Version 32.5 by Xiaoling on 2022/06/02 15:25

Show last authors
1 (% style="text-align:center" %)
2 [[image:1653266934636-343.png||height="385" width="385"]]
3
4
5
6 **RS485-LN – RS485 to LoRaWAN Converter User Manual**
7
8
9 **Table of Contents:**
10
11
12
13
14
15 = 1.Introduction =
16
17 == 1.1 What is RS485-LN RS485 to LoRaWAN Converter ==
18
19 (((
20 (((
21 The Dragino RS485-LN is a (% style="color:blue" %)**RS485 to LoRaWAN Converter**(%%). It converts the RS485 signal into LoRaWAN wireless signal which simplify the IoT installation and reduce the installation/maintaining cost.
22 )))
23
24 (((
25 RS485-LN allows user to (% style="color:blue" %)**monitor / control RS485 devices**(%%) and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
26 )))
27
28 (((
29 (% style="color:blue" %)**For data uplink**(%%), RS485-LN sends user-defined commands to RS485 devices and gets the return from the RS485 devices. RS485-LN will process these returns according to user-define rules to get the final payload and upload to LoRaWAN server.
30 )))
31
32 (((
33 (% style="color:blue" %)**For data downlink**(%%), RS485-LN runs in LoRaWAN Class C. When there downlink commands from LoRaWAN server, RS485-LN will forward the commands from LoRaWAN server to RS485 devices.
34
35 (% style="color:blue" %)**Demo Dashboard for RS485-LN**(%%) connect to two energy meters: [[https:~~/~~/app.datacake.de/dashboard/d/58844a26-378d-4c5a-aaf5-b5b5b153447a>>url:https://app.datacake.de/dashboard/d/58844a26-378d-4c5a-aaf5-b5b5b153447a]]
36 )))
37 )))
38
39 [[image:1653267211009-519.png||height="419" width="724"]]
40
41
42 == 1.2 Specifications ==
43
44 **Hardware System:**
45
46 * STM32L072CZT6 MCU
47 * SX1276/78 Wireless Chip 
48 * Power Consumption (exclude RS485 device):
49 ** Idle: 32mA@12v
50 ** 20dB Transmit: 65mA@12v
51
52 **Interface for Model:**
53
54 * RS485
55 * Power Input 7~~ 24V DC. 
56
57 **LoRa Spec:**
58
59 * Frequency Range:
60 ** Band 1 (HF): 862 ~~ 1020 Mhz
61 ** Band 2 (LF): 410 ~~ 528 Mhz
62 * 168 dB maximum link budget.
63 * +20 dBm - 100 mW constant RF output vs.
64 * +14 dBm high efficiency PA.
65 * Programmable bit rate up to 300 kbps.
66 * High sensitivity: down to -148 dBm.
67 * Bullet-proof front end: IIP3 = -12.5 dBm.
68 * Excellent blocking immunity.
69 * Low RX current of 10.3 mA, 200 nA register retention.
70 * Fully integrated synthesizer with a resolution of 61 Hz.
71 * FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation.
72 * Built-in bit synchronizer for clock recovery.
73 * Preamble detection.
74 * 127 dB Dynamic Range RSSI.
75 * Automatic RF Sense and CAD with ultra-fast AFC.
76 * Packet engine up to 256 bytes with CRC.
77
78 == 1.3 Features ==
79
80 * LoRaWAN Class A & Class C protocol (default Class C)
81 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865/RU864
82 * AT Commands to change parameters
83 * Remote configure parameters via LoRa Downlink
84 * Firmware upgradable via program port
85 * Support multiply RS485 devices by flexible rules
86 * Support Modbus protocol
87 * Support Interrupt uplink (Since hardware version v1.2)
88
89 == 1.4 Applications ==
90
91 * Smart Buildings & Home Automation
92 * Logistics and Supply Chain Management
93 * Smart Metering
94 * Smart Agriculture
95 * Smart Cities
96 * Smart Factory
97
98 == 1.5 Firmware Change log ==
99
100 [[RS485-LN Image files – Download link and Change log>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/]]
101
102 == 1.6 Hardware Change log ==
103
104 (((
105 (((
106 v1.2: Add External Interrupt Pin.
107
108 v1.0: Release
109 )))
110 )))
111
112 = 2. Power ON Device =
113
114 (((
115 The RS485-LN can be powered by 7 ~~ 24V DC power source. Connection as below
116
117 * Power Source VIN to RS485-LN VIN+
118 * Power Source GND to RS485-LN VIN-
119
120 (((
121 Once there is power, the RS485-LN will be on.
122 )))
123
124 [[image:1653268091319-405.png]]
125 )))
126
127 = 3. Operation Mode =
128
129 == 3.1 How it works? ==
130
131 (((
132 The RS485-LN is configured as LoRaWAN OTAA Class C mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the RS485-LN. It will auto join the network via OTAA.
133 )))
134
135 == 3.2 Example to join LoRaWAN network ==
136
137 Here shows an example for how to join the TTN V3 Network. Below is the network structure, we use [[LG308>>url:http://www.dragino.com/products/lora-lorawan-gateway/item/140-lg308.html]] as LoRaWAN gateway here. 
