
297 )))
298
299 (((
300 To save the LoRaWAN network bandwidth, we might need to read data from different sensors and combine their valid value into a short payload.
301 )))
302
303 (((
304 This section describes how to achieve above goals.
305 )))
306
307 (((
308 During each sampling, the RS485-BL can support 15 commands to read sensors. And combine the return to one or several uplink payloads.
309 )))
310
311 (((
312 **Command from RS485-BL to Sensor:**
313 )))
314
315 (((
316 RS485-BL can send out pre-set max 15 strings via **AT+COMMAD1**, **ATCOMMAND2**,…, to **AT+COMMANDF** . All commands are of same grammar.
317 )))
318
319 (((
320 **Handle return from sensors to RS485-BL**:
321 )))
322
323 (((
324 After RS485-BL send out a string to sensor, RS485-BL will wait for the return from RS485 or TTL sensor. And user can specify how to handle the return, by **AT+DATACUT or AT+SEARCH commands**
325 )))
326
327 * (((
328 **AT+DATACUT**
329 )))
330
331 (((
332 When the return value from sensor have fix length and we know which position the valid value we should get, we can use AT+DATACUT command.
333 )))
334
335 * (((
336 **AT+SEARCH**
337 )))
338
339 (((
340 When the return value from sensor is dynamic length and we are not sure which bytes the valid data is, instead, we know what value the valid value following. We can use AT+SEARCH to search the valid value in the return string.
341 )))
342
343 (((
344 **Define wait timeout:**
345 )))
346
347 (((
348 Some RS485 device might has longer delay on reply, so user can use AT+CMDDL to set the timeout for getting reply after the RS485 command is sent. For example, AT+CMDDL1=1000 to send the open time to 1000ms
349 )))
350
351 (((
352 After we got the valid value from each RS485 commands, we need to combine them together with the command **AT+DATAUP**.
353 )))
354
355 **Examples:**
356
357 Below are examples for the how above AT Commands works.
358
359 **AT+COMMANDx : **This command will be sent to RS485/TTL devices during each sampling, Max command length is 14 bytes. The grammar is:
360
361 (% border="1" class="table-bordered" %)
362 |(((
363 **AT+COMMANDx=xx xx xx xx xx xx xx xx xx xx xx xx,m**
364
365 **xx xx xx xx xx xx xx xx xx xx xx xx: The RS485 command to be sent**
366
367 **m: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command**
368 )))
369
370 (((
371 For example, if we have a RS485 sensor. The command to get sensor value is: 01 03 0B B8 00 02 46 0A. Where 01 03 0B B8 00 02 is the Modbus command to read the register 0B B8 where stored the sensor value. The 46 0A is the CRC-16/MODBUS which calculate manually.
372 )))
373
374 (((
375 In the RS485-BL, we should use this command AT+COMMAND1=01 03 0B B8 00 02,1 for the same.
376 )))
377
378 (((
379 **AT+SEARCHx**: This command defines how to handle the return from AT+COMMANDx.
380 )))
381
382 (% border="1" class="table-bordered" %)
383 |(((
384 **AT+SEARCHx=aa,xx xx xx xx xx**
385
386 * **aa: 1: prefix match mode; 2: prefix and suffix match mode**
387 * **xx xx xx xx xx: match string. Max 5 bytes for prefix and 5 bytes for suffix**
388
389
390 )))
391
392 **Examples:**
393
394 ~1. For a return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
395
396 If we set AT+SEARCH1=1,1E 56 34.      (max 5 bytes for prefix)
397
398 The valid data will be all bytes after 1E 56 34 , so it is (% style="background-color:yellow" %)** 2e 30 58 5f 36 41 30 31 00 49**
399
400 [[image:1653269403619-508.png]]
401
402 2. For a return string from AT+COMMAND1:  16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
403
404 If we set AT+SEARCH1=2, 1E 56 34+31 00 49
405
406 Device will search the bytes between 1E 56 34 and 31 00 49. So it is (% style="background-color:yellow" %)** 2e 30 58 5f 36 41 30**
407
408 [[image:1653269438444-278.png]]
409
410 **AT+DATACUTx : **This command defines how to handle the return from AT+COMMANDx, max return length is 45 bytes.
