Version 32.16 by Xiaoling on 2022/06/02 15:30

Show last authors
1 (% style="text-align:center" %)
2 [[image:1653266934636-343.png||height="385" width="385"]]
3
4
5
6 **RS485-LN – RS485 to LoRaWAN Converter User Manual**
7
8
9 **Table of Contents:**
10
11
12
13
14
15 = 1.Introduction =
16
17 == 1.1 What is RS485-LN RS485 to LoRaWAN Converter ==
18
19 (((
20 (((
21 The Dragino RS485-LN is a (% style="color:blue" %)**RS485 to LoRaWAN Converter**(%%). It converts the RS485 signal into LoRaWAN wireless signal which simplify the IoT installation and reduce the installation/maintaining cost.
22 )))
23
24 (((
25 RS485-LN allows user to (% style="color:blue" %)**monitor / control RS485 devices**(%%) and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
26 )))
27
28 (((
29 (% style="color:blue" %)**For data uplink**(%%), RS485-LN sends user-defined commands to RS485 devices and gets the return from the RS485 devices. RS485-LN will process these returns according to user-define rules to get the final payload and upload to LoRaWAN server.
30 )))
31
32 (((
33 (% style="color:blue" %)**For data downlink**(%%), RS485-LN runs in LoRaWAN Class C. When there downlink commands from LoRaWAN server, RS485-LN will forward the commands from LoRaWAN server to RS485 devices.
34
35 (% style="color:blue" %)**Demo Dashboard for RS485-LN**(%%) connect to two energy meters: [[https:~~/~~/app.datacake.de/dashboard/d/58844a26-378d-4c5a-aaf5-b5b5b153447a>>url:https://app.datacake.de/dashboard/d/58844a26-378d-4c5a-aaf5-b5b5b153447a]]
36 )))
37 )))
38
39 [[image:1653267211009-519.png||height="419" width="724"]]
40
41
42 == 1.2 Specifications ==
43
44
45 **Hardware System:**
46
47 * STM32L072CZT6 MCU
48 * SX1276/78 Wireless Chip 
49 * Power Consumption (exclude RS485 device):
50 ** Idle: 32mA@12v
51 ** 20dB Transmit: 65mA@12v
52
53 **Interface for Model:**
54
55 * RS485
56 * Power Input 7~~ 24V DC. 
57
58 **LoRa Spec:**
59
60 * Frequency Range:
61 ** Band 1 (HF): 862 ~~ 1020 Mhz
62 ** Band 2 (LF): 410 ~~ 528 Mhz
63 * 168 dB maximum link budget.
64 * +20 dBm - 100 mW constant RF output vs.
65 * +14 dBm high efficiency PA.
66 * Programmable bit rate up to 300 kbps.
67 * High sensitivity: down to -148 dBm.
68 * Bullet-proof front end: IIP3 = -12.5 dBm.
69 * Excellent blocking immunity.
70 * Low RX current of 10.3 mA, 200 nA register retention.
71 * Fully integrated synthesizer with a resolution of 61 Hz.
72 * FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation.
73 * Built-in bit synchronizer for clock recovery.
74 * Preamble detection.
75 * 127 dB Dynamic Range RSSI.
76 * Automatic RF Sense and CAD with ultra-fast AFC.
77 * Packet engine up to 256 bytes with CRC.
78
79
80
81 == 1.3 Features ==
82
83 * LoRaWAN Class A & Class C protocol (default Class C)
84 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865/RU864
85 * AT Commands to change parameters
86 * Remote configure parameters via LoRa Downlink
87 * Firmware upgradable via program port
88 * Support multiply RS485 devices by flexible rules
89 * Support Modbus protocol
90 * Support Interrupt uplink (Since hardware version v1.2)
91
92
93
94 == 1.4 Applications ==
95
96 * Smart Buildings & Home Automation
97 * Logistics and Supply Chain Management
98 * Smart Metering
99 * Smart Agriculture
100 * Smart Cities
101 * Smart Factory
102
103
104
105 == 1.5 Firmware Change log ==
106
107 [[RS485-LN Image files – Download link and Change log>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/]]
108
109
110 == 1.6 Hardware Change log ==
111
112 (((
113 (((
114 v1.2: Add External Interrupt Pin.
115
116 v1.0: Release
117
118
119 )))
120 )))
121
122 = 2. Power ON Device =
123
124 (((
125 The RS485-LN can be powered by 7 ~~ 24V DC power source. Connection as below
126
127 * Power Source VIN to RS485-LN VIN+
128 * Power Source GND to RS485-LN VIN-
129
130 (((
131 Once there is power, the RS485-LN will be on.
132 )))
133
134 [[image:1653268091319-405.png]]
135
136
137 )))
138
139 = 3. Operation Mode =
140
141 == 3.1 How it works? ==
142
143 (((
144 The RS485-LN is configured as LoRaWAN OTAA Class C mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the RS485-LN. It will auto join the network via OTAA.
145
146
147 )))
148
149 == 3.2 Example to join LoRaWAN network ==
150
151 Here shows an example for how to join the TTN V3 Network. Below is the network structure, we use [[LG308>>url:http://www.dragino.com/products/lora-lorawan-gateway/item/140-lg308.html]] as LoRaWAN gateway here. 