138
139 [[image:1653268155545-638.png||height="334" width="724"]]
140
141 (((
142 The RS485-LN in this example connected to two RS485 devices for demonstration, user can connect to other RS485 devices via the same method. The connection is as below:
143
144 485A+ and 485B- of the sensor are connected to RS485A and RA485B of RS485-LN respectively.
145
146 [[image:1653268227651-549.png||height="592" width="720"]]
147
148 (((
149 The LG308 is already set to connect to [[TTN V3 network >>path:eu1.cloud.thethings.network/]]. So what we need to now is only configure the TTN V3:
150 )))
151
152 (((
153 **Step 1**: Create a device in TTN V3 with the OTAA keys from RS485-LN.
154 )))
155
156 (((
157 Each RS485-LN is shipped with a sticker with unique device EUI:
158 )))
159 )))
160
161 [[image:1652953462722-299.png]]
162
163 (((
164 (((
165 User can enter this key in their LoRaWAN Server portal. Below is TTN V3 screen shot:
166 )))
167
168 (((
169 Add APP EUI in the application.
170 )))
171 )))
172
173 [[image:image-20220519174512-1.png]]
174
175 [[image:image-20220519174512-2.png||height="323" width="720"]]
176
177 [[image:image-20220519174512-3.png||height="556" width="724"]]
178
179 [[image:image-20220519174512-4.png]]
180
181 You can also choose to create the device manually.
182
183 [[image:1652953542269-423.png||height="710" width="723"]]
184
185 Add APP KEY and DEV EUI
186
187 [[image:1652953553383-907.png||height="514" width="724"]]
188
189
190 (((
191 **Step 2**: Power on RS485-LN and it will auto join to the TTN V3 network. After join success, it will start to upload message to TTN V3 and user can see in the panel.
192 )))
193
194 [[image:1652953568895-172.png||height="232" width="724"]]
195
196 == 3.3 Configure Commands to read data ==
197
198 (((
199 (((
200 There are plenty of RS485 devices in the market and each device has different command to read the valid data. To support these devices in flexible, RS485-LN supports flexible command set. User can use [[AT Commands>>path:#AT_COMMAND]] or LoRaWAN Downlink Command to configure what commands RS485-LN should send for each sampling and how to handle the return from RS485 devices.
201 )))
202
203 (((
204 (% style="color:red" %)Note: below description and commands are for firmware version >v1.1, if you have firmware version v1.0. Please check the [[user manual v1.0>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/&file=RS485-LN_UserManual_v1.0.1.pdf]] or upgrade the firmware to v1.1
205 )))
206 )))
207
208 === 3.3.1 onfigure UART settings for RS485 or TTL communication ===
209
210 To use RS485-LN to read data from RS485 sensors, connect the RS485-LN A/B traces to the sensors. And user need to make sure RS485-LN use the match UART setting to access the sensors. The related commands for UART settings are:
211
212 (% border="1" style="background-color:#ffffcc; color:green; width:795px" %)
213 |(((
214 **AT Commands**
215 )))|(% style="width:285px" %)(((
216 **Description**
217 )))|(% style="width:347px" %)(((
218 **Example**
219 )))
220 |(((
221 AT+BAUDR
222 )))|(% style="width:285px" %)(((
223 Set the baud rate (for RS485 connection). Default Value is: 9600.
224 )))|(% style="width:347px" %)(((
225 (((
226 AT+BAUDR=9600
227 )))
228
229 (((
230 Options: (1200,2400,4800,14400,19200,115200)
231 )))
232 )))
233 |(((
234 AT+PARITY
235 )))|(% style="width:285px" %)(((
236 Set UART parity (for RS485 connection)
237 )))|(% style="width:347px" %)(((
238 (((
239 AT+PARITY=0
240 )))
241
242 (((
243 Option: 0: no parity, 1: odd parity, 2: even parity
244 )))
245 )))
246 |(((
247 AT+STOPBIT
248 )))|(% style="width:285px" %)(((
249 (((
250 Set serial stopbit (for RS485 connection)
251 )))
252
253 (((
254
255 )))
256 )))|(% style="width:347px" %)(((
257 (((
258 AT+STOPBIT=0 for 1bit
259 )))
260
261 (((
262 AT+STOPBIT=1 for 1.5 bit
263 )))
264
265 (((
266 AT+STOPBIT=2 for 2 bits
267 )))
268 )))
269
270 === 3.3.2 Configure sensors ===
271
272 (((
273 (((
274 Some sensors might need to configure before normal operation. User can configure such sensor via PC and RS485 adapter or through RS485-LN AT Commands (% style="color:#4f81bd" %)**AT+CFGDEV**(%%). Each (% style="color:#4f81bd" %)**AT+CFGDEV **(%%)equals to send a RS485 command to sensors. This command will only run when user input it and won’t run during each sampling.
275 )))
276 )))
277
278 (% border="1" style="background-color:#ffffcc; color:green; width:806px" %)
279 |**AT Commands**|(% style="width:418px" %)**Description**|(% style="width:256px" %)**Example**
280 |AT+CFGDEV|(% style="width:418px" %)(((
281 This command is used to configure the RS485/TTL devices; they won’t be used during sampling.
282
283 AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,
284
285 mm: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command
286 )))|(% style="width:256px" %)AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m
287
288 === 3.3.3 Configure read commands for each sampling ===
289
290 (((
291 RS485-BL is a battery powered device; it will sleep most of time. And wake up on each period and read RS485 / TTL sensor data and uplink.
