Version 32.18 by Xiaoling on 2022/06/02 15:31

Show last authors
1 (% style="text-align:center" %)
2 [[image:1653266934636-343.png||height="385" width="385"]]
3
4
5
6 **RS485-LN – RS485 to LoRaWAN Converter User Manual**
7
8
9 **Table of Contents:**
10
11
12
13
14
15 = 1.Introduction =
16
17 == 1.1 What is RS485-LN RS485 to LoRaWAN Converter ==
18
19 (((
20 (((
21 The Dragino RS485-LN is a (% style="color:blue" %)**RS485 to LoRaWAN Converter**(%%). It converts the RS485 signal into LoRaWAN wireless signal which simplify the IoT installation and reduce the installation/maintaining cost.
22 )))
23
24 (((
25 RS485-LN allows user to (% style="color:blue" %)**monitor / control RS485 devices**(%%) and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
26 )))
27
28 (((
29 (% style="color:blue" %)**For data uplink**(%%), RS485-LN sends user-defined commands to RS485 devices and gets the return from the RS485 devices. RS485-LN will process these returns according to user-define rules to get the final payload and upload to LoRaWAN server.
30 )))
31
32 (((
33 (% style="color:blue" %)**For data downlink**(%%), RS485-LN runs in LoRaWAN Class C. When there downlink commands from LoRaWAN server, RS485-LN will forward the commands from LoRaWAN server to RS485 devices.
34
35 (% style="color:blue" %)**Demo Dashboard for RS485-LN**(%%) connect to two energy meters: [[https:~~/~~/app.datacake.de/dashboard/d/58844a26-378d-4c5a-aaf5-b5b5b153447a>>url:https://app.datacake.de/dashboard/d/58844a26-378d-4c5a-aaf5-b5b5b153447a]]
36 )))
37 )))
38
39 [[image:1653267211009-519.png||height="419" width="724"]]
40
41
42 == 1.2 Specifications ==
43
44
45 **Hardware System:**
46
47 * STM32L072CZT6 MCU
48 * SX1276/78 Wireless Chip 
49 * Power Consumption (exclude RS485 device):
50 ** Idle: 32mA@12v
51 ** 20dB Transmit: 65mA@12v
52
53 **Interface for Model:**
54
55 * RS485
56 * Power Input 7~~ 24V DC. 
57
58 **LoRa Spec:**
59
60 * Frequency Range:
61 ** Band 1 (HF): 862 ~~ 1020 Mhz
62 ** Band 2 (LF): 410 ~~ 528 Mhz
63 * 168 dB maximum link budget.
64 * +20 dBm - 100 mW constant RF output vs.
65 * +14 dBm high efficiency PA.
66 * Programmable bit rate up to 300 kbps.
67 * High sensitivity: down to -148 dBm.
68 * Bullet-proof front end: IIP3 = -12.5 dBm.
69 * Excellent blocking immunity.
70 * Low RX current of 10.3 mA, 200 nA register retention.
71 * Fully integrated synthesizer with a resolution of 61 Hz.
72 * FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation.
73 * Built-in bit synchronizer for clock recovery.
74 * Preamble detection.
75 * 127 dB Dynamic Range RSSI.
76 * Automatic RF Sense and CAD with ultra-fast AFC.
77 * Packet engine up to 256 bytes with CRC.
78
79
80
81 == 1.3 Features ==
82
83 * LoRaWAN Class A & Class C protocol (default Class C)
84 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865/RU864
85 * AT Commands to change parameters
86 * Remote configure parameters via LoRa Downlink
87 * Firmware upgradable via program port
88 * Support multiply RS485 devices by flexible rules
89 * Support Modbus protocol
90 * Support Interrupt uplink (Since hardware version v1.2)
91
92
93
94 == 1.4 Applications ==
95
96 * Smart Buildings & Home Automation
97 * Logistics and Supply Chain Management
98 * Smart Metering
99 * Smart Agriculture
100 * Smart Cities
101 * Smart Factory
102
103
104
105 == 1.5 Firmware Change log ==
106
107 [[RS485-LN Image files – Download link and Change log>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/]]
108
109
110 == 1.6 Hardware Change log ==
111
112 (((
113 (((
114 v1.2: Add External Interrupt Pin.
115
116 v1.0: Release
117
118
119 )))
120 )))
121
122 = 2. Power ON Device =
123
124 (((
125 The RS485-LN can be powered by 7 ~~ 24V DC power source. Connection as below
126
127 * Power Source VIN to RS485-LN VIN+
128 * Power Source GND to RS485-LN VIN-
129
130 (((
131 Once there is power, the RS485-LN will be on.
132 )))
133
134 [[image:1653268091319-405.png]]
135
136
137 )))
138
139 = 3. Operation Mode =
140
141 == 3.1 How it works? ==
142
143 (((
144 The RS485-LN is configured as LoRaWAN OTAA Class C mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the RS485-LN. It will auto join the network via OTAA.
145
146
147 )))
148
149 == 3.2 Example to join LoRaWAN network ==
150
151 Here shows an example for how to join the TTN V3 Network. Below is the network structure, we use [[LG308>>url:http://www.dragino.com/products/lora-lorawan-gateway/item/140-lg308.html]] as LoRaWAN gateway here. 