411
412 |(((
413 **AT+DATACUTx=a,b,c**
414
415 * **a: length for the return of AT+COMMAND**
416 * **b:1: grab valid value by byte, max 6 bytes. 2: grab valid value by bytes section, max 3 sections.**
417 * **c: define the position for valid value.  **
418 )))
419
420 Examples:
421
422 * Grab bytes:
423
424 [[image:1653269551753-223.png||height="311" width="717"]]
425
426 * Grab a section.
427
428 [[image:1653269568276-930.png||height="325" width="718"]]
429
430 * Grab different sections.
431
432 [[image:1653269593172-426.png||height="303" width="725"]]
433
434 (% style="color:red" %)**Note:**
435
436 AT+SEARCHx and AT+DATACUTx can be used together, if both commands are set, RS485-BL will first process AT+SEARCHx on the return string and get a temporary string, and then process AT+DATACUTx on this temporary string to get the final payload. In this case, AT+DATACUTx need to set to format AT+DATACUTx=0,xx,xx where the return bytes set to 0.
437
438 Example:
439
440 (% style="color:red" %)AT+COMMAND1=11 01 1E D0,0
441
442 (% style="color:red" %)AT+SEARCH1=1,1E 56 34
443
444 (% style="color:red" %)AT+DATACUT1=0,2,1~~5
445
446 (% style="color:red" %)Return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
447
448 (% style="color:red" %)String after SEARCH command: 2e 30 58 5f 36 41 30 31 00 49
449
450 (% style="color:red" %)Valid payload after DataCUT command: 2e 30 58 5f 36
451
452 [[image:1653269618463-608.png]]
453
454 === 3.3.4 Compose the uplink payload ===
455
456 (((
457 Through AT+COMMANDx and AT+DATACUTx we got valid value from each RS485 commands, Assume these valid value are RETURN1, RETURN2, .., to RETURNx. The next step is how to compose the LoRa Uplink Payload by these RETURNs. The command is **AT+DATAUP.**
458 )))
459
460 (((
461 (% style="color:#4f81bd" %)**Examples: AT+DATAUP=0**
462 )))
463
464 (((
465 Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**A SIGNLE UPLINK**.
466 )))
467
468 (((
469 Final Payload is
470 )))
471
472 (((
473 (% style="color:#4f81bd" %)**Battery Info+PAYVER + VALID Value from RETURN1 + Valid Value from RETURN2 + … + RETURNx**
474 )))
475
476 (((
477 Where PAYVER is defined by AT+PAYVER, below is an example screen shot.
478 )))
479
480 [[image:1653269759169-150.png||height="513" width="716"]]
481
482 (% style="color:#4f81bd" %)**Examples: AT+DATAUP=1**
483
484 Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**Multiply UPLINKs**.
485
486 Final Payload is
487
488 (% style="color:#4f81bd" %)**Battery Info+PAYVER + PAYLOAD COUNT + PAYLOAD# + DATA**
489
490 1. Battery Info (2 bytes): Battery voltage
491 1. PAYVER (1 byte): Defined by AT+PAYVER
492 1. PAYLOAD COUNT (1 byte): Total how many uplinks of this sampling.