292 )))
293
294 (((
295 During each sampling, we need to confirm what commands we need to send to the sensors to read data. After the RS485/TTL sensors send back the value, it normally includes some bytes and we only need a few from them for a shorten payload.
296 )))
297
298 (((
299 To save the LoRaWAN network bandwidth, we might need to read data from different sensors and combine their valid value into a short payload.
300 )))
301
302 (((
303 This section describes how to achieve above goals.
304 )))
305
306 (((
307 During each sampling, the RS485-BL can support 15 commands to read sensors. And combine the return to one or several uplink payloads.
308 )))
309
310 (((
311 **Command from RS485-BL to Sensor:**
312 )))
313
314 (((
315 RS485-BL can send out pre-set max 15 strings via **AT+COMMAD1**, **ATCOMMAND2**,…, to **AT+COMMANDF** . All commands are of same grammar.
316 )))
317
318 (((
319 **Handle return from sensors to RS485-BL**:
320 )))
321
322 (((
323 After RS485-BL send out a string to sensor, RS485-BL will wait for the return from RS485 or TTL sensor. And user can specify how to handle the return, by **AT+DATACUT or AT+SEARCH commands**
324 )))
325
326 * (((
327 **AT+DATACUT**
328 )))
329
330 (((
331 When the return value from sensor have fix length and we know which position the valid value we should get, we can use AT+DATACUT command.
332 )))
333
334 * (((
335 **AT+SEARCH**
336 )))
337
338 (((
339 When the return value from sensor is dynamic length and we are not sure which bytes the valid data is, instead, we know what value the valid value following. We can use AT+SEARCH to search the valid value in the return string.
340 )))
341
342 (((
343 **Define wait timeout:**
344 )))
345
346 (((
347 Some RS485 device might has longer delay on reply, so user can use AT+CMDDL to set the timeout for getting reply after the RS485 command is sent. For example, AT+CMDDL1=1000 to send the open time to 1000ms
348 )))
349
350 (((
351 After we got the valid value from each RS485 commands, we need to combine them together with the command **AT+DATAUP**.
352 )))
353
354 **Examples:**
355
356 Below are examples for the how above AT Commands works.
357
358 **AT+COMMANDx : **This command will be sent to RS485/TTL devices during each sampling, Max command length is 14 bytes. The grammar is:
359
360 (% border="1" class="table-bordered" %)
361 |(((
362 **AT+COMMANDx=xx xx xx xx xx xx xx xx xx xx xx xx,m**
363
364 **xx xx xx xx xx xx xx xx xx xx xx xx: The RS485 command to be sent**
365
366 **m: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command**
367 )))
368
369 (((
370 For example, if we have a RS485 sensor. The command to get sensor value is: 01 03 0B B8 00 02 46 0A. Where 01 03 0B B8 00 02 is the Modbus command to read the register 0B B8 where stored the sensor value. The 46 0A is the CRC-16/MODBUS which calculate manually.
371 )))
372
373 (((
374 In the RS485-BL, we should use this command AT+COMMAND1=01 03 0B B8 00 02,1 for the same.
375 )))
376
377 (((
378 **AT+SEARCHx**: This command defines how to handle the return from AT+COMMANDx.
379 )))
380
381 (% border="1" class="table-bordered" %)
382 |(((
383 **AT+SEARCHx=aa,xx xx xx xx xx**
384
385 * **aa: 1: prefix match mode; 2: prefix and suffix match mode**
386 * **xx xx xx xx xx: match string. Max 5 bytes for prefix and 5 bytes for suffix**
387
388
389 )))
390
391 **Examples:**
392
393 ~1. For a return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
394
395 If we set AT+SEARCH1=1,1E 56 34.      (max 5 bytes for prefix)
396
397 The valid data will be all bytes after 1E 56 34 , so it is (% style="background-color:yellow" %)** 2e 30 58 5f 36 41 30 31 00 49**
398
399 [[image:1653269403619-508.png]]
400
401 2. For a return string from AT+COMMAND1:  16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
402
403 If we set AT+SEARCH1=2, 1E 56 34+31 00 49
404
405 Device will search the bytes between 1E 56 34 and 31 00 49. So it is (% style="background-color:yellow" %)** 2e 30 58 5f 36 41 30**
406
407 [[image:1653269438444-278.png]]
408
409 **AT+DATACUTx : **This command defines how to handle the return from AT+COMMANDx, max return length is 45 bytes.
410
411 |(((
412 **AT+DATACUTx=a,b,c**
413
414 * **a: length for the return of AT+COMMAND**
415 * **b:1: grab valid value by byte, max 6 bytes. 2: grab valid value by bytes section, max 3 sections.**
416 * **c: define the position for valid value.  **
417 )))
418
419 Examples:
420
421 * Grab bytes:
422
423 [[image:1653269551753-223.png||height="311" width="717"]]
424
425 * Grab a section.
426
427 [[image:1653269568276-930.png||height="325" width="718"]]
428
429 * Grab different sections.
430
431 [[image:1653269593172-426.png||height="303" width="725"]]
432
433 (% style="color:red" %)**Note:**
434
435 AT+SEARCHx and AT+DATACUTx can be used together, if both commands are set, RS485-BL will first process AT+SEARCHx on the return string and get a temporary string, and then process AT+DATACUTx on this temporary string to get the final payload. In this case, AT+DATACUTx need to set to format AT+DATACUTx=0,xx,xx where the return bytes set to 0.