152
153 [[image:1653268155545-638.png||height="334" width="724"]]
154
155
156 (((
157 (((
158 The RS485-LN in this example connected to two RS485 devices for demonstration, user can connect to other RS485 devices via the same method. The connection is as below:
159 )))
160
161 (((
162 485A+ and 485B- of the sensor are connected to RS485A and RA485B of RS485-LN respectively.
163 )))
164
165 [[image:1653268227651-549.png||height="592" width="720"]]
166
167 (((
168 The LG308 is already set to connect to [[TTN V3 network >>path:eu1.cloud.thethings.network/]]. So what we need to now is only configure the TTN V3:
169 )))
170
171 (((
172 **Step 1**: Create a device in TTN V3 with the OTAA keys from RS485-LN.
173 )))
174
175 (((
176 Each RS485-LN is shipped with a sticker with unique device EUI:
177 )))
178 )))
179
180 [[image:1652953462722-299.png]]
181
182 (((
183 (((
184 User can enter this key in their LoRaWAN Server portal. Below is TTN V3 screen shot:
185 )))
186
187 (((
188 Add APP EUI in the application.
189 )))
190 )))
191
192 [[image:image-20220519174512-1.png]]
193
194 [[image:image-20220519174512-2.png||height="323" width="720"]]
195
196 [[image:image-20220519174512-3.png||height="556" width="724"]]
197
198 [[image:image-20220519174512-4.png]]
199
200 You can also choose to create the device manually.
201
202 [[image:1652953542269-423.png||height="710" width="723"]]
203
204 Add APP KEY and DEV EUI
205
206 [[image:1652953553383-907.png||height="514" width="724"]]
207
208
209 (((
210 **Step 2**: Power on RS485-LN and it will auto join to the TTN V3 network. After join success, it will start to upload message to TTN V3 and user can see in the panel.
211 )))
212
213 [[image:1652953568895-172.png||height="232" width="724"]]
214
215
216 == 3.3 Configure Commands to read data ==
217
218 (((
219 (((
220 There are plenty of RS485 devices in the market and each device has different command to read the valid data. To support these devices in flexible, RS485-LN supports flexible command set. User can use [[AT Commands>>path:#AT_COMMAND]] or LoRaWAN Downlink Command to configure what commands RS485-LN should send for each sampling and how to handle the return from RS485 devices.
221 )))
222
223 (((
224 (% style="color:red" %)Note: below description and commands are for firmware version >v1.1, if you have firmware version v1.0. Please check the [[user manual v1.0>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/&file=RS485-LN_UserManual_v1.0.1.pdf]] or upgrade the firmware to v1.1
225
226
227 )))
228 )))
229
230 === 3.3.1 onfigure UART settings for RS485 or TTL communication ===
231
232 To use RS485-LN to read data from RS485 sensors, connect the RS485-LN A/B traces to the sensors. And user need to make sure RS485-LN use the match UART setting to access the sensors. The related commands for UART settings are:
233
234 (% border="1" style="background-color:#ffffcc; color:green; width:782px" %)
235 |(% style="width:128px" %)(((
236 **AT Commands**
237 )))|(% style="width:305px" %)(((
238 **Description**
239 )))|(% style="width:346px" %)(((
240 **Example**
241 )))
242 |(% style="width:128px" %)(((
243 AT+BAUDR
244 )))|(% style="width:305px" %)(((
245 Set the baud rate (for RS485 connection). Default Value is: 9600.
246 )))|(% style="width:346px" %)(((
247 (((
248 AT+BAUDR=9600
249 )))
250
251 (((
252 Options: (1200,2400,4800,14400,19200,115200)
253 )))
254 )))
255 |(% style="width:128px" %)(((
256 AT+PARITY
257 )))|(% style="width:305px" %)(((
258 Set UART parity (for RS485 connection)
259 )))|(% style="width:346px" %)(((
260 (((
261 AT+PARITY=0
262 )))
263
264 (((
265 Option: 0: no parity, 1: odd parity, 2: even parity
266 )))
267 )))
268 |(% style="width:128px" %)(((
269 AT+STOPBIT
270 )))|(% style="width:305px" %)(((
271 (((
272 Set serial stopbit (for RS485 connection)
273 )))
274
275 (((
276
277 )))
278 )))|(% style="width:346px" %)(((
279 (((
280 AT+STOPBIT=0 for 1bit
281 )))
282
283 (((
284 AT+STOPBIT=1 for 1.5 bit
285 )))
286
287 (((
288 AT+STOPBIT=2 for 2 bits
289 )))
290 )))
291
292
293
294 === 3.3.2 Configure sensors ===
295
296 (((
297 (((
298 Some sensors might need to configure before normal operation. User can configure such sensor via PC and RS485 adapter or through RS485-LN AT Commands (% style="color:#4f81bd" %)**AT+CFGDEV**(%%). Each (% style="color:#4f81bd" %)**AT+CFGDEV **(%%)equals to send a RS485 command to sensors. This command will only run when user input it and won’t run during each sampling.
299 )))
300 )))
301
302 (% border="1" style="background-color:#ffffcc; color:green; width:806px" %)
303 |**AT Commands**|(% style="width:418px" %)**Description**|(% style="width:256px" %)**Example**
304 |AT+CFGDEV|(% style="width:418px" %)(((
305 This command is used to configure the RS485/TTL devices; they won’t be used during sampling.
306
307 AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,
308
309 mm: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command
310 )))|(% style="width:256px" %)AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m
311
312
313
314 === 3.3.3 Configure read commands for each sampling ===
315
316 (((
317 RS485-BL is a battery powered device; it will sleep most of time. And wake up on each period and read RS485 / TTL sensor data and uplink.