493 1. PAYLOAD# (1 byte): Number of this uplink. (from 0,1,2,3…,to PAYLOAD COUNT)
494 1. DATA: Valid value: max 6 bytes(US915 version here, Notice*!) for each uplink so each uplink <= 11 bytes. For the last uplink, DATA will might less than 6 bytes
495
496 [[image:1653269916228-732.png||height="433" width="711"]]
497
498
499 So totally there will be 3 uplinks for this sampling, each uplink includes 6 bytes DATA
500
501 DATA1=RETURN1 Valid Value = (% style="background-color:green; color:white" %)20 20 0a 33 90 41
502
503 DATA2=1^^st^^ ~~ 6^^th^^ byte of Valid value of RETURN10=(% style="background-color:green; color:white" %) 02 aa 05 81 0a 20
504
505 DATA3=7^^th^^ ~~ 11^^th^^ bytes of Valid value of RETURN10 = (% style="background-color:green; color:white" %)20 20 20 2d 30
506
507 Below are the uplink payloads:
508
509 [[image:1653270130359-810.png]]
510
511
512 (% style="color:red" %)**Notice: the Max bytes is according to the max support bytes in different Frequency Bands for lowest SF. As below:**
513
514 ~* For AU915/AS923 bands, if UplinkDwell time=0, max 51 bytes for each uplink ( so 51 -5 = 46 max valid date)
515
516 * For AU915/AS923 bands, if UplinkDwell time=1, max 11 bytes for each uplink ( so 11 -5 = 6 max valid date).
517
518 * For US915 band, max 11 bytes for each uplink ( so 11 -5 = 6 max valid date).
519
520 ~* For all other bands: max 51 bytes for each uplink  ( so 51 -5 = 46 max valid date).
521
522 === 3.3.5 Uplink on demand ===
523
524 Except uplink periodically, RS485-BL is able to uplink on demand. The server sends downlink command to RS485-BL and RS485 will uplink data base on the command.
525
526 Downlink control command:
527
528 [[0x08 command>>path:#downlink_08]]: Poll an uplink with current command set in RS485-BL.
529
530 [[0xA8 command>>path:#downlink_A8]]: Send a command to RS485-BL and uplink the output from sensors.
531
532
533
534 1.
535 11.
536 111. Uplink on Interrupt
537
538 Put the interrupt sensor between 3.3v_out and GPIO ext.[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image022.png]]
539
540 AT+INTMOD=0  Disable Interrupt
541
542 AT+INTMOD=1  Interrupt trigger by rising or falling edge.
543
544 AT+INTMOD=2  Interrupt trigger by falling edge. ( Default Value)
545
546 AT+INTMOD=3  Interrupt trigger by rising edge.
547
548
549 1.
550 11. Uplink Payload
551
552 |**Size(bytes)**|**2**|**1**|**Length depends on the return from the commands**
553 |Value|(((
554 Battery(mV)
555
556 &
557
558 Interrupt _Flag
559 )))|(((
560 PAYLOAD_VER
561
562
563 )))|If the valid payload is too long and exceed the maximum support payload length in server, server will show payload not provided in the LoRaWAN server.
564
565 Below is the decoder for the first 3 bytes. The rest bytes are dynamic depends on different RS485 sensors.
566
567
568 function Decoder(bytes, port) {
569
570 ~/~/Payload Formats of RS485-BL Deceive
571
572 return {
573
574 ~/~/Battery,units:V
575
576 BatV:((bytes[0]<<8 | bytes[1])&0x7fff)/1000,
577
578 ~/~/GPIO_EXTI 
579
580 EXTI_Trigger:(bytes[0] & 0x80)? "TRUE":"FALSE",
581
582 ~/~/payload of version
583
584 Pay_ver:bytes[2],
585
586 };
587
588 }
589
590
591
592
593
594
595
596 TTN V3 uplink screen shot.
597
598 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image023.png]]
599
600 1.
601 11. Configure RS485-BL via AT or Downlink
602
603 User can configure RS485-BL via [[AT Commands >>path:#_​Using_the_AT]]or LoRaWAN Downlink Commands
604
605 There are two kinds of Commands:
606
607 * **Common Commands**: They should be available for each sensor, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: http:~/~/wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands
608
609 * **Sensor Related Commands**: These commands are special designed for RS485-BL.  User can see these commands below:
610
611 1.
612 11.
613 111. Common Commands:
614
615 They should be available for each of Dragino Sensors, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: [[http:~~/~~/wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands>>url:http://wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands]]
616
617
618 1.
619 11.