436
437 Example:
438
439 (% style="color:red" %)AT+COMMAND1=11 01 1E D0,0
440
441 (% style="color:red" %)AT+SEARCH1=1,1E 56 34
442
443 (% style="color:red" %)AT+DATACUT1=0,2,1~~5
444
445 (% style="color:red" %)Return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
446
447 (% style="color:red" %)String after SEARCH command: 2e 30 58 5f 36 41 30 31 00 49
448
449 (% style="color:red" %)Valid payload after DataCUT command: 2e 30 58 5f 36
450
451 [[image:1653269618463-608.png]]
452
453 === 3.3.4 Compose the uplink payload ===
454
455 (((
456 Through AT+COMMANDx and AT+DATACUTx we got valid value from each RS485 commands, Assume these valid value are RETURN1, RETURN2, .., to RETURNx. The next step is how to compose the LoRa Uplink Payload by these RETURNs. The command is **AT+DATAUP.**
457 )))
458
459 (((
460 (% style="color:#4f81bd" %)**Examples: AT+DATAUP=0**
461 )))
462
463 (((
464 Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**A SIGNLE UPLINK**.
465 )))
466
467 (((
468 Final Payload is
469 )))
470
471 (((
472 (% style="color:#4f81bd" %)**Battery Info+PAYVER + VALID Value from RETURN1 + Valid Value from RETURN2 + … + RETURNx**
473 )))
474
475 (((
476 Where PAYVER is defined by AT+PAYVER, below is an example screen shot.
477 )))
478
479 [[image:1653269759169-150.png||height="513" width="716"]]
480
481 (% style="color:#4f81bd" %)**Examples: AT+DATAUP=1**
482
483 Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**Multiply UPLINKs**.
484
485 Final Payload is
486
487 (% style="color:#4f81bd" %)**Battery Info+PAYVER + PAYLOAD COUNT + PAYLOAD# + DATA**
488
489 1. Battery Info (2 bytes): Battery voltage
490 1. PAYVER (1 byte): Defined by AT+PAYVER
491 1. PAYLOAD COUNT (1 byte): Total how many uplinks of this sampling.
492 1. PAYLOAD# (1 byte): Number of this uplink. (from 0,1,2,3…,to PAYLOAD COUNT)
493 1. DATA: Valid value: max 6 bytes(US915 version here, Notice*!) for each uplink so each uplink <= 11 bytes. For the last uplink, DATA will might less than 6 bytes
494
495 [[image:1653269916228-732.png||height="433" width="711"]]
496
497
498 So totally there will be 3 uplinks for this sampling, each uplink includes 6 bytes DATA
499
500 DATA1=RETURN1 Valid Value = (% style="background-color:green; color:white" %)20 20 0a 33 90 41
501
502 DATA2=1^^st^^ ~~ 6^^th^^ byte of Valid value of RETURN10=(% style="background-color:green; color:white" %) 02 aa 05 81 0a 20
503
504 DATA3=7^^th^^ ~~ 11^^th^^ bytes of Valid value of RETURN10 = (% style="background-color:green; color:white" %)20 20 20 2d 30
505
506 Below are the uplink payloads:
507
508 [[image:1653270130359-810.png]]
509
510
511 (% style="color:red" %)**Notice: the Max bytes is according to the max support bytes in different Frequency Bands for lowest SF. As below:**
512
513 ~* For AU915/AS923 bands, if UplinkDwell time=0, max 51 bytes for each uplink ( so 51 -5 = 46 max valid date)
514
515 * For AU915/AS923 bands, if UplinkDwell time=1, max 11 bytes for each uplink ( so 11 -5 = 6 max valid date).
516
517 * For US915 band, max 11 bytes for each uplink ( so 11 -5 = 6 max valid date).
518
519 ~* For all other bands: max 51 bytes for each uplink  ( so 51 -5 = 46 max valid date).
520
521 === 3.3.5 Uplink on demand ===
522
523 Except uplink periodically, RS485-BL is able to uplink on demand. The server sends downlink command to RS485-BL and RS485 will uplink data base on the command.
524
525 Downlink control command:
526
527 [[0x08 command>>path:#downlink_08]]: Poll an uplink with current command set in RS485-BL.
528
529 [[0xA8 command>>path:#downlink_A8]]: Send a command to RS485-BL and uplink the output from sensors.
530
531
532
533 1.
534 11.
535 111. Uplink on Interrupt
536
537 Put the interrupt sensor between 3.3v_out and GPIO ext.[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image022.png]]
538
539 AT+INTMOD=0  Disable Interrupt
540
541 AT+INTMOD=1  Interrupt trigger by rising or falling edge.
542
543 AT+INTMOD=2  Interrupt trigger by falling edge. ( Default Value)
544
545 AT+INTMOD=3  Interrupt trigger by rising edge.
546
547
548 1.
549 11. Uplink Payload
550
551 |**Size(bytes)**|**2**|**1**|**Length depends on the return from the commands**
552 |Value|(((
553 Battery(mV)
554
555 &
556
557 Interrupt _Flag
558 )))|(((
559 PAYLOAD_VER
560
561
562 )))|If the valid payload is too long and exceed the maximum support payload length in server, server will show payload not provided in the LoRaWAN server.