318 )))
319
320 (((
321 During each sampling, we need to confirm what commands we need to send to the sensors to read data. After the RS485/TTL sensors send back the value, it normally includes some bytes and we only need a few from them for a shorten payload.
322 )))
323
324 (((
325 To save the LoRaWAN network bandwidth, we might need to read data from different sensors and combine their valid value into a short payload.
326 )))
327
328 (((
329 This section describes how to achieve above goals.
330 )))
331
332 (((
333 During each sampling, the RS485-BL can support 15 commands to read sensors. And combine the return to one or several uplink payloads.
334 )))
335
336 (((
337 **Command from RS485-BL to Sensor:**
338 )))
339
340 (((
341 RS485-BL can send out pre-set max 15 strings via **AT+COMMAD1**, **ATCOMMAND2**,…, to **AT+COMMANDF** . All commands are of same grammar.
342 )))
343
344 (((
345 **Handle return from sensors to RS485-BL**:
346 )))
347
348 (((
349 After RS485-BL send out a string to sensor, RS485-BL will wait for the return from RS485 or TTL sensor. And user can specify how to handle the return, by **AT+DATACUT or AT+SEARCH commands**
350 )))
351
352 * (((
353 **AT+DATACUT**
354 )))
355
356 (((
357 When the return value from sensor have fix length and we know which position the valid value we should get, we can use AT+DATACUT command.
358 )))
359
360 * (((
361 **AT+SEARCH**
362 )))
363
364 (((
365 When the return value from sensor is dynamic length and we are not sure which bytes the valid data is, instead, we know what value the valid value following. We can use AT+SEARCH to search the valid value in the return string.
366 )))
367
368 (((
369 **Define wait timeout:**
370 )))
371
372 (((
373 Some RS485 device might has longer delay on reply, so user can use AT+CMDDL to set the timeout for getting reply after the RS485 command is sent. For example, AT+CMDDL1=1000 to send the open time to 1000ms
374 )))
375
376 (((
377 After we got the valid value from each RS485 commands, we need to combine them together with the command **AT+DATAUP**.
378 )))
379
380 **Examples:**
381
382 Below are examples for the how above AT Commands works.
383
384 **AT+COMMANDx : **This command will be sent to RS485/TTL devices during each sampling, Max command length is 14 bytes. The grammar is:
385
386 (% border="1" class="table-bordered" %)
387 |(((
388 **AT+COMMANDx=xx xx xx xx xx xx xx xx xx xx xx xx,m**
389
390 **xx xx xx xx xx xx xx xx xx xx xx xx: The RS485 command to be sent**
391
392 **m: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command**
393 )))
394
395 (((
396 For example, if we have a RS485 sensor. The command to get sensor value is: 01 03 0B B8 00 02 46 0A. Where 01 03 0B B8 00 02 is the Modbus command to read the register 0B B8 where stored the sensor value. The 46 0A is the CRC-16/MODBUS which calculate manually.
397 )))
398
399 (((
400 In the RS485-BL, we should use this command AT+COMMAND1=01 03 0B B8 00 02,1 for the same.
401 )))
402
403 (((
404 **AT+SEARCHx**: This command defines how to handle the return from AT+COMMANDx.
405 )))
406
407 (% border="1" class="table-bordered" %)
408 |(((
409 **AT+SEARCHx=aa,xx xx xx xx xx**
410
411 * **aa: 1: prefix match mode; 2: prefix and suffix match mode**
412 * **xx xx xx xx xx: match string. Max 5 bytes for prefix and 5 bytes for suffix**
413
414
415 )))
416
417 **Examples:**
418
419 ~1. For a return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
420
421 If we set AT+SEARCH1=1,1E 56 34.      (max 5 bytes for prefix)
422
423 The valid data will be all bytes after 1E 56 34 , so it is (% style="background-color:yellow" %)** 2e 30 58 5f 36 41 30 31 00 49**
424
425 [[image:1653269403619-508.png]]
426
427 2. For a return string from AT+COMMAND1:  16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
428
429 If we set AT+SEARCH1=2, 1E 56 34+31 00 49
430
431 Device will search the bytes between 1E 56 34 and 31 00 49. So it is (% style="background-color:yellow" %)** 2e 30 58 5f 36 41 30**
432
433 [[image:1653269438444-278.png]]
434
435 **AT+DATACUTx : **This command defines how to handle the return from AT+COMMANDx, max return length is 45 bytes.
436
437 |(((
438 **AT+DATACUTx=a,b,c**
439
440 * **a: length for the return of AT+COMMAND**
441 * **b:1: grab valid value by byte, max 6 bytes. 2: grab valid value by bytes section, max 3 sections.**
442 * **c: define the position for valid value.  **
443 )))
444
445 Examples:
446
447 * Grab bytes:
448
449 [[image:1653269551753-223.png||height="311" width="717"]]
450
451 * Grab a section.
452
453 [[image:1653269568276-930.png||height="325" width="718"]]
454
455 * Grab different sections.