620 111. Sensor related commands:
621
622 ==== Choose Device Type (RS485 or TTL) ====
623
624 RS485-BL can connect to either RS485 sensors or TTL sensor. User need to specify what type of sensor need to connect.
625
626 * AT Command
627
628 **AT+MOD=1** ~/~/ Set to support RS485-MODBUS type sensors. User can connect multiply RS485 , Modbus sensors to the A / B pins.
629
630 **AT+MOD=2** ~/~/ Set to support TTL Level sensors, User can connect one TTL Sensor to the TXD/RXD/GND pins.
631
632
633 * Downlink Payload
634
635 **0A aa**     à same as AT+MOD=aa
636
637
638
639 ==== [[RS485 Debug Command>>path:#downlink_A8]] (AT+CFGDEV) ====
640
641 This command is used to configure the RS485 or TTL sensors; they won’t be used during sampling.
642
643 * AT Command
644
645 AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m
646
647 m: 0: no CRC; 1: add CRC-16/MODBUS in the end of this command.
648
649
650
651 * Downlink Payload
652
653 Format: A8 MM NN XX XX XX XX YY
654
655 Where:
656
657 * MM: 1: add CRC-16/MODBUS ; 0: no CRC
658 * NN: The length of RS485 command
659 * XX XX XX XX: RS485 command total NN bytes
660 * YY: How many bytes will be uplink from the return of this RS485 command, if YY=0, RS485-BL will execute the downlink command without uplink; if YY>0, RS485-BL will uplink total YY bytes from the output of this RS485 command
661
662 **Example 1:**
663
664 To connect a Modbus Alarm with below commands.
665
666 * The command to active alarm is: 0A 05 00 04 00 01 4C B0. Where 0A 05 00 04 00 01 is the Modbus command to read the register 00 40 where stored the DI status. The 4C B0 is the CRC-16/MODBUS which calculate manually.
667
668 * The command to deactivate alarm is: 0A 05 00 04 00 00 8D 70. Where 0A 05 00 04 00 00 is the Modbus command to read the register 00 40 where stored the DI status. The 8D 70 is the CRC-16/MODBUS which calculate manually.
669
670 So if user want to use downlink command to control to RS485 Alarm, he can use:
671
672 **A8 01 06 0A 05 00 04 00 01 00**: to activate the RS485 Alarm
673
674 **A8 01 06 0A 05 00 04 00 00 00**: to deactivate the RS485 Alarm
675
676 A8 is type code and 01 means add CRC-16/MODBUS at the end, the 3^^rd^^ byte is 06, means the next 6 bytes are the command to be sent to the RS485 network, the final byte 00 means this command don’t need to acquire output.
677
678
679 **Example 2:**
680
681 Check TTL Sensor return:
682
683 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image024.png]]
684
685
686
687
688 ==== Set Payload version ====
689
690 This is the first byte of the uplink payload. RS485-BL can connect to different sensors. User can set the PAYVER field to tell server how to decode the current payload.
691
692 * AT Command:
693
694 AT+PAYVER: Set PAYVER field = 1
695
696
697 * Downlink Payload:
698
699 0xAE 01   à Set PAYVER field =  0x01
700
701 0xAE 0F   à Set PAYVER field =  0x0F
702
703
704 ==== Set RS485 Sampling Commands ====
705
706 AT+COMMANDx, AT+DATACUTx and AT+SEARCHx
707
708 These three commands are used to configure how the RS485-BL polling data from Modbus device. Detail of usage please see : [[polling RS485 device>>path:#polling_485]].
709
710
711 * AT Command:
712
713 AT+COMMANDx: Configure RS485 read command to sensor.
714
715 AT+DATACUTx: Configure how to handle return from RS485 devices.
716
717 AT+SEARCHx: Configure search command
718
719
720 * Downlink Payload:
721
722 0xAF downlink command can be used to set AT+COMMANDx or AT+DATACUTx.