152
153 [[image:1653268155545-638.png||height="334" width="724"]]
154
155
156 (((
157 (((
158 The RS485-LN in this example connected to two RS485 devices for demonstration, user can connect to other RS485 devices via the same method. The connection is as below:
159 )))
160
161 (((
162 485A+ and 485B- of the sensor are connected to RS485A and RA485B of RS485-LN respectively.
163 )))
164
165 [[image:1653268227651-549.png||height="592" width="720"]]
166
167 (((
168 The LG308 is already set to connect to [[TTN V3 network >>path:eu1.cloud.thethings.network/]]. So what we need to now is only configure the TTN V3:
169 )))
170
171 (((
172 **Step 1**: Create a device in TTN V3 with the OTAA keys from RS485-LN.
173 )))
174
175 (((
176 Each RS485-LN is shipped with a sticker with unique device EUI:
177 )))
178 )))
179
180 [[image:1652953462722-299.png]]
181
182 (((
183 (((
184 User can enter this key in their LoRaWAN Server portal. Below is TTN V3 screen shot:
185 )))
186
187 (((
188 Add APP EUI in the application.
189 )))
190 )))
191
192 [[image:image-20220519174512-1.png]]
193
194 [[image:image-20220519174512-2.png||height="323" width="720"]]
195
196 [[image:image-20220519174512-3.png||height="556" width="724"]]
197
198 [[image:image-20220519174512-4.png]]
199
200 You can also choose to create the device manually.
201
202 [[image:1652953542269-423.png||height="710" width="723"]]
203
204 Add APP KEY and DEV EUI
205
206 [[image:1652953553383-907.png||height="514" width="724"]]
207
208
209 (((
210 **Step 2**: Power on RS485-LN and it will auto join to the TTN V3 network. After join success, it will start to upload message to TTN V3 and user can see in the panel.
211 )))
212
213 [[image:1652953568895-172.png||height="232" width="724"]]
214
215
216 == 3.3 Configure Commands to read data ==
217
218 (((
219 (((
220 There are plenty of RS485 devices in the market and each device has different command to read the valid data. To support these devices in flexible, RS485-LN supports flexible command set. User can use [[AT Commands>>path:#AT_COMMAND]] or LoRaWAN Downlink Command to configure what commands RS485-LN should send for each sampling and how to handle the return from RS485 devices.
221 )))
222
223 (((
224 (% style="color:red" %)Note: below description and commands are for firmware version >v1.1, if you have firmware version v1.0. Please check the [[user manual v1.0>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/&file=RS485-LN_UserManual_v1.0.1.pdf]] or upgrade the firmware to v1.1
225
226
227 )))
228 )))
229
230 === 3.3.1 onfigure UART settings for RS485 or TTL communication ===
231
232 To use RS485-LN to read data from RS485 sensors, connect the RS485-LN A/B traces to the sensors. And user need to make sure RS485-LN use the match UART setting to access the sensors. The related commands for UART settings are:
233
234 (% border="1" style="background-color:#ffffcc; color:green; width:782px" %)
235 |(% style="width:128px" %)(((
236 **AT Commands**
237 )))|(% style="width:305px" %)(((
238 **Description**
239 )))|(% style="width:346px" %)(((
240 **Example**
241 )))
242 |(% style="width:128px" %)(((
243 AT+BAUDR
244 )))|(% style="width:305px" %)(((
245 Set the baud rate (for RS485 connection). Default Value is: 9600.
246 )))|(% style="width:346px" %)(((
247 (((
248 AT+BAUDR=9600
249 )))
250
251 (((
252 Options: (1200,2400,4800,14400,19200,115200)
253 )))
254 )))
255 |(% style="width:128px" %)(((
256 AT+PARITY
257 )))|(% style="width:305px" %)(((
258 Set UART parity (for RS485 connection)
259 )))|(% style="width:346px" %)(((
260 (((
261 AT+PARITY=0
262 )))
263
264 (((
265 Option: 0: no parity, 1: odd parity, 2: even parity
266 )))
267 )))
268 |(% style="width:128px" %)(((
269 AT+STOPBIT
270 )))|(% style="width:305px" %)(((
271 (((
272 Set serial stopbit (for RS485 connection)
273 )))
274
275 (((
276
277 )))
278 )))|(% style="width:346px" %)(((
279 (((
280 AT+STOPBIT=0 for 1bit
281 )))
282
283 (((
284 AT+STOPBIT=1 for 1.5 bit
285 )))
286
287 (((
288 AT+STOPBIT=2 for 2 bits
289 )))
290 )))
291
292
293 === 3.3.2 Configure sensors ===
294
295 (((
296 (((
297 Some sensors might need to configure before normal operation. User can configure such sensor via PC and RS485 adapter or through RS485-LN AT Commands (% style="color:#4f81bd" %)**AT+CFGDEV**(%%). Each (% style="color:#4f81bd" %)**AT+CFGDEV **(%%)equals to send a RS485 command to sensors. This command will only run when user input it and won’t run during each sampling.
298 )))
299 )))
300
301 (% border="1" style="background-color:#ffffcc; color:green; width:806px" %)
302 |**AT Commands**|(% style="width:418px" %)**Description**|(% style="width:256px" %)**Example**
303 |AT+CFGDEV|(% style="width:418px" %)(((
304 This command is used to configure the RS485/TTL devices; they won’t be used during sampling.
305
306 AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,
307
308 mm: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command
309 )))|(% style="width:256px" %)AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m
310
311 === 3.3.3 Configure read commands for each sampling ===
312
313 (((
314 RS485-BL is a battery powered device; it will sleep most of time. And wake up on each period and read RS485 / TTL sensor data and uplink.