456
457 [[image:1653269593172-426.png||height="303" width="725"]]
458
459 (% style="color:red" %)**Note:**
460
461 AT+SEARCHx and AT+DATACUTx can be used together, if both commands are set, RS485-BL will first process AT+SEARCHx on the return string and get a temporary string, and then process AT+DATACUTx on this temporary string to get the final payload. In this case, AT+DATACUTx need to set to format AT+DATACUTx=0,xx,xx where the return bytes set to 0.
462
463 Example:
464
465 (% style="color:red" %)AT+COMMAND1=11 01 1E D0,0
466
467 (% style="color:red" %)AT+SEARCH1=1,1E 56 34
468
469 (% style="color:red" %)AT+DATACUT1=0,2,1~~5
470
471 (% style="color:red" %)Return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
472
473 (% style="color:red" %)String after SEARCH command: 2e 30 58 5f 36 41 30 31 00 49
474
475 (% style="color:red" %)Valid payload after DataCUT command: 2e 30 58 5f 36
476
477 [[image:1653269618463-608.png]]
478
479 === 3.3.4 Compose the uplink payload ===
480
481 (((
482 Through AT+COMMANDx and AT+DATACUTx we got valid value from each RS485 commands, Assume these valid value are RETURN1, RETURN2, .., to RETURNx. The next step is how to compose the LoRa Uplink Payload by these RETURNs. The command is **AT+DATAUP.**
483 )))
484
485 (((
486 (% style="color:#4f81bd" %)**Examples: AT+DATAUP=0**
487 )))
488
489 (((
490 Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**A SIGNLE UPLINK**.
491 )))
492
493 (((
494 Final Payload is
495 )))
496
497 (((
498 (% style="color:#4f81bd" %)**Battery Info+PAYVER + VALID Value from RETURN1 + Valid Value from RETURN2 + … + RETURNx**
499 )))
500
501 (((
502 Where PAYVER is defined by AT+PAYVER, below is an example screen shot.
503 )))
504
505 [[image:1653269759169-150.png||height="513" width="716"]]
506
507 (% style="color:#4f81bd" %)**Examples: AT+DATAUP=1**
508
509 Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**Multiply UPLINKs**.
510
511 Final Payload is
512
513 (% style="color:#4f81bd" %)**Battery Info+PAYVER + PAYLOAD COUNT + PAYLOAD# + DATA**
514
515 1. Battery Info (2 bytes): Battery voltage
516 1. PAYVER (1 byte): Defined by AT+PAYVER
517 1. PAYLOAD COUNT (1 byte): Total how many uplinks of this sampling.
518 1. PAYLOAD# (1 byte): Number of this uplink. (from 0,1,2,3…,to PAYLOAD COUNT)
519 1. DATA: Valid value: max 6 bytes(US915 version here, Notice*!) for each uplink so each uplink <= 11 bytes. For the last uplink, DATA will might less than 6 bytes
520
521 [[image:1653269916228-732.png||height="433" width="711"]]
522
523
524 So totally there will be 3 uplinks for this sampling, each uplink includes 6 bytes DATA
525
526 DATA1=RETURN1 Valid Value = (% style="background-color:green; color:white" %)20 20 0a 33 90 41
527
528 DATA2=1^^st^^ ~~ 6^^th^^ byte of Valid value of RETURN10=(% style="background-color:green; color:white" %) 02 aa 05 81 0a 20
529
530 DATA3=7^^th^^ ~~ 11^^th^^ bytes of Valid value of RETURN10 = (% style="background-color:green; color:white" %)20 20 20 2d 30
531
532 Below are the uplink payloads:
533
534 [[image:1653270130359-810.png]]
535
536
537 (% style="color:red" %)**Notice: the Max bytes is according to the max support bytes in different Frequency Bands for lowest SF. As below:**
538
539 ~* For AU915/AS923 bands, if UplinkDwell time=0, max 51 bytes for each uplink ( so 51 -5 = 46 max valid date)
540
541 * For AU915/AS923 bands, if UplinkDwell time=1, max 11 bytes for each uplink ( so 11 -5 = 6 max valid date).
542
543 * For US915 band, max 11 bytes for each uplink ( so 11 -5 = 6 max valid date).
544
545 ~* For all other bands: max 51 bytes for each uplink  ( so 51 -5 = 46 max valid date).
546
547 === 3.3.5 Uplink on demand ===
548
549 Except uplink periodically, RS485-BL is able to uplink on demand. The server sends downlink command to RS485-BL and RS485 will uplink data base on the command.
550
551 Downlink control command:
552
553 [[0x08 command>>path:#downlink_08]]: Poll an uplink with current command set in RS485-BL.
554
555 [[0xA8 command>>path:#downlink_A8]]: Send a command to RS485-BL and uplink the output from sensors.
556
557
558
559 1.
560 11.
561 111. Uplink on Interrupt
562
563 Put the interrupt sensor between 3.3v_out and GPIO ext.[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image022.png]]
564
565 AT+INTMOD=0  Disable Interrupt
566
567 AT+INTMOD=1  Interrupt trigger by rising or falling edge.
568
569 AT+INTMOD=2  Interrupt trigger by falling edge. ( Default Value)
570
571 AT+INTMOD=3  Interrupt trigger by rising edge.
572
573
574 1.
575 11. Uplink Payload
576
577 |**Size(bytes)**|**2**|**1**|**Length depends on the return from the commands**
578 |Value|(((
579 Battery(mV)
580
581 &
582
583 Interrupt _Flag
584 )))|(((
585 PAYLOAD_VER
586
587
588 )))|If the valid payload is too long and exceed the maximum support payload length in server, server will show payload not provided in the LoRaWAN server.