723
724 Note: if user use AT+COMMANDx to add a new command, he also need to send AT+DATACUTx downlink.
725
726 Format: AF MM NN LL XX XX XX XX YY
727
728 Where:
729
730 * MM: the ATCOMMAND or AT+DATACUT to be set. Value from 01 ~~ 0F,
731 * NN: 0: no CRC; 1: add CRC-16/MODBUS ; 2: set the AT+DATACUT value.
732 * LL: The length of AT+COMMAND or AT+DATACUT command
733 * XX XX XX XX: AT+COMMAND or AT+DATACUT command
734 * YY: If YY=0, RS485-BL will execute the downlink command without uplink; if YY=1, RS485-BL will execute an uplink after got this command.
735
736 Example:
737
738 **AF 03 01 06 0A 05 00 04 00 01 00**: Same as AT+COMMAND3=0A 05 00 04 00 01,1
739
740 **AF 03 02 06 10 01 05 06 09 0A 00**: Same as AT+DATACUT3=**16**,**1**,**5+6+9+10**
741
742 **AF 03 02 06 0B 02 05 07 08 0A 00**: Same as AT+DATACUT3=**11**,**2**,**5~~7+8~~10**
743
744
745 0xAB downlink command can be used for set AT+SEARCHx
746
747 Example: **AB aa 01 03 xx xx xx** (03 here means there are total 3 bytes after 03) So
748
749 * AB aa 01 03 xx xx xx  same as AT+SEARCHaa=1,xx xx xx
750 * AB aa 02 03 xx xx xx 02 yy yy(03 means there are 3 bytes after 03, they are xx xx xx;02 means there are 2 bytes after 02, they are yy yy) so the commands
751
752 **AB aa 02 03 xx xx xx 02 yy yy**  same as **AT+SEARCHaa=2,xx xx xx+yy yy**
753
754
755 ==== Fast command to handle MODBUS device ====
756
757 AT+MBFUN is valid since v1.3 firmware version. The command is for fast configure to read Modbus devices. It is only valid for the devices which follow the [[MODBUS-RTU protocol>>url:https://www.modbustools.com/modbus.html]].
758
759 This command is valid since v1.3 firmware version
760
761
762 AT+MBFUN has only two value:
763
764 * AT+MBFUN=1: Enable Modbus reading. And get response base on the MODBUS return
765
766 AT+MBFUN=1, device can auto read the Modbus function code: 01, 02, 03 or 04. AT+MBFUN has lower priority vs AT+DATACUT command. If AT+DATACUT command is configured, AT+MBFUN will be ignore.
767
768 * AT+MBFUN=0: Disable Modbus fast reading.
769
770 Example:
771
772 * AT+MBFUN=1 and AT+DATACUT1/AT+DATACUT2 are not configure (0,0,0).
773 * AT+COMMAND1= 01 03 00 10 00 08,1 ~-~-> read slave address 01 , function code 03, start address 00 01, quantity of registers 00 08.
774 * AT+COMMAND2= 01 02 00 40 00 10,1 ~-~-> read slave address 01 , function code 02, start address 00 40, quantity of inputs 00 10.
775
776 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image025.png]]
777
778
779 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image026.png]]
780
781
782 * Downlink Commands:
783
784 A9 aa -à Same as AT+MBFUN=aa
785
786
787 ==== RS485 command timeout ====
788
789 Some Modbus device has slow action to send replies. This command is used to configure the RS485-BL to use longer time to wait for their action.
790
791 Default value: 0, range:  0 ~~ 5 seconds
792
793
794 * AT Command:
795
796 AT+CMDDLaa=hex(bb cc)
797
798 Example:
799
800 **AT+CMDDL1=1000** to send the open time to 1000ms
801
802
803 * Downlink Payload:
804
805 0x AA aa bb cc
806
807 Same as: AT+CMDDLaa=hex(bb cc)
808
809 Example:
810
811 0xAA 01 03 E8  à Same as **AT+CMDDL1=1000 ms**
812
813
814 ==== [[Uplink>>path:#downlink_A8]] payload mode ====
815
816 Define to use one uplink or multiple uplinks for the sampling.
817
818 The use of this command please see: [[Compose Uplink payload>>path:#DataUP]]
819
820 * AT Command:
821
822 AT+DATAUP=0
823
824 AT+DATAUP=1
825
826
827 * Downlink Payload:
828
829 0xAD 00   à Same as AT+DATAUP=0
830
831 0xAD 01   à Same as AT+DATAUP=1
832
833
834 ==== Manually trigger an Uplink ====
835
836 Ask device to send an uplink immediately.
837
838 * Downlink Payload:
839
840 0x08 FF, RS485-BL will immediately send an uplink.
841
842
843 ==== Clear RS485 Command ====
844
845 The AT+COMMANDx and AT+DATACUTx settings are stored in special location, user can use below command to clear them.
846
847
848 * AT Command:
849
850 **AT+CMDEAR=mm,nn**   mm: start position of erase ,nn: stop position of erase
851
852 Etc. AT+CMDEAR=1,10 means erase AT+COMMAND1/AT+DATACUT1 to AT+COMMAND10/AT+DATACUT10
853
854 Example screen shot after clear all RS485 commands. 
855
856
857
858 The uplink screen shot is:
859
860 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image023.png]]
861
862
863 * Downlink Payload:
864
865 0x09 aa bb same as AT+CMDEAR=aa,bb
866
867
868 ==== Set Serial Communication Parameters ====
869
870 Set the Rs485 serial communication parameters:
871
872 * AT Command:
873
874 Set Baud Rate:
875
876 AT+BAUDR=9600    ~/~/ Options: (1200,2400,4800,14400,19200,115200)
877
878
879 Set UART parity
880
881 AT+PARITY=0    ~/~/ Option: 0: no parity, 1: odd parity, 2: even parity
882
883
884 Set STOPBIT
885
886 AT+STOPBIT=0    ~/~/ Option: 0 for 1bit; 1 for 1.5 bit ; 2 for 2 bits
887
888
889 * Downlink Payload:
890
891 A7 01 aa bb: Same  AT+BAUDR=hex(aa bb)*100
892
893 Example:
894
895 * A7 01 00 60   same as AT+BAUDR=9600
896 * A7 01 04 80  same as AT+BAUDR=115200
897
898 A7 02 aa: Same as  AT+PARITY=aa  (aa value: 00 , 01 or 02)
899
900 A7 03 aa: Same as  AT+STOPBIT=aa  (aa value: 00 , 01 or 02)
901
902
903 ==== Control output power duration ====
904
905 User can set the output power duration before each sampling.
906
907 * AT Command:
908
909 Example:
910
911 AT+3V3T=1000 ~/~/ 3V3 output power will open 1s before each sampling.
912
913 AT+5VT=1000 ~/~/ +5V output power will open 1s before each sampling.
914
915
916 * LoRaWAN Downlink Command:
917
918 07 01 aa bb  Same as AT+5VT=(aa bb)
919
920 07 02 aa bb  Same as AT+3V3T=(aa bb)
921
922
923
924
925 1.
926 11. Buttons
927
928 |**Button**|**Feature**
929 |**RST**|Reboot RS485-BL
930
931 1.
932 11. +3V3 Output
933
934 RS485-BL has a Controllable +3V3 output, user can use this output to power external sensor.
935
936 The +3V3 output will be valid for every sampling. RS485-BL will enable +3V3 output before all sampling and disable the +3V3 after all sampling. 
937
938
939 The +3V3 output time can be controlled by AT Command.
940
941 **AT+3V3T=1000**
942
943 Means set +3v3 valid time to have 1000ms. So, the real +3v3 output will actually have 1000ms + sampling time for other sensors.
944
945
946 By default, the AT+3V3T=0. This is a special case, means the +3V3 output is always on at any time
947
948
949 1.
950 11. +5V Output
951
952 RS485-BL has a Controllable +5V output, user can use this output to power external sensor.
953
954 The +5V output will be valid for every sampling. RS485-BL will enable +5V output before all sampling and disable the +5v after all sampling. 
