Version 32.15 by Xiaoling on 2022/06/02 15:26

Show last authors
1 (% style="text-align:center" %)
2 [[image:1653266934636-343.png||height="385" width="385"]]
3
4
5
6 **RS485-LN – RS485 to LoRaWAN Converter User Manual**
7
8
9 **Table of Contents:**
10
11
12
13
14
15 = 1.Introduction =
16
17 == 1.1 What is RS485-LN RS485 to LoRaWAN Converter ==
18
19 (((
20 (((
21 The Dragino RS485-LN is a (% style="color:blue" %)**RS485 to LoRaWAN Converter**(%%). It converts the RS485 signal into LoRaWAN wireless signal which simplify the IoT installation and reduce the installation/maintaining cost.
22 )))
23
24 (((
25 RS485-LN allows user to (% style="color:blue" %)**monitor / control RS485 devices**(%%) and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
26 )))
27
28 (((
29 (% style="color:blue" %)**For data uplink**(%%), RS485-LN sends user-defined commands to RS485 devices and gets the return from the RS485 devices. RS485-LN will process these returns according to user-define rules to get the final payload and upload to LoRaWAN server.
30 )))
31
32 (((
33 (% style="color:blue" %)**For data downlink**(%%), RS485-LN runs in LoRaWAN Class C. When there downlink commands from LoRaWAN server, RS485-LN will forward the commands from LoRaWAN server to RS485 devices.
34
35 (% style="color:blue" %)**Demo Dashboard for RS485-LN**(%%) connect to two energy meters: [[https:~~/~~/app.datacake.de/dashboard/d/58844a26-378d-4c5a-aaf5-b5b5b153447a>>url:https://app.datacake.de/dashboard/d/58844a26-378d-4c5a-aaf5-b5b5b153447a]]
36 )))
37 )))
38
39 [[image:1653267211009-519.png||height="419" width="724"]]
40
41
42 == 1.2 Specifications ==
43
44
45 **Hardware System:**
46
47 * STM32L072CZT6 MCU
48 * SX1276/78 Wireless Chip 
49 * Power Consumption (exclude RS485 device):
50 ** Idle: 32mA@12v
51 ** 20dB Transmit: 65mA@12v
52
53 **Interface for Model:**
54
55 * RS485
56 * Power Input 7~~ 24V DC. 
57
58 **LoRa Spec:**
59
60 * Frequency Range:
61 ** Band 1 (HF): 862 ~~ 1020 Mhz
62 ** Band 2 (LF): 410 ~~ 528 Mhz
63 * 168 dB maximum link budget.
64 * +20 dBm - 100 mW constant RF output vs.
65 * +14 dBm high efficiency PA.
66 * Programmable bit rate up to 300 kbps.
67 * High sensitivity: down to -148 dBm.
68 * Bullet-proof front end: IIP3 = -12.5 dBm.
69 * Excellent blocking immunity.
70 * Low RX current of 10.3 mA, 200 nA register retention.
71 * Fully integrated synthesizer with a resolution of 61 Hz.
72 * FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation.
73 * Built-in bit synchronizer for clock recovery.
74 * Preamble detection.
75 * 127 dB Dynamic Range RSSI.
76 * Automatic RF Sense and CAD with ultra-fast AFC.
77 * Packet engine up to 256 bytes with CRC.
78
79
80
81 == 1.3 Features ==
82
83 * LoRaWAN Class A & Class C protocol (default Class C)
84 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865/RU864
85 * AT Commands to change parameters
86 * Remote configure parameters via LoRa Downlink
87 * Firmware upgradable via program port
88 * Support multiply RS485 devices by flexible rules
89 * Support Modbus protocol
90 * Support Interrupt uplink (Since hardware version v1.2)
91
92
93
94 == 1.4 Applications ==
95
96 * Smart Buildings & Home Automation
97 * Logistics and Supply Chain Management
98 * Smart Metering
99 * Smart Agriculture
100 * Smart Cities
101 * Smart Factory
102
103
104
105 == 1.5 Firmware Change log ==
106
107 [[RS485-LN Image files – Download link and Change log>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/]]
108
109
110 == 1.6 Hardware Change log ==
111
112 (((
113 (((
114 v1.2: Add External Interrupt Pin.