315 )))
316
317 (((
318 During each sampling, we need to confirm what commands we need to send to the sensors to read data. After the RS485/TTL sensors send back the value, it normally includes some bytes and we only need a few from them for a shorten payload.
319 )))
320
321 (((
322 To save the LoRaWAN network bandwidth, we might need to read data from different sensors and combine their valid value into a short payload.
323 )))
324
325 (((
326 This section describes how to achieve above goals.
327 )))
328
329 (((
330 During each sampling, the RS485-BL can support 15 commands to read sensors. And combine the return to one or several uplink payloads.
331 )))
332
333 (((
334 **Command from RS485-BL to Sensor:**
335 )))
336
337 (((
338 RS485-BL can send out pre-set max 15 strings via **AT+COMMAD1**, **ATCOMMAND2**,…, to **AT+COMMANDF** . All commands are of same grammar.
339 )))
340
341 (((
342 **Handle return from sensors to RS485-BL**:
343 )))
344
345 (((
346 After RS485-BL send out a string to sensor, RS485-BL will wait for the return from RS485 or TTL sensor. And user can specify how to handle the return, by **AT+DATACUT or AT+SEARCH commands**
347 )))
348
349 * (((
350 **AT+DATACUT**
351 )))
352
353 (((
354 When the return value from sensor have fix length and we know which position the valid value we should get, we can use AT+DATACUT command.
355 )))
356
357 * (((
358 **AT+SEARCH**
359 )))
360
361 (((
362 When the return value from sensor is dynamic length and we are not sure which bytes the valid data is, instead, we know what value the valid value following. We can use AT+SEARCH to search the valid value in the return string.
363 )))
364
365 (((
366 **Define wait timeout:**
367 )))
368
369 (((
370 Some RS485 device might has longer delay on reply, so user can use AT+CMDDL to set the timeout for getting reply after the RS485 command is sent. For example, AT+CMDDL1=1000 to send the open time to 1000ms
371 )))
372
373 (((
374 After we got the valid value from each RS485 commands, we need to combine them together with the command **AT+DATAUP**.
375 )))
376
377 **Examples:**
378
379 Below are examples for the how above AT Commands works.
380
381 **AT+COMMANDx : **This command will be sent to RS485/TTL devices during each sampling, Max command length is 14 bytes. The grammar is:
382
383 (% border="1" class="table-bordered" %)
384 |(((
385 **AT+COMMANDx=xx xx xx xx xx xx xx xx xx xx xx xx,m**
386
387 **xx xx xx xx xx xx xx xx xx xx xx xx: The RS485 command to be sent**
388
389 **m: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command**
390 )))
391
392 (((
393 For example, if we have a RS485 sensor. The command to get sensor value is: 01 03 0B B8 00 02 46 0A. Where 01 03 0B B8 00 02 is the Modbus command to read the register 0B B8 where stored the sensor value. The 46 0A is the CRC-16/MODBUS which calculate manually.
394 )))
395
396 (((
397 In the RS485-BL, we should use this command AT+COMMAND1=01 03 0B B8 00 02,1 for the same.
398 )))
399
400 (((
401 **AT+SEARCHx**: This command defines how to handle the return from AT+COMMANDx.
402 )))
403
404 (% border="1" class="table-bordered" %)
405 |(((
406 **AT+SEARCHx=aa,xx xx xx xx xx**
407
408 * **aa: 1: prefix match mode; 2: prefix and suffix match mode**
409 * **xx xx xx xx xx: match string. Max 5 bytes for prefix and 5 bytes for suffix**
410
411
412 )))
413
414 **Examples:**
415
416 ~1. For a return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
417
418 If we set AT+SEARCH1=1,1E 56 34.      (max 5 bytes for prefix)
419
420 The valid data will be all bytes after 1E 56 34 , so it is (% style="background-color:yellow" %)** 2e 30 58 5f 36 41 30 31 00 49**
421
422 [[image:1653269403619-508.png]]
423
424 2. For a return string from AT+COMMAND1:  16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
425
426 If we set AT+SEARCH1=2, 1E 56 34+31 00 49
427
428 Device will search the bytes between 1E 56 34 and 31 00 49. So it is (% style="background-color:yellow" %)** 2e 30 58 5f 36 41 30**
429
430 [[image:1653269438444-278.png]]
431
432 **AT+DATACUTx : **This command defines how to handle the return from AT+COMMANDx, max return length is 45 bytes.
433
434 |(((
435 **AT+DATACUTx=a,b,c**
436
437 * **a: length for the return of AT+COMMAND**
438 * **b:1: grab valid value by byte, max 6 bytes. 2: grab valid value by bytes section, max 3 sections.**
439 * **c: define the position for valid value.  **
440 )))
441
442 Examples:
443
444 * Grab bytes:
445
446 [[image:1653269551753-223.png||height="311" width="717"]]
447
448 * Grab a section.
449
450 [[image:1653269568276-930.png||height="325" width="718"]]
451
452 * Grab different sections.