955
956
957 The 5V output time can be controlled by AT Command.
958
959 **AT+5VT=1000**
960
961 Means set 5V valid time to have 1000ms. So, the real 5V output will actually have 1000ms + sampling time for other sensors.
962
963
964 By default, the AT+5VT=0. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
965
966
967
968
969 1.
970 11. LEDs
971
972 |**LEDs**|**Feature**
973 |**LED1**|Blink when device transmit a packet.
974
975 1.
976 11. Switch Jumper
977
978 |**Switch Jumper**|**Feature**
979 |**SW1**|(((
980 ISP position: Upgrade firmware via UART
981
982 Flash position: Configure device, check running status.
983 )))
984 |**SW2**|(((
985 5V position: set to compatible with 5v I/O.
986
987 3.3v position: set to compatible with 3.3v I/O.,
988 )))
989
990 +3.3V: is always ON
991
992 +5V: Only open before every sampling. The time is by default, it is AT+5VT=0.  Max open time. 5000 ms.
993
994 1. Case Study
995
996 User can check this URL for some case studies.
997
998 [[http:~~/~~/wiki.dragino.com/index.php?title=APP_RS485_COMMUNICATE_WITH_SENSORS>>url:http://wiki.dragino.com/index.php?title=APP_RS485_COMMUNICATE_WITH_SENSORS]]
999
1000
1001
1002
1003 1. Use AT Command
1004 11. Access AT Command
1005
1006 RS485-BL supports AT Command set. User can use a USB to TTL adapter plus the 3.5mm Program Cable to connect to RS485-BL to use AT command, as below.
1007
1008 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image027.png]]
1009
1010
1011 In PC, User needs to set **serial tool**(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to **9600** to access to access serial console of RS485-BL. The default password is 123456. Below is the output for reference:
1012
1013 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image028.png]]
1014
1015
1016
1017 More detail AT Command manual can be found at [[AT Command Manual>>path:#AT_COMMAND]]
1018
1019
1020
1021 1.
1022 11. Common AT Command Sequence
1023 111. Multi-channel ABP mode (Use with SX1301/LG308)
1024
1025 If device has not joined network yet:
1026
1027 AT+FDR
1028
1029 AT+NJM=0
1030
1031 ATZ
1032
1033
1034 If device already joined network:
1035
1036 AT+NJM=0
1037
1038 ATZ
1039
1040 1.
1041 11.
1042 111. Single-channel ABP mode (Use with LG01/LG02)
1043
1044 AT+FDR   Reset Parameters to Factory Default, Keys Reserve
1045
1046 AT+NJM=0 Set to ABP mode
1047
1048 AT+ADR=0 Set the Adaptive Data Rate Off
1049
1050 AT+DR=5  Set Data Rate
1051
1052 AT+TDC=60000  Set transmit interval to 60 seconds
1053
1054 AT+CHS=868400000 Set transmit frequency to 868.4Mhz
1055
1056 AT+RX2FQ=868400000 Set RX2Frequency to 868.4Mhz (according to the result from server)
1057
1058 AT+RX2DR=5  Set RX2DR to match the downlink DR from server. see below
1059
1060 AT+DADDR=26 01 1A F1 Set Device Address to 26 01 1A F1, this ID can be found in the LoRa Server portal.
1061
1062 ATZ          Reset MCU
1063
1064 **Note:**
1065
1066 1. Make sure the device is set to ABP mode in the IoT Server.
1067 1. Make sure the LG01/02 gateway RX frequency is exactly the same as AT+CHS setting.
1068 1. Make sure SF / bandwidth setting in LG01/LG02 match the settings of AT+DR. refer [[this link>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_Gateway/&file=LoRaWAN%201.0.3%20Regional%20Parameters.xlsx]] to see what DR means.