115
116 v1.0: Release
117
118
119 )))
120 )))
121
122 = 2. Power ON Device =
123
124 (((
125 The RS485-LN can be powered by 7 ~~ 24V DC power source. Connection as below
126
127 * Power Source VIN to RS485-LN VIN+
128 * Power Source GND to RS485-LN VIN-
129
130 (((
131 Once there is power, the RS485-LN will be on.
132 )))
133
134 [[image:1653268091319-405.png]]
135
136
137 )))
138
139 = 3. Operation Mode =
140
141 == 3.1 How it works? ==
142
143 (((
144 The RS485-LN is configured as LoRaWAN OTAA Class C mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the RS485-LN. It will auto join the network via OTAA.
145
146
147 )))
148
149 == 3.2 Example to join LoRaWAN network ==
150
151 Here shows an example for how to join the TTN V3 Network. Below is the network structure, we use [[LG308>>url:http://www.dragino.com/products/lora-lorawan-gateway/item/140-lg308.html]] as LoRaWAN gateway here. 
152
153 [[image:1653268155545-638.png||height="334" width="724"]]
154
155
156 (((
157 (((
158 The RS485-LN in this example connected to two RS485 devices for demonstration, user can connect to other RS485 devices via the same method. The connection is as below:
159 )))
160
161 (((
162 485A+ and 485B- of the sensor are connected to RS485A and RA485B of RS485-LN respectively.
163 )))
164
165 [[image:1653268227651-549.png||height="592" width="720"]]
166
167 (((
168 The LG308 is already set to connect to [[TTN V3 network >>path:eu1.cloud.thethings.network/]]. So what we need to now is only configure the TTN V3:
169 )))
170
171 (((
172 **Step 1**: Create a device in TTN V3 with the OTAA keys from RS485-LN.
173 )))
174
175 (((
176 Each RS485-LN is shipped with a sticker with unique device EUI:
177 )))
178 )))
179
180 [[image:1652953462722-299.png]]
181
182 (((
183 (((
184 User can enter this key in their LoRaWAN Server portal. Below is TTN V3 screen shot:
185 )))
186
187 (((
188 Add APP EUI in the application.
189 )))
190 )))
191
192 [[image:image-20220519174512-1.png]]
193
194 [[image:image-20220519174512-2.png||height="323" width="720"]]
195
196 [[image:image-20220519174512-3.png||height="556" width="724"]]
197
198 [[image:image-20220519174512-4.png]]
199
200 You can also choose to create the device manually.
201
202 [[image:1652953542269-423.png||height="710" width="723"]]
203
204 Add APP KEY and DEV EUI
205
206 [[image:1652953553383-907.png||height="514" width="724"]]
207
208
209 (((
210 **Step 2**: Power on RS485-LN and it will auto join to the TTN V3 network. After join success, it will start to upload message to TTN V3 and user can see in the panel.
211 )))
212
213 [[image:1652953568895-172.png||height="232" width="724"]]
214
215
216 == 3.3 Configure Commands to read data ==
217
218 (((
219 (((
220 There are plenty of RS485 devices in the market and each device has different command to read the valid data. To support these devices in flexible, RS485-LN supports flexible command set. User can use [[AT Commands>>path:#AT_COMMAND]] or LoRaWAN Downlink Command to configure what commands RS485-LN should send for each sampling and how to handle the return from RS485 devices.