453
454 [[image:1653269593172-426.png||height="303" width="725"]]
455
456 (% style="color:red" %)**Note:**
457
458 AT+SEARCHx and AT+DATACUTx can be used together, if both commands are set, RS485-BL will first process AT+SEARCHx on the return string and get a temporary string, and then process AT+DATACUTx on this temporary string to get the final payload. In this case, AT+DATACUTx need to set to format AT+DATACUTx=0,xx,xx where the return bytes set to 0.
459
460 Example:
461
462 (% style="color:red" %)AT+COMMAND1=11 01 1E D0,0
463
464 (% style="color:red" %)AT+SEARCH1=1,1E 56 34
465
466 (% style="color:red" %)AT+DATACUT1=0,2,1~~5
467
468 (% style="color:red" %)Return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
469
470 (% style="color:red" %)String after SEARCH command: 2e 30 58 5f 36 41 30 31 00 49
471
472 (% style="color:red" %)Valid payload after DataCUT command: 2e 30 58 5f 36
473
474 [[image:1653269618463-608.png]]
475
476 === 3.3.4 Compose the uplink payload ===
477
478 (((
479 Through AT+COMMANDx and AT+DATACUTx we got valid value from each RS485 commands, Assume these valid value are RETURN1, RETURN2, .., to RETURNx. The next step is how to compose the LoRa Uplink Payload by these RETURNs. The command is **AT+DATAUP.**
480 )))
481
482 (((
483 (% style="color:#4f81bd" %)**Examples: AT+DATAUP=0**
484 )))
485
486 (((
487 Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**A SIGNLE UPLINK**.
488 )))
489
490 (((
491 Final Payload is
492 )))
493
494 (((
495 (% style="color:#4f81bd" %)**Battery Info+PAYVER + VALID Value from RETURN1 + Valid Value from RETURN2 + … + RETURNx**
496 )))
497
498 (((
499 Where PAYVER is defined by AT+PAYVER, below is an example screen shot.
500 )))
501
502 [[image:1653269759169-150.png||height="513" width="716"]]
503
504 (% style="color:#4f81bd" %)**Examples: AT+DATAUP=1**
505
506 Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**Multiply UPLINKs**.
507
508 Final Payload is
509
510 (% style="color:#4f81bd" %)**Battery Info+PAYVER + PAYLOAD COUNT + PAYLOAD# + DATA**
511
512 1. Battery Info (2 bytes): Battery voltage
513 1. PAYVER (1 byte): Defined by AT+PAYVER
514 1. PAYLOAD COUNT (1 byte): Total how many uplinks of this sampling.
515 1. PAYLOAD# (1 byte): Number of this uplink. (from 0,1,2,3…,to PAYLOAD COUNT)
516 1. DATA: Valid value: max 6 bytes(US915 version here, Notice*!) for each uplink so each uplink <= 11 bytes. For the last uplink, DATA will might less than 6 bytes
517
518 [[image:1653269916228-732.png||height="433" width="711"]]
519
520
521 So totally there will be 3 uplinks for this sampling, each uplink includes 6 bytes DATA
522
523 DATA1=RETURN1 Valid Value = (% style="background-color:green; color:white" %)20 20 0a 33 90 41
524
525 DATA2=1^^st^^ ~~ 6^^th^^ byte of Valid value of RETURN10=(% style="background-color:green; color:white" %) 02 aa 05 81 0a 20
526
527 DATA3=7^^th^^ ~~ 11^^th^^ bytes of Valid value of RETURN10 = (% style="background-color:green; color:white" %)20 20 20 2d 30
528
529 Below are the uplink payloads:
530
531 [[image:1653270130359-810.png]]
532
533
534 (% style="color:red" %)**Notice: the Max bytes is according to the max support bytes in different Frequency Bands for lowest SF. As below:**
535
536 ~* For AU915/AS923 bands, if UplinkDwell time=0, max 51 bytes for each uplink ( so 51 -5 = 46 max valid date)
537
538 * For AU915/AS923 bands, if UplinkDwell time=1, max 11 bytes for each uplink ( so 11 -5 = 6 max valid date).
539
540 * For US915 band, max 11 bytes for each uplink ( so 11 -5 = 6 max valid date).
541
542 ~* For all other bands: max 51 bytes for each uplink  ( so 51 -5 = 46 max valid date).
543
544 === 3.3.5 Uplink on demand ===
545
546 Except uplink periodically, RS485-BL is able to uplink on demand. The server sends downlink command to RS485-BL and RS485 will uplink data base on the command.
547
548 Downlink control command:
549
550 [[0x08 command>>path:#downlink_08]]: Poll an uplink with current command set in RS485-BL.
551
552 [[0xA8 command>>path:#downlink_A8]]: Send a command to RS485-BL and uplink the output from sensors.
553
554
555
556 1.
557 11.
558 111. Uplink on Interrupt
559
560 Put the interrupt sensor between 3.3v_out and GPIO ext.[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image022.png]]
561
562 AT+INTMOD=0  Disable Interrupt
563
564 AT+INTMOD=1  Interrupt trigger by rising or falling edge.
565
566 AT+INTMOD=2  Interrupt trigger by falling edge. ( Default Value)
567
568 AT+INTMOD=3  Interrupt trigger by rising edge.
569
570
571 1.
572 11. Uplink Payload
573
574 |**Size(bytes)**|**2**|**1**|**Length depends on the return from the commands**
575 |Value|(((
576 Battery(mV)
577
578 &
579
580 Interrupt _Flag
581 )))|(((
582 PAYLOAD_VER
583
584
585 )))|If the valid payload is too long and exceed the maximum support payload length in server, server will show payload not provided in the LoRaWAN server.