563
564 Below is the decoder for the first 3 bytes. The rest bytes are dynamic depends on different RS485 sensors.
565
566
567 function Decoder(bytes, port) {
568
569 ~/~/Payload Formats of RS485-BL Deceive
570
571 return {
572
573 ~/~/Battery,units:V
574
575 BatV:((bytes[0]<<8 | bytes[1])&0x7fff)/1000,
576
577 ~/~/GPIO_EXTI 
578
579 EXTI_Trigger:(bytes[0] & 0x80)? "TRUE":"FALSE",
580
581 ~/~/payload of version
582
583 Pay_ver:bytes[2],
584
585 };
586
587 }
588
589
590
591
592
593
594
595 TTN V3 uplink screen shot.
596
597 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image023.png]]
598
599 1.
600 11. Configure RS485-BL via AT or Downlink
601
602 User can configure RS485-BL via [[AT Commands >>path:#_​Using_the_AT]]or LoRaWAN Downlink Commands
603
604 There are two kinds of Commands:
605
606 * **Common Commands**: They should be available for each sensor, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: http:~/~/wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands
607
608 * **Sensor Related Commands**: These commands are special designed for RS485-BL.  User can see these commands below:
609
610 1.
611 11.
612 111. Common Commands:
613
614 They should be available for each of Dragino Sensors, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: [[http:~~/~~/wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands>>url:http://wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands]]
615
616
617 1.
618 11.
619 111. Sensor related commands:
620
621 ==== Choose Device Type (RS485 or TTL) ====
622
623 RS485-BL can connect to either RS485 sensors or TTL sensor. User need to specify what type of sensor need to connect.
624
625 * AT Command
626
627 **AT+MOD=1** ~/~/ Set to support RS485-MODBUS type sensors. User can connect multiply RS485 , Modbus sensors to the A / B pins.
628
629 **AT+MOD=2** ~/~/ Set to support TTL Level sensors, User can connect one TTL Sensor to the TXD/RXD/GND pins.
630
631
632 * Downlink Payload
633
634 **0A aa**     à same as AT+MOD=aa
635
636
637
638 ==== [[RS485 Debug Command>>path:#downlink_A8]] (AT+CFGDEV) ====
639
640 This command is used to configure the RS485 or TTL sensors; they won’t be used during sampling.
641
642 * AT Command
643
644 AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m
645
646 m: 0: no CRC; 1: add CRC-16/MODBUS in the end of this command.
647
648
649
650 * Downlink Payload
651
652 Format: A8 MM NN XX XX XX XX YY
653
654 Where:
655
656 * MM: 1: add CRC-16/MODBUS ; 0: no CRC
657 * NN: The length of RS485 command
658 * XX XX XX XX: RS485 command total NN bytes
659 * YY: How many bytes will be uplink from the return of this RS485 command, if YY=0, RS485-BL will execute the downlink command without uplink; if YY>0, RS485-BL will uplink total YY bytes from the output of this RS485 command
660
661 **Example 1:**
662
663 To connect a Modbus Alarm with below commands.
664
665 * The command to active alarm is: 0A 05 00 04 00 01 4C B0. Where 0A 05 00 04 00 01 is the Modbus command to read the register 00 40 where stored the DI status. The 4C B0 is the CRC-16/MODBUS which calculate manually.
666
667 * The command to deactivate alarm is: 0A 05 00 04 00 00 8D 70. Where 0A 05 00 04 00 00 is the Modbus command to read the register 00 40 where stored the DI status. The 8D 70 is the CRC-16/MODBUS which calculate manually.
668
669 So if user want to use downlink command to control to RS485 Alarm, he can use:
670
671 **A8 01 06 0A 05 00 04 00 01 00**: to activate the RS485 Alarm
672
673 **A8 01 06 0A 05 00 04 00 00 00**: to deactivate the RS485 Alarm
674
675 A8 is type code and 01 means add CRC-16/MODBUS at the end, the 3^^rd^^ byte is 06, means the next 6 bytes are the command to be sent to the RS485 network, the final byte 00 means this command don’t need to acquire output.
676
677
678 **Example 2:**
679
680 Check TTL Sensor return:
681
682 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image024.png]]
683
684
685
686
687 ==== Set Payload version ====
688
689 This is the first byte of the uplink payload. RS485-BL can connect to different sensors. User can set the PAYVER field to tell server how to decode the current payload.
690
691 * AT Command:
692
693 AT+PAYVER: Set PAYVER field = 1
694
695
696 * Downlink Payload:
697
698 0xAE 01   à Set PAYVER field =  0x01
699
700 0xAE 0F   à Set PAYVER field =  0x0F
701
702
703 ==== Set RS485 Sampling Commands ====
704
705 AT+COMMANDx, AT+DATACUTx and AT+SEARCHx
706
707 These three commands are used to configure how the RS485-BL polling data from Modbus device. Detail of usage please see : [[polling RS485 device>>path:#polling_485]].
708
709
710 * AT Command:
711
712 AT+COMMANDx: Configure RS485 read command to sensor.
713
714 AT+DATACUTx: Configure how to handle return from RS485 devices.
715
716 AT+SEARCHx: Configure search command
717
718
719 * Downlink Payload:
720
721 0xAF downlink command can be used to set AT+COMMANDx or AT+DATACUTx.