221 )))
222
223 (((
224 (% style="color:red" %)Note: below description and commands are for firmware version >v1.1, if you have firmware version v1.0. Please check the [[user manual v1.0>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/&file=RS485-LN_UserManual_v1.0.1.pdf]] or upgrade the firmware to v1.1
225
226
227 )))
228 )))
229
230 === 3.3.1 onfigure UART settings for RS485 or TTL communication ===
231
232 To use RS485-LN to read data from RS485 sensors, connect the RS485-LN A/B traces to the sensors. And user need to make sure RS485-LN use the match UART setting to access the sensors. The related commands for UART settings are:
233
234 (% border="1" style="background-color:#ffffcc; color:green; width:795px" %)
235 |(((
236 **AT Commands**
237 )))|(% style="width:285px" %)(((
238 **Description**
239 )))|(% style="width:347px" %)(((
240 **Example**
241 )))
242 |(((
243 AT+BAUDR
244 )))|(% style="width:285px" %)(((
245 Set the baud rate (for RS485 connection). Default Value is: 9600.
246 )))|(% style="width:347px" %)(((
247 (((
248 AT+BAUDR=9600
249 )))
250
251 (((
252 Options: (1200,2400,4800,14400,19200,115200)
253 )))
254 )))
255 |(((
256 AT+PARITY
257 )))|(% style="width:285px" %)(((
258 Set UART parity (for RS485 connection)
259 )))|(% style="width:347px" %)(((
260 (((
261 AT+PARITY=0
262 )))
263
264 (((
265 Option: 0: no parity, 1: odd parity, 2: even parity
266 )))
267 )))
268 |(((
269 AT+STOPBIT
270 )))|(% style="width:285px" %)(((
271 (((
272 Set serial stopbit (for RS485 connection)
273 )))
274
275 (((
276
277 )))
278 )))|(% style="width:347px" %)(((
279 (((
280 AT+STOPBIT=0 for 1bit
281 )))
282
283 (((
284 AT+STOPBIT=1 for 1.5 bit
285 )))
286
287 (((
288 AT+STOPBIT=2 for 2 bits
289 )))
290 )))
291
292 === 3.3.2 Configure sensors ===
293
294 (((
295 (((
296 Some sensors might need to configure before normal operation. User can configure such sensor via PC and RS485 adapter or through RS485-LN AT Commands (% style="color:#4f81bd" %)**AT+CFGDEV**(%%). Each (% style="color:#4f81bd" %)**AT+CFGDEV **(%%)equals to send a RS485 command to sensors. This command will only run when user input it and won’t run during each sampling.
297 )))
298 )))
299
300 (% border="1" style="background-color:#ffffcc; color:green; width:806px" %)
301 |**AT Commands**|(% style="width:418px" %)**Description**|(% style="width:256px" %)**Example**
302 |AT+CFGDEV|(% style="width:418px" %)(((
303 This command is used to configure the RS485/TTL devices; they won’t be used during sampling.
304
305 AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,
306
307 mm: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command
308 )))|(% style="width:256px" %)AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m
309
310 === 3.3.3 Configure read commands for each sampling ===
311
312 (((
313 RS485-BL is a battery powered device; it will sleep most of time. And wake up on each period and read RS485 / TTL sensor data and uplink.
314 )))
315
316 (((
317 During each sampling, we need to confirm what commands we need to send to the sensors to read data. After the RS485/TTL sensors send back the value, it normally includes some bytes and we only need a few from them for a shorten payload.
318 )))
319
320 (((
321 To save the LoRaWAN network bandwidth, we might need to read data from different sensors and combine their valid value into a short payload.
322 )))
323
324 (((
325 This section describes how to achieve above goals.
326 )))
327
328 (((
329 During each sampling, the RS485-BL can support 15 commands to read sensors. And combine the return to one or several uplink payloads.
330 )))
331
332 (((
333 **Command from RS485-BL to Sensor:**
334 )))
335
336 (((
337 RS485-BL can send out pre-set max 15 strings via **AT+COMMAD1**, **ATCOMMAND2**,…, to **AT+COMMANDF** . All commands are of same grammar.