586
587 Below is the decoder for the first 3 bytes. The rest bytes are dynamic depends on different RS485 sensors.
588
589
590 function Decoder(bytes, port) {
591
592 ~/~/Payload Formats of RS485-BL Deceive
593
594 return {
595
596 ~/~/Battery,units:V
597
598 BatV:((bytes[0]<<8 | bytes[1])&0x7fff)/1000,
599
600 ~/~/GPIO_EXTI 
601
602 EXTI_Trigger:(bytes[0] & 0x80)? "TRUE":"FALSE",
603
604 ~/~/payload of version
605
606 Pay_ver:bytes[2],
607
608 };
609
610 }
611
612
613
614
615
616
617
618 TTN V3 uplink screen shot.
619
620 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image023.png]]
621
622 1.
623 11. Configure RS485-BL via AT or Downlink
624
625 User can configure RS485-BL via [[AT Commands >>path:#_​Using_the_AT]]or LoRaWAN Downlink Commands
626
627 There are two kinds of Commands:
628
629 * **Common Commands**: They should be available for each sensor, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: http:~/~/wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands
630
631 * **Sensor Related Commands**: These commands are special designed for RS485-BL.  User can see these commands below:
632
633 1.
634 11.
635 111. Common Commands:
636
637 They should be available for each of Dragino Sensors, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: [[http:~~/~~/wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands>>url:http://wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands]]
638
639
640 1.
641 11.
642 111. Sensor related commands:
643
644 ==== Choose Device Type (RS485 or TTL) ====
645
646 RS485-BL can connect to either RS485 sensors or TTL sensor. User need to specify what type of sensor need to connect.
647
648 * AT Command
649
650 **AT+MOD=1** ~/~/ Set to support RS485-MODBUS type sensors. User can connect multiply RS485 , Modbus sensors to the A / B pins.
651
652 **AT+MOD=2** ~/~/ Set to support TTL Level sensors, User can connect one TTL Sensor to the TXD/RXD/GND pins.
653
654
655 * Downlink Payload
656
657 **0A aa**     à same as AT+MOD=aa
658
659
660
661 ==== [[RS485 Debug Command>>path:#downlink_A8]] (AT+CFGDEV) ====
662
663 This command is used to configure the RS485 or TTL sensors; they won’t be used during sampling.
664
665 * AT Command
666
667 AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m
668
669 m: 0: no CRC; 1: add CRC-16/MODBUS in the end of this command.
670
671
672
673 * Downlink Payload
674
675 Format: A8 MM NN XX XX XX XX YY
676
677 Where:
678
679 * MM: 1: add CRC-16/MODBUS ; 0: no CRC
680 * NN: The length of RS485 command
681 * XX XX XX XX: RS485 command total NN bytes
682 * YY: How many bytes will be uplink from the return of this RS485 command, if YY=0, RS485-BL will execute the downlink command without uplink; if YY>0, RS485-BL will uplink total YY bytes from the output of this RS485 command
683
684 **Example 1:**
685
686 To connect a Modbus Alarm with below commands.
687
688 * The command to active alarm is: 0A 05 00 04 00 01 4C B0. Where 0A 05 00 04 00 01 is the Modbus command to read the register 00 40 where stored the DI status. The 4C B0 is the CRC-16/MODBUS which calculate manually.
689
690 * The command to deactivate alarm is: 0A 05 00 04 00 00 8D 70. Where 0A 05 00 04 00 00 is the Modbus command to read the register 00 40 where stored the DI status. The 8D 70 is the CRC-16/MODBUS which calculate manually.
691
692 So if user want to use downlink command to control to RS485 Alarm, he can use:
693
694 **A8 01 06 0A 05 00 04 00 01 00**: to activate the RS485 Alarm
695
696 **A8 01 06 0A 05 00 04 00 00 00**: to deactivate the RS485 Alarm
697
698 A8 is type code and 01 means add CRC-16/MODBUS at the end, the 3^^rd^^ byte is 06, means the next 6 bytes are the command to be sent to the RS485 network, the final byte 00 means this command don’t need to acquire output.
699
700
701 **Example 2:**
702
703 Check TTL Sensor return:
704
705 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image024.png]]
706
707
708
709
710 ==== Set Payload version ====
711
712 This is the first byte of the uplink payload. RS485-BL can connect to different sensors. User can set the PAYVER field to tell server how to decode the current payload.
713
714 * AT Command:
715
716 AT+PAYVER: Set PAYVER field = 1
717
718
719 * Downlink Payload:
720
721 0xAE 01   à Set PAYVER field =  0x01
722
723 0xAE 0F   à Set PAYVER field =  0x0F
724
725
726 ==== Set RS485 Sampling Commands ====
727
728 AT+COMMANDx, AT+DATACUTx and AT+SEARCHx
729
730 These three commands are used to configure how the RS485-BL polling data from Modbus device. Detail of usage please see : [[polling RS485 device>>path:#polling_485]].
731
732
733 * AT Command:
734
735 AT+COMMANDx: Configure RS485 read command to sensor.
736
737 AT+DATACUTx: Configure how to handle return from RS485 devices.
738
739 AT+SEARCHx: Configure search command
740
741
742 * Downlink Payload:
743
744 0xAF downlink command can be used to set AT+COMMANDx or AT+DATACUTx.