1069 1. The command AT+RX2FQ and AT+RX2DR is to let downlink work. to set the correct parameters, user can check the actually downlink parameters to be used. As below. Which shows the RX2FQ should use 868400000 and RX2DR should be 5
1070
1071 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image029.png]]
1072
1073
1074 1. FAQ
1075 11. How to upgrade the image?
1076
1077 The RS485-BL LoRaWAN Controller is shipped with a 3.5mm cable, the cable is used to upload image to RS485-BL to:
1078
1079 * Support new features
1080 * For bug fix
1081 * Change LoRaWAN bands.
1082
1083 Below shows the hardware connection for how to upload an image to RS485-BL:
1084
1085 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image030.png]]
1086
1087 **Step1:** Download [[flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]].
1088
1089 **Step2**: Download the [[LT Image files>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/image/]].
1090
1091 **Step3: **Open flashloader; choose the correct COM port to update.
1092
1093
1094 |(((
1095 HOLD PRO then press the RST button, SYS will be ON, then click next
1096 )))
1097
1098 |(((
1099 Board detected
1100 )))
1101
1102 |(((
1103
1104 )))
1105
1106 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image031.png]] [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image032.png]]
1107
1108
1109
1110 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image033.png]] [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image034.png]]
1111
1112
1113 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image035.png]] [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image036.png]]
1114
1115
1116 1.
1117 11. How to change the LoRa Frequency Bands/Region?
1118
1119 User can follow the introduction for [[how to upgrade image>>path:#upgrade_image]]. When download the images, choose the required image file for download.
1120
1121
1122
1123 1.
1124 11. How many RS485-Slave can RS485-BL connects?
1125
1126 The RS485-BL can support max 32 RS485 devices. Each uplink command of RS485-BL can support max 16 different RS485 command. So RS485-BL can support max 16 RS485 devices pre-program in the device for uplink. For other devices no pre-program, user can use the [[downlink message (type code 0xA8) to poll their info>>path:#downlink_A8]].
1127
1128
1129
1130
1131 1. Trouble Shooting     
1132 11. Downlink doesn’t work, how to solve it?
1133
1134 Please see this link for debug:
1135
1136 [[http:~~/~~/wiki.dragino.com/index.php?title=Main_Page#LoRaWAN_Communication_Debug>>url:http://wiki.dragino.com/index.php?title=Main_Page#LoRaWAN_Communication_Debug]] 
1137
1138
1139
1140 1.
1141 11. Why I can’t join TTN V3 in US915 /AU915 bands?
1142
1143 It might about the channels mapping. Please see for detail.
1144
1145 [[http:~~/~~/wiki.dragino.com/index.php?title=LoRaWAN_Communication_Debug#Notice_of_US915.2FCN470.2FAU915_Frequency_band>>url:http://wiki.dragino.com/index.php?title=LoRaWAN_Communication_Debug#Notice_of_US915.2FCN470.2FAU915_Frequency_band]]
1146
1147
1148
1149 1. Order Info
1150
1151 **Part Number: RS485-BL-XXX**
1152
1153 **XXX:**
1154
1155 * **EU433**: frequency bands EU433
1156 * **EU868**: frequency bands EU868
1157 * **KR920**: frequency bands KR920
1158 * **CN470**: frequency bands CN470
1159 * **AS923**: frequency bands AS923
1160 * **AU915**: frequency bands AU915
1161 * **US915**: frequency bands US915
1162 * **IN865**: frequency bands IN865
1163 * **RU864**: frequency bands RU864
1164 * **KZ865: **frequency bands KZ865
1165
1166 1. Packing Info
1167
1168 **Package Includes**:
1169
1170 * RS485-BL x 1
1171 * Stick Antenna for LoRa RF part x 1
1172 * Program cable x 1
1173
1174 **Dimension and weight**:
1175
1176 * Device Size: 13.5 x 7 x 3 cm
1177 * Device Weight: 105g
1178 * Package Size / pcs : 14.5 x 8 x 5 cm
1179 * Weight / pcs : 170g
1180
1181 1. Support
1182
1183 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1184 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to
1185
1186 [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]]
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0