722
723 Note: if user use AT+COMMANDx to add a new command, he also need to send AT+DATACUTx downlink.
724
725 Format: AF MM NN LL XX XX XX XX YY
726
727 Where:
728
729 * MM: the ATCOMMAND or AT+DATACUT to be set. Value from 01 ~~ 0F,
730 * NN: 0: no CRC; 1: add CRC-16/MODBUS ; 2: set the AT+DATACUT value.
731 * LL: The length of AT+COMMAND or AT+DATACUT command
732 * XX XX XX XX: AT+COMMAND or AT+DATACUT command
733 * YY: If YY=0, RS485-BL will execute the downlink command without uplink; if YY=1, RS485-BL will execute an uplink after got this command.
734
735 Example:
736
737 **AF 03 01 06 0A 05 00 04 00 01 00**: Same as AT+COMMAND3=0A 05 00 04 00 01,1
738
739 **AF 03 02 06 10 01 05 06 09 0A 00**: Same as AT+DATACUT3=**16**,**1**,**5+6+9+10**
740
741 **AF 03 02 06 0B 02 05 07 08 0A 00**: Same as AT+DATACUT3=**11**,**2**,**5~~7+8~~10**
742
743
744 0xAB downlink command can be used for set AT+SEARCHx
745
746 Example: **AB aa 01 03 xx xx xx** (03 here means there are total 3 bytes after 03) So
747
748 * AB aa 01 03 xx xx xx  same as AT+SEARCHaa=1,xx xx xx
749 * AB aa 02 03 xx xx xx 02 yy yy(03 means there are 3 bytes after 03, they are xx xx xx;02 means there are 2 bytes after 02, they are yy yy) so the commands
750
751 **AB aa 02 03 xx xx xx 02 yy yy**  same as **AT+SEARCHaa=2,xx xx xx+yy yy**
752
753
754 ==== Fast command to handle MODBUS device ====
755
756 AT+MBFUN is valid since v1.3 firmware version. The command is for fast configure to read Modbus devices. It is only valid for the devices which follow the [[MODBUS-RTU protocol>>url:https://www.modbustools.com/modbus.html]].
757
758 This command is valid since v1.3 firmware version
759
760
761 AT+MBFUN has only two value:
762
763 * AT+MBFUN=1: Enable Modbus reading. And get response base on the MODBUS return
764
765 AT+MBFUN=1, device can auto read the Modbus function code: 01, 02, 03 or 04. AT+MBFUN has lower priority vs AT+DATACUT command. If AT+DATACUT command is configured, AT+MBFUN will be ignore.
766
767 * AT+MBFUN=0: Disable Modbus fast reading.
768
769 Example:
770
771 * AT+MBFUN=1 and AT+DATACUT1/AT+DATACUT2 are not configure (0,0,0).
772 * AT+COMMAND1= 01 03 00 10 00 08,1 ~-~-> read slave address 01 , function code 03, start address 00 01, quantity of registers 00 08.
773 * AT+COMMAND2= 01 02 00 40 00 10,1 ~-~-> read slave address 01 , function code 02, start address 00 40, quantity of inputs 00 10.
774
775 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image025.png]]
776
777
778 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image026.png]]
779
780
781 * Downlink Commands:
782
783 A9 aa -à Same as AT+MBFUN=aa
784
785
786 ==== RS485 command timeout ====
787
788 Some Modbus device has slow action to send replies. This command is used to configure the RS485-BL to use longer time to wait for their action.
789
790 Default value: 0, range:  0 ~~ 5 seconds
791
792
793 * AT Command:
794
795 AT+CMDDLaa=hex(bb cc)
796
797 Example:
798
799 **AT+CMDDL1=1000** to send the open time to 1000ms
800
801
802 * Downlink Payload:
803
804 0x AA aa bb cc
805
806 Same as: AT+CMDDLaa=hex(bb cc)
807
808 Example:
809
810 0xAA 01 03 E8  à Same as **AT+CMDDL1=1000 ms**
811
812
813 ==== [[Uplink>>path:#downlink_A8]] payload mode ====
814
815 Define to use one uplink or multiple uplinks for the sampling.
816
817 The use of this command please see: [[Compose Uplink payload>>path:#DataUP]]
818
819 * AT Command:
820
821 AT+DATAUP=0
822
823 AT+DATAUP=1
824
825
826 * Downlink Payload:
827
828 0xAD 00   à Same as AT+DATAUP=0
829
830 0xAD 01   à Same as AT+DATAUP=1
831
832
833 ==== Manually trigger an Uplink ====
834
835 Ask device to send an uplink immediately.
836
837 * Downlink Payload:
838
839 0x08 FF, RS485-BL will immediately send an uplink.