745
746 Note: if user use AT+COMMANDx to add a new command, he also need to send AT+DATACUTx downlink.
747
748 Format: AF MM NN LL XX XX XX XX YY
749
750 Where:
751
752 * MM: the ATCOMMAND or AT+DATACUT to be set. Value from 01 ~~ 0F,
753 * NN: 0: no CRC; 1: add CRC-16/MODBUS ; 2: set the AT+DATACUT value.
754 * LL: The length of AT+COMMAND or AT+DATACUT command
755 * XX XX XX XX: AT+COMMAND or AT+DATACUT command
756 * YY: If YY=0, RS485-BL will execute the downlink command without uplink; if YY=1, RS485-BL will execute an uplink after got this command.
757
758 Example:
759
760 **AF 03 01 06 0A 05 00 04 00 01 00**: Same as AT+COMMAND3=0A 05 00 04 00 01,1
761
762 **AF 03 02 06 10 01 05 06 09 0A 00**: Same as AT+DATACUT3=**16**,**1**,**5+6+9+10**
763
764 **AF 03 02 06 0B 02 05 07 08 0A 00**: Same as AT+DATACUT3=**11**,**2**,**5~~7+8~~10**
765
766
767 0xAB downlink command can be used for set AT+SEARCHx
768
769 Example: **AB aa 01 03 xx xx xx** (03 here means there are total 3 bytes after 03) So
770
771 * AB aa 01 03 xx xx xx  same as AT+SEARCHaa=1,xx xx xx
772 * AB aa 02 03 xx xx xx 02 yy yy(03 means there are 3 bytes after 03, they are xx xx xx;02 means there are 2 bytes after 02, they are yy yy) so the commands
773
774 **AB aa 02 03 xx xx xx 02 yy yy**  same as **AT+SEARCHaa=2,xx xx xx+yy yy**
775
776
777 ==== Fast command to handle MODBUS device ====
778
779 AT+MBFUN is valid since v1.3 firmware version. The command is for fast configure to read Modbus devices. It is only valid for the devices which follow the [[MODBUS-RTU protocol>>url:https://www.modbustools.com/modbus.html]].
780
781 This command is valid since v1.3 firmware version
782
783
784 AT+MBFUN has only two value:
785
786 * AT+MBFUN=1: Enable Modbus reading. And get response base on the MODBUS return
787
788 AT+MBFUN=1, device can auto read the Modbus function code: 01, 02, 03 or 04. AT+MBFUN has lower priority vs AT+DATACUT command. If AT+DATACUT command is configured, AT+MBFUN will be ignore.
789
790 * AT+MBFUN=0: Disable Modbus fast reading.
791
792 Example:
793
794 * AT+MBFUN=1 and AT+DATACUT1/AT+DATACUT2 are not configure (0,0,0).
795 * AT+COMMAND1= 01 03 00 10 00 08,1 ~-~-> read slave address 01 , function code 03, start address 00 01, quantity of registers 00 08.
796 * AT+COMMAND2= 01 02 00 40 00 10,1 ~-~-> read slave address 01 , function code 02, start address 00 40, quantity of inputs 00 10.
797
798 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image025.png]]
799
800
801 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image026.png]]
802
803
804 * Downlink Commands:
805
806 A9 aa -à Same as AT+MBFUN=aa
807
808
809 ==== RS485 command timeout ====
810
811 Some Modbus device has slow action to send replies. This command is used to configure the RS485-BL to use longer time to wait for their action.
812
813 Default value: 0, range:  0 ~~ 5 seconds
814
815
816 * AT Command:
817
818 AT+CMDDLaa=hex(bb cc)
819
820 Example:
821
822 **AT+CMDDL1=1000** to send the open time to 1000ms
823
824
825 * Downlink Payload:
826
827 0x AA aa bb cc
828
829 Same as: AT+CMDDLaa=hex(bb cc)
830
831 Example:
832
833 0xAA 01 03 E8  à Same as **AT+CMDDL1=1000 ms**
834
835
836 ==== [[Uplink>>path:#downlink_A8]] payload mode ====
837
838 Define to use one uplink or multiple uplinks for the sampling.
839
840 The use of this command please see: [[Compose Uplink payload>>path:#DataUP]]
841
842 * AT Command:
843
844 AT+DATAUP=0
845
846 AT+DATAUP=1
847
848
849 * Downlink Payload:
850
851 0xAD 00   à Same as AT+DATAUP=0
852
853 0xAD 01   à Same as AT+DATAUP=1
854
855
856 ==== Manually trigger an Uplink ====
857
858 Ask device to send an uplink immediately.
859
860 * Downlink Payload:
861
862 0x08 FF, RS485-BL will immediately send an uplink.