338 )))
339
340 (((
341 **Handle return from sensors to RS485-BL**:
342 )))
343
344 (((
345 After RS485-BL send out a string to sensor, RS485-BL will wait for the return from RS485 or TTL sensor. And user can specify how to handle the return, by **AT+DATACUT or AT+SEARCH commands**
346 )))
347
348 * (((
349 **AT+DATACUT**
350 )))
351
352 (((
353 When the return value from sensor have fix length and we know which position the valid value we should get, we can use AT+DATACUT command.
354 )))
355
356 * (((
357 **AT+SEARCH**
358 )))
359
360 (((
361 When the return value from sensor is dynamic length and we are not sure which bytes the valid data is, instead, we know what value the valid value following. We can use AT+SEARCH to search the valid value in the return string.
362 )))
363
364 (((
365 **Define wait timeout:**
366 )))
367
368 (((
369 Some RS485 device might has longer delay on reply, so user can use AT+CMDDL to set the timeout for getting reply after the RS485 command is sent. For example, AT+CMDDL1=1000 to send the open time to 1000ms
370 )))
371
372 (((
373 After we got the valid value from each RS485 commands, we need to combine them together with the command **AT+DATAUP**.
374 )))
375
376 **Examples:**
377
378 Below are examples for the how above AT Commands works.
379
380 **AT+COMMANDx : **This command will be sent to RS485/TTL devices during each sampling, Max command length is 14 bytes. The grammar is:
381
382 (% border="1" class="table-bordered" %)
383 |(((
384 **AT+COMMANDx=xx xx xx xx xx xx xx xx xx xx xx xx,m**
385
386 **xx xx xx xx xx xx xx xx xx xx xx xx: The RS485 command to be sent**
387
388 **m: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command**
389 )))
390
391 (((
392 For example, if we have a RS485 sensor. The command to get sensor value is: 01 03 0B B8 00 02 46 0A. Where 01 03 0B B8 00 02 is the Modbus command to read the register 0B B8 where stored the sensor value. The 46 0A is the CRC-16/MODBUS which calculate manually.
393 )))
394
395 (((
396 In the RS485-BL, we should use this command AT+COMMAND1=01 03 0B B8 00 02,1 for the same.
397 )))
398
399 (((
400 **AT+SEARCHx**: This command defines how to handle the return from AT+COMMANDx.
401 )))
402
403 (% border="1" class="table-bordered" %)
404 |(((
405 **AT+SEARCHx=aa,xx xx xx xx xx**
406
407 * **aa: 1: prefix match mode; 2: prefix and suffix match mode**
408 * **xx xx xx xx xx: match string. Max 5 bytes for prefix and 5 bytes for suffix**
409
410
411 )))
412
413 **Examples:**
414
415 ~1. For a return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
416
417 If we set AT+SEARCH1=1,1E 56 34.      (max 5 bytes for prefix)
418
419 The valid data will be all bytes after 1E 56 34 , so it is (% style="background-color:yellow" %)** 2e 30 58 5f 36 41 30 31 00 49**
420
421 [[image:1653269403619-508.png]]
422
423 2. For a return string from AT+COMMAND1:  16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
424
425 If we set AT+SEARCH1=2, 1E 56 34+31 00 49
426
427 Device will search the bytes between 1E 56 34 and 31 00 49. So it is (% style="background-color:yellow" %)** 2e 30 58 5f 36 41 30**
428
429 [[image:1653269438444-278.png]]
430
431 **AT+DATACUTx : **This command defines how to handle the return from AT+COMMANDx, max return length is 45 bytes.
432
433 |(((
434 **AT+DATACUTx=a,b,c**
435
436 * **a: length for the return of AT+COMMAND**
437 * **b:1: grab valid value by byte, max 6 bytes. 2: grab valid value by bytes section, max 3 sections.**
438 * **c: define the position for valid value.  **
439 )))
440
441 Examples:
442
443 * Grab bytes:
444
445 [[image:1653269551753-223.png||height="311" width="717"]]
446
447 * Grab a section.
448
449 [[image:1653269568276-930.png||height="325" width="718"]]
450
451 * Grab different sections.