840
841
842 ==== Clear RS485 Command ====
843
844 The AT+COMMANDx and AT+DATACUTx settings are stored in special location, user can use below command to clear them.
845
846
847 * AT Command:
848
849 **AT+CMDEAR=mm,nn**   mm: start position of erase ,nn: stop position of erase
850
851 Etc. AT+CMDEAR=1,10 means erase AT+COMMAND1/AT+DATACUT1 to AT+COMMAND10/AT+DATACUT10
852
853 Example screen shot after clear all RS485 commands. 
854
855
856
857 The uplink screen shot is:
858
859 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image023.png]]
860
861
862 * Downlink Payload:
863
864 0x09 aa bb same as AT+CMDEAR=aa,bb
865
866
867 ==== Set Serial Communication Parameters ====
868
869 Set the Rs485 serial communication parameters:
870
871 * AT Command:
872
873 Set Baud Rate:
874
875 AT+BAUDR=9600    ~/~/ Options: (1200,2400,4800,14400,19200,115200)
876
877
878 Set UART parity
879
880 AT+PARITY=0    ~/~/ Option: 0: no parity, 1: odd parity, 2: even parity
881
882
883 Set STOPBIT
884
885 AT+STOPBIT=0    ~/~/ Option: 0 for 1bit; 1 for 1.5 bit ; 2 for 2 bits
886
887
888 * Downlink Payload:
889
890 A7 01 aa bb: Same  AT+BAUDR=hex(aa bb)*100
891
892 Example:
893
894 * A7 01 00 60   same as AT+BAUDR=9600
895 * A7 01 04 80  same as AT+BAUDR=115200
896
897 A7 02 aa: Same as  AT+PARITY=aa  (aa value: 00 , 01 or 02)
898
899 A7 03 aa: Same as  AT+STOPBIT=aa  (aa value: 00 , 01 or 02)
900
901
902 ==== Control output power duration ====
903
904 User can set the output power duration before each sampling.
905
906 * AT Command:
907
908 Example:
909
910 AT+3V3T=1000 ~/~/ 3V3 output power will open 1s before each sampling.
911
912 AT+5VT=1000 ~/~/ +5V output power will open 1s before each sampling.
913
914
915 * LoRaWAN Downlink Command:
916
917 07 01 aa bb  Same as AT+5VT=(aa bb)
918
919 07 02 aa bb  Same as AT+3V3T=(aa bb)
920
921
922
923
924 1.
925 11. Buttons
926
927 |**Button**|**Feature**
928 |**RST**|Reboot RS485-BL
929
930 1.
931 11. +3V3 Output
932
933 RS485-BL has a Controllable +3V3 output, user can use this output to power external sensor.
934
935 The +3V3 output will be valid for every sampling. RS485-BL will enable +3V3 output before all sampling and disable the +3V3 after all sampling. 
936
937
938 The +3V3 output time can be controlled by AT Command.
939
940 **AT+3V3T=1000**
941
942 Means set +3v3 valid time to have 1000ms. So, the real +3v3 output will actually have 1000ms + sampling time for other sensors.
943
944
945 By default, the AT+3V3T=0. This is a special case, means the +3V3 output is always on at any time
946
947
948 1.
949 11. +5V Output
950
951 RS485-BL has a Controllable +5V output, user can use this output to power external sensor.
952
953 The +5V output will be valid for every sampling. RS485-BL will enable +5V output before all sampling and disable the +5v after all sampling. 
954
955
956 The 5V output time can be controlled by AT Command.
957
958 **AT+5VT=1000**
959
960 Means set 5V valid time to have 1000ms. So, the real 5V output will actually have 1000ms + sampling time for other sensors.
961
962
963 By default, the AT+5VT=0. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
964
965
966
967
968 1.
969 11. LEDs
970
971 |**LEDs**|**Feature**
972 |**LED1**|Blink when device transmit a packet.
973
974 1.
975 11. Switch Jumper
976
977 |**Switch Jumper**|**Feature**
978 |**SW1**|(((
979 ISP position: Upgrade firmware via UART
980
981 Flash position: Configure device, check running status.
982 )))
983 |**SW2**|(((
984 5V position: set to compatible with 5v I/O.
985
986 3.3v position: set to compatible with 3.3v I/O.,
987 )))
988
989 +3.3V: is always ON
990
991 +5V: Only open before every sampling. The time is by default, it is AT+5VT=0.  Max open time. 5000 ms.
992
993 1. Case Study
994
995 User can check this URL for some case studies.
996
997 [[http:~~/~~/wiki.dragino.com/index.php?title=APP_RS485_COMMUNICATE_WITH_SENSORS>>url:http://wiki.dragino.com/index.php?title=APP_RS485_COMMUNICATE_WITH_SENSORS]]
998
999
1000
1001
1002 1. Use AT Command
1003 11. Access AT Command
1004
1005 RS485-BL supports AT Command set. User can use a USB to TTL adapter plus the 3.5mm Program Cable to connect to RS485-BL to use AT command, as below.
1006
1007 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image027.png]]
1008
1009
1010 In PC, User needs to set **serial tool**(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to **9600** to access to access serial console of RS485-BL. The default password is 123456. Below is the output for reference:
1011
1012 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image028.png]]
1013
1014
1015
1016 More detail AT Command manual can be found at [[AT Command Manual>>path:#AT_COMMAND]]
1017
1018
1019
1020 1.
1021 11. Common AT Command Sequence
1022 111. Multi-channel ABP mode (Use with SX1301/LG308)
1023
1024 If device has not joined network yet:
1025
1026 AT+FDR
1027
1028 AT+NJM=0
1029
1030 ATZ
1031
1032
1033 If device already joined network:
1034
1035 AT+NJM=0
1036
1037 ATZ
1038
1039 1.
1040 11.