863
864
865 ==== Clear RS485 Command ====
866
867 The AT+COMMANDx and AT+DATACUTx settings are stored in special location, user can use below command to clear them.
868
869
870 * AT Command:
871
872 **AT+CMDEAR=mm,nn**   mm: start position of erase ,nn: stop position of erase
873
874 Etc. AT+CMDEAR=1,10 means erase AT+COMMAND1/AT+DATACUT1 to AT+COMMAND10/AT+DATACUT10
875
876 Example screen shot after clear all RS485 commands. 
877
878
879
880 The uplink screen shot is:
881
882 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image023.png]]
883
884
885 * Downlink Payload:
886
887 0x09 aa bb same as AT+CMDEAR=aa,bb
888
889
890 ==== Set Serial Communication Parameters ====
891
892 Set the Rs485 serial communication parameters:
893
894 * AT Command:
895
896 Set Baud Rate:
897
898 AT+BAUDR=9600    ~/~/ Options: (1200,2400,4800,14400,19200,115200)
899
900
901 Set UART parity
902
903 AT+PARITY=0    ~/~/ Option: 0: no parity, 1: odd parity, 2: even parity
904
905
906 Set STOPBIT
907
908 AT+STOPBIT=0    ~/~/ Option: 0 for 1bit; 1 for 1.5 bit ; 2 for 2 bits
909
910
911 * Downlink Payload:
912
913 A7 01 aa bb: Same  AT+BAUDR=hex(aa bb)*100
914
915 Example:
916
917 * A7 01 00 60   same as AT+BAUDR=9600
918 * A7 01 04 80  same as AT+BAUDR=115200
919
920 A7 02 aa: Same as  AT+PARITY=aa  (aa value: 00 , 01 or 02)
921
922 A7 03 aa: Same as  AT+STOPBIT=aa  (aa value: 00 , 01 or 02)
923
924
925 ==== Control output power duration ====
926
927 User can set the output power duration before each sampling.
928
929 * AT Command:
930
931 Example:
932
933 AT+3V3T=1000 ~/~/ 3V3 output power will open 1s before each sampling.
934
935 AT+5VT=1000 ~/~/ +5V output power will open 1s before each sampling.
936
937
938 * LoRaWAN Downlink Command:
939
940 07 01 aa bb  Same as AT+5VT=(aa bb)
941
942 07 02 aa bb  Same as AT+3V3T=(aa bb)
943
944
945
946
947 1.
948 11. Buttons
949
950 |**Button**|**Feature**
951 |**RST**|Reboot RS485-BL
952
953 1.
954 11. +3V3 Output
955
956 RS485-BL has a Controllable +3V3 output, user can use this output to power external sensor.
957
958 The +3V3 output will be valid for every sampling. RS485-BL will enable +3V3 output before all sampling and disable the +3V3 after all sampling. 
959
960
961 The +3V3 output time can be controlled by AT Command.
962
963 **AT+3V3T=1000**
964
965 Means set +3v3 valid time to have 1000ms. So, the real +3v3 output will actually have 1000ms + sampling time for other sensors.
966
967
968 By default, the AT+3V3T=0. This is a special case, means the +3V3 output is always on at any time
969
970
971 1.
972 11. +5V Output
973
974 RS485-BL has a Controllable +5V output, user can use this output to power external sensor.
975
976 The +5V output will be valid for every sampling. RS485-BL will enable +5V output before all sampling and disable the +5v after all sampling. 
977
978
979 The 5V output time can be controlled by AT Command.
980
981 **AT+5VT=1000**
982
983 Means set 5V valid time to have 1000ms. So, the real 5V output will actually have 1000ms + sampling time for other sensors.
984
985
986 By default, the AT+5VT=0. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
987
988
989
990
991 1.
992 11. LEDs
993
994 |**LEDs**|**Feature**
995 |**LED1**|Blink when device transmit a packet.
996
997 1.
998 11. Switch Jumper
999
1000 |**Switch Jumper**|**Feature**
1001 |**SW1**|(((
1002 ISP position: Upgrade firmware via UART
1003
1004 Flash position: Configure device, check running status.
1005 )))
1006 |**SW2**|(((
1007 5V position: set to compatible with 5v I/O.
1008
1009 3.3v position: set to compatible with 3.3v I/O.,
1010 )))
1011
1012 +3.3V: is always ON
1013
1014 +5V: Only open before every sampling. The time is by default, it is AT+5VT=0.  Max open time. 5000 ms.
1015
1016 1. Case Study
1017
1018 User can check this URL for some case studies.
1019
1020 [[http:~~/~~/wiki.dragino.com/index.php?title=APP_RS485_COMMUNICATE_WITH_SENSORS>>url:http://wiki.dragino.com/index.php?title=APP_RS485_COMMUNICATE_WITH_SENSORS]]
1021
1022
1023
1024
1025 1. Use AT Command
1026 11. Access AT Command
1027
1028 RS485-BL supports AT Command set. User can use a USB to TTL adapter plus the 3.5mm Program Cable to connect to RS485-BL to use AT command, as below.
1029
1030 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image027.png]]
1031
1032
1033 In PC, User needs to set **serial tool**(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to **9600** to access to access serial console of RS485-BL. The default password is 123456. Below is the output for reference:
1034
1035 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image028.png]]
1036
1037
1038
1039 More detail AT Command manual can be found at [[AT Command Manual>>path:#AT_COMMAND]]
1040
1041
1042
1043 1.
1044 11. Common AT Command Sequence
1045 111. Multi-channel ABP mode (Use with SX1301/LG308)
1046
1047 If device has not joined network yet:
1048
1049 AT+FDR
1050
1051 AT+NJM=0
1052
1053 ATZ
1054
1055
1056 If device already joined network:
1057
1058 AT+NJM=0
1059
1060 ATZ
1061
1062 1.
1063 11.