589
590 Below is the decoder for the first 3 bytes. The rest bytes are dynamic depends on different RS485 sensors.
591
592
593 function Decoder(bytes, port) {
594
595 ~/~/Payload Formats of RS485-BL Deceive
596
597 return {
598
599 ~/~/Battery,units:V
600
601 BatV:((bytes[0]<<8 | bytes[1])&0x7fff)/1000,
602
603 ~/~/GPIO_EXTI 
604
605 EXTI_Trigger:(bytes[0] & 0x80)? "TRUE":"FALSE",
606
607 ~/~/payload of version
608
609 Pay_ver:bytes[2],
610
611 };
612
613 }
614
615
616
617
618
619
620
621 TTN V3 uplink screen shot.
622
623 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image023.png]]
624
625 1.
626 11. Configure RS485-BL via AT or Downlink
627
628 User can configure RS485-BL via [[AT Commands >>path:#_​Using_the_AT]]or LoRaWAN Downlink Commands
629
630 There are two kinds of Commands:
631
632 * **Common Commands**: They should be available for each sensor, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: http:~/~/wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands
633
634 * **Sensor Related Commands**: These commands are special designed for RS485-BL.  User can see these commands below:
635
636 1.
637 11.
638 111. Common Commands:
639
640 They should be available for each of Dragino Sensors, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: [[http:~~/~~/wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands>>url:http://wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands]]
641
642
643 1.
644 11.
645 111. Sensor related commands:
646
647 ==== Choose Device Type (RS485 or TTL) ====
648
649 RS485-BL can connect to either RS485 sensors or TTL sensor. User need to specify what type of sensor need to connect.
650
651 * AT Command
652
653 **AT+MOD=1** ~/~/ Set to support RS485-MODBUS type sensors. User can connect multiply RS485 , Modbus sensors to the A / B pins.
654
655 **AT+MOD=2** ~/~/ Set to support TTL Level sensors, User can connect one TTL Sensor to the TXD/RXD/GND pins.
656
657
658 * Downlink Payload
659
660 **0A aa**     à same as AT+MOD=aa
661
662
663
664 ==== [[RS485 Debug Command>>path:#downlink_A8]] (AT+CFGDEV) ====
665
666 This command is used to configure the RS485 or TTL sensors; they won’t be used during sampling.
667
668 * AT Command
669
670 AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m
671
672 m: 0: no CRC; 1: add CRC-16/MODBUS in the end of this command.
673
674
675
676 * Downlink Payload
677
678 Format: A8 MM NN XX XX XX XX YY
679
680 Where:
681
682 * MM: 1: add CRC-16/MODBUS ; 0: no CRC
683 * NN: The length of RS485 command
684 * XX XX XX XX: RS485 command total NN bytes
685 * YY: How many bytes will be uplink from the return of this RS485 command, if YY=0, RS485-BL will execute the downlink command without uplink; if YY>0, RS485-BL will uplink total YY bytes from the output of this RS485 command
686
687 **Example 1:**
688
689 To connect a Modbus Alarm with below commands.
690
691 * The command to active alarm is: 0A 05 00 04 00 01 4C B0. Where 0A 05 00 04 00 01 is the Modbus command to read the register 00 40 where stored the DI status. The 4C B0 is the CRC-16/MODBUS which calculate manually.
692
693 * The command to deactivate alarm is: 0A 05 00 04 00 00 8D 70. Where 0A 05 00 04 00 00 is the Modbus command to read the register 00 40 where stored the DI status. The 8D 70 is the CRC-16/MODBUS which calculate manually.
694
695 So if user want to use downlink command to control to RS485 Alarm, he can use:
696
697 **A8 01 06 0A 05 00 04 00 01 00**: to activate the RS485 Alarm
698
699 **A8 01 06 0A 05 00 04 00 00 00**: to deactivate the RS485 Alarm
700
701 A8 is type code and 01 means add CRC-16/MODBUS at the end, the 3^^rd^^ byte is 06, means the next 6 bytes are the command to be sent to the RS485 network, the final byte 00 means this command don’t need to acquire output.
702
703
704 **Example 2:**
705
706 Check TTL Sensor return:
707
708 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image024.png]]
709
710
711
712
713 ==== Set Payload version ====
714
715 This is the first byte of the uplink payload. RS485-BL can connect to different sensors. User can set the PAYVER field to tell server how to decode the current payload.
716
717 * AT Command:
718
719 AT+PAYVER: Set PAYVER field = 1
720
721
722 * Downlink Payload:
723
724 0xAE 01   à Set PAYVER field =  0x01
725
726 0xAE 0F   à Set PAYVER field =  0x0F
727
728
729 ==== Set RS485 Sampling Commands ====
730
731 AT+COMMANDx, AT+DATACUTx and AT+SEARCHx
732
733 These three commands are used to configure how the RS485-BL polling data from Modbus device. Detail of usage please see : [[polling RS485 device>>path:#polling_485]].
734
735
736 * AT Command:
737
738 AT+COMMANDx: Configure RS485 read command to sensor.
739
740 AT+DATACUTx: Configure how to handle return from RS485 devices.
741
742 AT+SEARCHx: Configure search command
743
744
745 * Downlink Payload:
746
747 0xAF downlink command can be used to set AT+COMMANDx or AT+DATACUTx.