1041 111. Single-channel ABP mode (Use with LG01/LG02)
1042
1043 AT+FDR   Reset Parameters to Factory Default, Keys Reserve
1044
1045 AT+NJM=0 Set to ABP mode
1046
1047 AT+ADR=0 Set the Adaptive Data Rate Off
1048
1049 AT+DR=5  Set Data Rate
1050
1051 AT+TDC=60000  Set transmit interval to 60 seconds
1052
1053 AT+CHS=868400000 Set transmit frequency to 868.4Mhz
1054
1055 AT+RX2FQ=868400000 Set RX2Frequency to 868.4Mhz (according to the result from server)
1056
1057 AT+RX2DR=5  Set RX2DR to match the downlink DR from server. see below
1058
1059 AT+DADDR=26 01 1A F1 Set Device Address to 26 01 1A F1, this ID can be found in the LoRa Server portal.
1060
1061 ATZ          Reset MCU
1062
1063 **Note:**
1064
1065 1. Make sure the device is set to ABP mode in the IoT Server.
1066 1. Make sure the LG01/02 gateway RX frequency is exactly the same as AT+CHS setting.
1067 1. Make sure SF / bandwidth setting in LG01/LG02 match the settings of AT+DR. refer [[this link>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_Gateway/&file=LoRaWAN%201.0.3%20Regional%20Parameters.xlsx]] to see what DR means.
1068 1. The command AT+RX2FQ and AT+RX2DR is to let downlink work. to set the correct parameters, user can check the actually downlink parameters to be used. As below. Which shows the RX2FQ should use 868400000 and RX2DR should be 5
1069
1070 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image029.png]]
1071
1072
1073 1. FAQ
1074 11. How to upgrade the image?
1075
1076 The RS485-BL LoRaWAN Controller is shipped with a 3.5mm cable, the cable is used to upload image to RS485-BL to:
1077
1078 * Support new features
1079 * For bug fix
1080 * Change LoRaWAN bands.
1081
1082 Below shows the hardware connection for how to upload an image to RS485-BL:
1083
1084 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image030.png]]
1085
1086 **Step1:** Download [[flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]].
1087
1088 **Step2**: Download the [[LT Image files>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/image/]].
1089
1090 **Step3: **Open flashloader; choose the correct COM port to update.
1091
1092
1093 |(((
1094 HOLD PRO then press the RST button, SYS will be ON, then click next
1095 )))
1096
1097 |(((
1098 Board detected
1099 )))
1100
1101 |(((
1102
1103 )))
1104
1105 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image031.png]] [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image032.png]]
1106
1107
1108
1109 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image033.png]] [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image034.png]]
1110
1111
1112 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image035.png]] [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image036.png]]
1113
1114
1115 1.
1116 11. How to change the LoRa Frequency Bands/Region?
1117
1118 User can follow the introduction for [[how to upgrade image>>path:#upgrade_image]]. When download the images, choose the required image file for download.
1119
1120
1121
1122 1.
1123 11. How many RS485-Slave can RS485-BL connects?
1124
1125 The RS485-BL can support max 32 RS485 devices. Each uplink command of RS485-BL can support max 16 different RS485 command. So RS485-BL can support max 16 RS485 devices pre-program in the device for uplink. For other devices no pre-program, user can use the [[downlink message (type code 0xA8) to poll their info>>path:#downlink_A8]].
1126
1127
1128
1129
1130 1. Trouble Shooting     
1131 11. Downlink doesn’t work, how to solve it?
1132
1133 Please see this link for debug:
1134
1135 [[http:~~/~~/wiki.dragino.com/index.php?title=Main_Page#LoRaWAN_Communication_Debug>>url:http://wiki.dragino.com/index.php?title=Main_Page#LoRaWAN_Communication_Debug]] 
1136
1137
1138
1139 1.
1140 11. Why I can’t join TTN V3 in US915 /AU915 bands?
1141
1142 It might about the channels mapping. Please see for detail.
1143
1144 [[http:~~/~~/wiki.dragino.com/index.php?title=LoRaWAN_Communication_Debug#Notice_of_US915.2FCN470.2FAU915_Frequency_band>>url:http://wiki.dragino.com/index.php?title=LoRaWAN_Communication_Debug#Notice_of_US915.2FCN470.2FAU915_Frequency_band]]
1145
1146
1147
1148 1. Order Info
1149
1150 **Part Number: RS485-BL-XXX**
1151
1152 **XXX:**
1153
1154 * **EU433**: frequency bands EU433
1155 * **EU868**: frequency bands EU868
1156 * **KR920**: frequency bands KR920
1157 * **CN470**: frequency bands CN470
1158 * **AS923**: frequency bands AS923
1159 * **AU915**: frequency bands AU915
1160 * **US915**: frequency bands US915
1161 * **IN865**: frequency bands IN865
1162 * **RU864**: frequency bands RU864
1163 * **KZ865: **frequency bands KZ865
1164
1165 1. Packing Info
1166
1167 **Package Includes**:
1168
1169 * RS485-BL x 1
1170 * Stick Antenna for LoRa RF part x 1
1171 * Program cable x 1
1172
1173 **Dimension and weight**:
1174
1175 * Device Size: 13.5 x 7 x 3 cm
1176 * Device Weight: 105g
1177 * Package Size / pcs : 14.5 x 8 x 5 cm
1178 * Weight / pcs : 170g
1179
1180 1. Support
1181
1182 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1183 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to
1184
1185 [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]]
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0