1064 111. Single-channel ABP mode (Use with LG01/LG02)
1065
1066 AT+FDR   Reset Parameters to Factory Default, Keys Reserve
1067
1068 AT+NJM=0 Set to ABP mode
1069
1070 AT+ADR=0 Set the Adaptive Data Rate Off
1071
1072 AT+DR=5  Set Data Rate
1073
1074 AT+TDC=60000  Set transmit interval to 60 seconds
1075
1076 AT+CHS=868400000 Set transmit frequency to 868.4Mhz
1077
1078 AT+RX2FQ=868400000 Set RX2Frequency to 868.4Mhz (according to the result from server)
1079
1080 AT+RX2DR=5  Set RX2DR to match the downlink DR from server. see below
1081
1082 AT+DADDR=26 01 1A F1 Set Device Address to 26 01 1A F1, this ID can be found in the LoRa Server portal.
1083
1084 ATZ          Reset MCU
1085
1086 **Note:**
1087
1088 1. Make sure the device is set to ABP mode in the IoT Server.
1089 1. Make sure the LG01/02 gateway RX frequency is exactly the same as AT+CHS setting.
1090 1. Make sure SF / bandwidth setting in LG01/LG02 match the settings of AT+DR. refer [[this link>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_Gateway/&file=LoRaWAN%201.0.3%20Regional%20Parameters.xlsx]] to see what DR means.
1091 1. The command AT+RX2FQ and AT+RX2DR is to let downlink work. to set the correct parameters, user can check the actually downlink parameters to be used. As below. Which shows the RX2FQ should use 868400000 and RX2DR should be 5
1092
1093 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image029.png]]
1094
1095
1096 1. FAQ
1097 11. How to upgrade the image?
1098
1099 The RS485-BL LoRaWAN Controller is shipped with a 3.5mm cable, the cable is used to upload image to RS485-BL to:
1100
1101 * Support new features
1102 * For bug fix
1103 * Change LoRaWAN bands.
1104
1105 Below shows the hardware connection for how to upload an image to RS485-BL:
1106
1107 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image030.png]]
1108
1109 **Step1:** Download [[flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]].
1110
1111 **Step2**: Download the [[LT Image files>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/image/]].
1112
1113 **Step3: **Open flashloader; choose the correct COM port to update.
1114
1115
1116 |(((
1117 HOLD PRO then press the RST button, SYS will be ON, then click next
1118 )))
1119
1120 |(((
1121 Board detected
1122 )))
1123
1124 |(((
1125
1126 )))
1127
1128 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image031.png]] [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image032.png]]
1129
1130
1131
1132 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image033.png]] [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image034.png]]
1133
1134
1135 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image035.png]] [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image036.png]]
1136
1137
1138 1.
1139 11. How to change the LoRa Frequency Bands/Region?
1140
1141 User can follow the introduction for [[how to upgrade image>>path:#upgrade_image]]. When download the images, choose the required image file for download.
1142
1143
1144
1145 1.
1146 11. How many RS485-Slave can RS485-BL connects?
1147
1148 The RS485-BL can support max 32 RS485 devices. Each uplink command of RS485-BL can support max 16 different RS485 command. So RS485-BL can support max 16 RS485 devices pre-program in the device for uplink. For other devices no pre-program, user can use the [[downlink message (type code 0xA8) to poll their info>>path:#downlink_A8]].
1149
1150
1151
1152
1153 1. Trouble Shooting     
1154 11. Downlink doesn’t work, how to solve it?
1155
1156 Please see this link for debug:
1157
1158 [[http:~~/~~/wiki.dragino.com/index.php?title=Main_Page#LoRaWAN_Communication_Debug>>url:http://wiki.dragino.com/index.php?title=Main_Page#LoRaWAN_Communication_Debug]] 
1159
1160
1161
1162 1.
1163 11. Why I can’t join TTN V3 in US915 /AU915 bands?
1164
1165 It might about the channels mapping. Please see for detail.
1166
1167 [[http:~~/~~/wiki.dragino.com/index.php?title=LoRaWAN_Communication_Debug#Notice_of_US915.2FCN470.2FAU915_Frequency_band>>url:http://wiki.dragino.com/index.php?title=LoRaWAN_Communication_Debug#Notice_of_US915.2FCN470.2FAU915_Frequency_band]]
1168
1169
1170
1171 1. Order Info
1172
1173 **Part Number: RS485-BL-XXX**
1174
1175 **XXX:**
1176
1177 * **EU433**: frequency bands EU433
1178 * **EU868**: frequency bands EU868
1179 * **KR920**: frequency bands KR920
1180 * **CN470**: frequency bands CN470
1181 * **AS923**: frequency bands AS923
1182 * **AU915**: frequency bands AU915
1183 * **US915**: frequency bands US915
1184 * **IN865**: frequency bands IN865
1185 * **RU864**: frequency bands RU864
1186 * **KZ865: **frequency bands KZ865
1187
1188 1. Packing Info
1189
1190 **Package Includes**:
1191
1192 * RS485-BL x 1
1193 * Stick Antenna for LoRa RF part x 1
1194 * Program cable x 1
1195
1196 **Dimension and weight**:
1197
1198 * Device Size: 13.5 x 7 x 3 cm
1199 * Device Weight: 105g
1200 * Package Size / pcs : 14.5 x 8 x 5 cm
1201 * Weight / pcs : 170g
1202
1203 1. Support
1204
1205 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1206 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to
1207
1208 [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]]
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0