748
749 Note: if user use AT+COMMANDx to add a new command, he also need to send AT+DATACUTx downlink.
750
751 Format: AF MM NN LL XX XX XX XX YY
752
753 Where:
754
755 * MM: the ATCOMMAND or AT+DATACUT to be set. Value from 01 ~~ 0F,
756 * NN: 0: no CRC; 1: add CRC-16/MODBUS ; 2: set the AT+DATACUT value.
757 * LL: The length of AT+COMMAND or AT+DATACUT command
758 * XX XX XX XX: AT+COMMAND or AT+DATACUT command
759 * YY: If YY=0, RS485-BL will execute the downlink command without uplink; if YY=1, RS485-BL will execute an uplink after got this command.
760
761 Example:
762
763 **AF 03 01 06 0A 05 00 04 00 01 00**: Same as AT+COMMAND3=0A 05 00 04 00 01,1
764
765 **AF 03 02 06 10 01 05 06 09 0A 00**: Same as AT+DATACUT3=**16**,**1**,**5+6+9+10**
766
767 **AF 03 02 06 0B 02 05 07 08 0A 00**: Same as AT+DATACUT3=**11**,**2**,**5~~7+8~~10**
768
769
770 0xAB downlink command can be used for set AT+SEARCHx
771
772 Example: **AB aa 01 03 xx xx xx** (03 here means there are total 3 bytes after 03) So
773
774 * AB aa 01 03 xx xx xx  same as AT+SEARCHaa=1,xx xx xx
775 * AB aa 02 03 xx xx xx 02 yy yy(03 means there are 3 bytes after 03, they are xx xx xx;02 means there are 2 bytes after 02, they are yy yy) so the commands
776
777 **AB aa 02 03 xx xx xx 02 yy yy**  same as **AT+SEARCHaa=2,xx xx xx+yy yy**
778
779
780 ==== Fast command to handle MODBUS device ====
781
782 AT+MBFUN is valid since v1.3 firmware version. The command is for fast configure to read Modbus devices. It is only valid for the devices which follow the [[MODBUS-RTU protocol>>url:https://www.modbustools.com/modbus.html]].
783
784 This command is valid since v1.3 firmware version
785
786
787 AT+MBFUN has only two value:
788
789 * AT+MBFUN=1: Enable Modbus reading. And get response base on the MODBUS return
790
791 AT+MBFUN=1, device can auto read the Modbus function code: 01, 02, 03 or 04. AT+MBFUN has lower priority vs AT+DATACUT command. If AT+DATACUT command is configured, AT+MBFUN will be ignore.
792
793 * AT+MBFUN=0: Disable Modbus fast reading.
794
795 Example:
796
797 * AT+MBFUN=1 and AT+DATACUT1/AT+DATACUT2 are not configure (0,0,0).
798 * AT+COMMAND1= 01 03 00 10 00 08,1 ~-~-> read slave address 01 , function code 03, start address 00 01, quantity of registers 00 08.
799 * AT+COMMAND2= 01 02 00 40 00 10,1 ~-~-> read slave address 01 , function code 02, start address 00 40, quantity of inputs 00 10.
800
801 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image025.png]]
802
803
804 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image026.png]]
805
806
807 * Downlink Commands:
808
809 A9 aa -à Same as AT+MBFUN=aa
810
811
812 ==== RS485 command timeout ====
813
814 Some Modbus device has slow action to send replies. This command is used to configure the RS485-BL to use longer time to wait for their action.
815
816 Default value: 0, range:  0 ~~ 5 seconds
817
818
819 * AT Command:
820
821 AT+CMDDLaa=hex(bb cc)
822
823 Example:
824
825 **AT+CMDDL1=1000** to send the open time to 1000ms
826
827
828 * Downlink Payload:
829
830 0x AA aa bb cc
831
832 Same as: AT+CMDDLaa=hex(bb cc)
833
834 Example:
835
836 0xAA 01 03 E8  à Same as **AT+CMDDL1=1000 ms**
837
838
839 ==== [[Uplink>>path:#downlink_A8]] payload mode ====
840
841 Define to use one uplink or multiple uplinks for the sampling.
842
843 The use of this command please see: [[Compose Uplink payload>>path:#DataUP]]
844
845 * AT Command:
846
847 AT+DATAUP=0
848
849 AT+DATAUP=1
850
851
852 * Downlink Payload:
853
854 0xAD 00   à Same as AT+DATAUP=0
855
856 0xAD 01   à Same as AT+DATAUP=1
857
858
859 ==== Manually trigger an Uplink ====
860
861 Ask device to send an uplink immediately.
862
863 * Downlink Payload:
864
865 0x08 FF, RS485-BL will immediately send an uplink.
866
867
868 ==== Clear RS485 Command ====
869
870 The AT+COMMANDx and AT+DATACUTx settings are stored in special location, user can use below command to clear them.
871
872
873 * AT Command:
874
875 **AT+CMDEAR=mm,nn**   mm: start position of erase ,nn: stop position of erase
876
877 Etc. AT+CMDEAR=1,10 means erase AT+COMMAND1/AT+DATACUT1 to AT+COMMAND10/AT+DATACUT10
878
879 Example screen shot after clear all RS485 commands. 
880
881
882
883 The uplink screen shot is:
884
885 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image023.png]]
886
887
888 * Downlink Payload:
889
890 0x09 aa bb same as AT+CMDEAR=aa,bb
891
892
893 ==== Set Serial Communication Parameters ====
894
895 Set the Rs485 serial communication parameters:
896
897 * AT Command:
898
899 Set Baud Rate:
900
901 AT+BAUDR=9600    ~/~/ Options: (1200,2400,4800,14400,19200,115200)
902
903
904 Set UART parity
905
906 AT+PARITY=0    ~/~/ Option: 0: no parity, 1: odd parity, 2: even parity
907
908
909 Set STOPBIT
910
911 AT+STOPBIT=0    ~/~/ Option: 0 for 1bit; 1 for 1.5 bit ; 2 for 2 bits
912
913
914 * Downlink Payload:
915
916 A7 01 aa bb: Same  AT+BAUDR=hex(aa bb)*100
917
918 Example:
919
920 * A7 01 00 60   same as AT+BAUDR=9600
921 * A7 01 04 80  same as AT+BAUDR=115200
922
923 A7 02 aa: Same as  AT+PARITY=aa  (aa value: 00 , 01 or 02)
924
925 A7 03 aa: Same as  AT+STOPBIT=aa  (aa value: 00 , 01 or 02)
926
927
928 ==== Control output power duration ====
929
930 User can set the output power duration before each sampling.
931
932 * AT Command:
933
934 Example:
935
936 AT+3V3T=1000 ~/~/ 3V3 output power will open 1s before each sampling.
937
938 AT+5VT=1000 ~/~/ +5V output power will open 1s before each sampling.
939
940
941 * LoRaWAN Downlink Command:
942
943 07 01 aa bb  Same as AT+5VT=(aa bb)
944
945 07 02 aa bb  Same as AT+3V3T=(aa bb)
946
947
948
949
950 1.
951 11. Buttons
952
953 |**Button**|**Feature**
954 |**RST**|Reboot RS485-BL
955
956 1.
957 11. +3V3 Output
958
959 RS485-BL has a Controllable +3V3 output, user can use this output to power external sensor.
960
961 The +3V3 output will be valid for every sampling. RS485-BL will enable +3V3 output before all sampling and disable the +3V3 after all sampling. 
962
963
964 The +3V3 output time can be controlled by AT Command.
965
966 **AT+3V3T=1000**
967
968 Means set +3v3 valid time to have 1000ms. So, the real +3v3 output will actually have 1000ms + sampling time for other sensors.
969
970
971 By default, the AT+3V3T=0. This is a special case, means the +3V3 output is always on at any time
972
973
974 1.
975 11. +5V Output
976
977 RS485-BL has a Controllable +5V output, user can use this output to power external sensor.
978
979 The +5V output will be valid for every sampling. RS485-BL will enable +5V output before all sampling and disable the +5v after all sampling. 
980
981
982 The 5V output time can be controlled by AT Command.
983
984 **AT+5VT=1000**
985
986 Means set 5V valid time to have 1000ms. So, the real 5V output will actually have 1000ms + sampling time for other sensors.
987
988
989 By default, the AT+5VT=0. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
990
991
992
993
994 1.
995 11. LEDs
996
997 |**LEDs**|**Feature**
998 |**LED1**|Blink when device transmit a packet.
999
1000 1.
1001 11. Switch Jumper
1002
1003 |**Switch Jumper**|**Feature**
1004 |**SW1**|(((
1005 ISP position: Upgrade firmware via UART
1006
1007 Flash position: Configure device, check running status.
1008 )))
1009 |**SW2**|(((
1010 5V position: set to compatible with 5v I/O.
1011
1012 3.3v position: set to compatible with 3.3v I/O.,
1013 )))
1014
1015 +3.3V: is always ON
1016
1017 +5V: Only open before every sampling. The time is by default, it is AT+5VT=0.  Max open time. 5000 ms.
1018
1019 1. Case Study
1020
1021 User can check this URL for some case studies.
1022
1023 [[http:~~/~~/wiki.dragino.com/index.php?title=APP_RS485_COMMUNICATE_WITH_SENSORS>>url:http://wiki.dragino.com/index.php?title=APP_RS485_COMMUNICATE_WITH_SENSORS]]
1024
1025
1026
1027
1028 1. Use AT Command
1029 11. Access AT Command
1030
1031 RS485-BL supports AT Command set. User can use a USB to TTL adapter plus the 3.5mm Program Cable to connect to RS485-BL to use AT command, as below.
1032
1033 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image027.png]]
1034
1035
1036 In PC, User needs to set **serial tool**(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to **9600** to access to access serial console of RS485-BL. The default password is 123456. Below is the output for reference:
1037
1038 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image028.png]]
1039
1040
1041
1042 More detail AT Command manual can be found at [[AT Command Manual>>path:#AT_COMMAND]]
1043
1044
1045
1046 1.
1047 11. Common AT Command Sequence
1048 111. Multi-channel ABP mode (Use with SX1301/LG308)
1049
1050 If device has not joined network yet:
1051
1052 AT+FDR
1053
1054 AT+NJM=0
1055
1056 ATZ
1057
1058
1059 If device already joined network:
1060
1061 AT+NJM=0
1062
1063 ATZ
1064
1065 1.
1066 11.
1067 111. Single-channel ABP mode (Use with LG01/LG02)
1068
1069 AT+FDR   Reset Parameters to Factory Default, Keys Reserve
1070
1071 AT+NJM=0 Set to ABP mode
1072
1073 AT+ADR=0 Set the Adaptive Data Rate Off
1074
1075 AT+DR=5  Set Data Rate
1076
1077 AT+TDC=60000  Set transmit interval to 60 seconds
1078
1079 AT+CHS=868400000 Set transmit frequency to 868.4Mhz
1080
1081 AT+RX2FQ=868400000 Set RX2Frequency to 868.4Mhz (according to the result from server)
1082
1083 AT+RX2DR=5  Set RX2DR to match the downlink DR from server. see below
1084
1085 AT+DADDR=26 01 1A F1 Set Device Address to 26 01 1A F1, this ID can be found in the LoRa Server portal.
1086
1087 ATZ          Reset MCU
1088
1089 **Note:**
1090
1091 1. Make sure the device is set to ABP mode in the IoT Server.
1092 1. Make sure the LG01/02 gateway RX frequency is exactly the same as AT+CHS setting.
1093 1. Make sure SF / bandwidth setting in LG01/LG02 match the settings of AT+DR. refer [[this link>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_Gateway/&file=LoRaWAN%201.0.3%20Regional%20Parameters.xlsx]] to see what DR means.
1094 1. The command AT+RX2FQ and AT+RX2DR is to let downlink work. to set the correct parameters, user can check the actually downlink parameters to be used. As below. Which shows the RX2FQ should use 868400000 and RX2DR should be 5
1095
1096 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image029.png]]
1097
1098
1099 1. FAQ
1100 11. How to upgrade the image?
1101
1102 The RS485-BL LoRaWAN Controller is shipped with a 3.5mm cable, the cable is used to upload image to RS485-BL to:
1103
1104 * Support new features
1105 * For bug fix
1106 * Change LoRaWAN bands.
1107
1108 Below shows the hardware connection for how to upload an image to RS485-BL:
1109
1110 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image030.png]]
1111
1112 **Step1:** Download [[flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]].
1113
1114 **Step2**: Download the [[LT Image files>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/image/]].
1115
1116 **Step3: **Open flashloader; choose the correct COM port to update.
1117
1118
1119 |(((
1120 HOLD PRO then press the RST button, SYS will be ON, then click next
1121 )))
1122
1123 |(((
1124 Board detected
1125 )))
1126
1127 |(((
1128
1129 )))
1130
1131 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image031.png]] [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image032.png]]
1132
1133
1134
1135 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image033.png]] [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image034.png]]
1136
1137
1138 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image035.png]] [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image036.png]]
1139
1140
1141 1.
1142 11. How to change the LoRa Frequency Bands/Region?
1143
1144 User can follow the introduction for [[how to upgrade image>>path:#upgrade_image]]. When download the images, choose the required image file for download.
1145
1146
1147
1148 1.
1149 11. How many RS485-Slave can RS485-BL connects?
1150
1151 The RS485-BL can support max 32 RS485 devices. Each uplink command of RS485-BL can support max 16 different RS485 command. So RS485-BL can support max 16 RS485 devices pre-program in the device for uplink. For other devices no pre-program, user can use the [[downlink message (type code 0xA8) to poll their info>>path:#downlink_A8]].
1152
1153
1154
1155
1156 1. Trouble Shooting     
1157 11. Downlink doesn’t work, how to solve it?
1158
1159 Please see this link for debug:
1160
1161 [[http:~~/~~/wiki.dragino.com/index.php?title=Main_Page#LoRaWAN_Communication_Debug>>url:http://wiki.dragino.com/index.php?title=Main_Page#LoRaWAN_Communication_Debug]] 
1162
1163
1164
1165 1.
1166 11. Why I can’t join TTN V3 in US915 /AU915 bands?
1167
1168 It might about the channels mapping. Please see for detail.
1169
1170 [[http:~~/~~/wiki.dragino.com/index.php?title=LoRaWAN_Communication_Debug#Notice_of_US915.2FCN470.2FAU915_Frequency_band>>url:http://wiki.dragino.com/index.php?title=LoRaWAN_Communication_Debug#Notice_of_US915.2FCN470.2FAU915_Frequency_band]]
1171
1172
1173
1174 1. Order Info
1175
1176 **Part Number: RS485-BL-XXX**
1177
1178 **XXX:**
1179
1180 * **EU433**: frequency bands EU433
1181 * **EU868**: frequency bands EU868
1182 * **KR920**: frequency bands KR920
1183 * **CN470**: frequency bands CN470
1184 * **AS923**: frequency bands AS923
1185 * **AU915**: frequency bands AU915
1186 * **US915**: frequency bands US915
1187 * **IN865**: frequency bands IN865
1188 * **RU864**: frequency bands RU864
1189 * **KZ865: **frequency bands KZ865
1190
1191 1. Packing Info
1192
1193 **Package Includes**:
1194
1195 * RS485-BL x 1
1196 * Stick Antenna for LoRa RF part x 1
1197 * Program cable x 1
1198
1199 **Dimension and weight**:
1200
1201 * Device Size: 13.5 x 7 x 3 cm
1202 * Device Weight: 105g
1203 * Package Size / pcs : 14.5 x 8 x 5 cm
1204 * Weight / pcs : 170g
1205
1206 1. Support
1207
1208 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1209 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to
1210
1211 [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]]
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0