452
453 [[image:1653269593172-426.png||height="303" width="725"]]
454
455 (% style="color:red" %)**Note:**
456
457 AT+SEARCHx and AT+DATACUTx can be used together, if both commands are set, RS485-BL will first process AT+SEARCHx on the return string and get a temporary string, and then process AT+DATACUTx on this temporary string to get the final payload. In this case, AT+DATACUTx need to set to format AT+DATACUTx=0,xx,xx where the return bytes set to 0.
458
459 Example:
460
461 (% style="color:red" %)AT+COMMAND1=11 01 1E D0,0
462
463 (% style="color:red" %)AT+SEARCH1=1,1E 56 34
464
465 (% style="color:red" %)AT+DATACUT1=0,2,1~~5
466
467 (% style="color:red" %)Return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
468
469 (% style="color:red" %)String after SEARCH command: 2e 30 58 5f 36 41 30 31 00 49
470
471 (% style="color:red" %)Valid payload after DataCUT command: 2e 30 58 5f 36
472
473 [[image:1653269618463-608.png]]
474
475 === 3.3.4 Compose the uplink payload ===
476
477 (((
478 Through AT+COMMANDx and AT+DATACUTx we got valid value from each RS485 commands, Assume these valid value are RETURN1, RETURN2, .., to RETURNx. The next step is how to compose the LoRa Uplink Payload by these RETURNs. The command is **AT+DATAUP.**
479 )))
480
481 (((
482 (% style="color:#4f81bd" %)**Examples: AT+DATAUP=0**
483 )))
484
485 (((
486 Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**A SIGNLE UPLINK**.
487 )))
488
489 (((
490 Final Payload is
491 )))
492
493 (((
494 (% style="color:#4f81bd" %)**Battery Info+PAYVER + VALID Value from RETURN1 + Valid Value from RETURN2 + … + RETURNx**
495 )))
496
497 (((
498 Where PAYVER is defined by AT+PAYVER, below is an example screen shot.
499 )))
500
501 [[image:1653269759169-150.png||height="513" width="716"]]
502
503 (% style="color:#4f81bd" %)**Examples: AT+DATAUP=1**
504
505 Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**Multiply UPLINKs**.
506
507 Final Payload is
508
509 (% style="color:#4f81bd" %)**Battery Info+PAYVER + PAYLOAD COUNT + PAYLOAD# + DATA**
510
511 1. Battery Info (2 bytes): Battery voltage
512 1. PAYVER (1 byte): Defined by AT+PAYVER
513 1. PAYLOAD COUNT (1 byte): Total how many uplinks of this sampling.
514 1. PAYLOAD# (1 byte): Number of this uplink. (from 0,1,2,3…,to PAYLOAD COUNT)
515 1. DATA: Valid value: max 6 bytes(US915 version here, Notice*!) for each uplink so each uplink <= 11 bytes. For the last uplink, DATA will might less than 6 bytes
516
517 [[image:1653269916228-732.png||height="433" width="711"]]
518
519
520 So totally there will be 3 uplinks for this sampling, each uplink includes 6 bytes DATA
521
522 DATA1=RETURN1 Valid Value = (% style="background-color:green; color:white" %)20 20 0a 33 90 41
523
524 DATA2=1^^st^^ ~~ 6^^th^^ byte of Valid value of RETURN10=(% style="background-color:green; color:white" %) 02 aa 05 81 0a 20
525
526 DATA3=7^^th^^ ~~ 11^^th^^ bytes of Valid value of RETURN10 = (% style="background-color:green; color:white" %)20 20 20 2d 30
527
528 Below are the uplink payloads:
529
530 [[image:1653270130359-810.png]]
531
532
533 (% style="color:red" %)**Notice: the Max bytes is according to the max support bytes in different Frequency Bands for lowest SF. As below:**
534
535 ~* For AU915/AS923 bands, if UplinkDwell time=0, max 51 bytes for each uplink ( so 51 -5 = 46 max valid date)
536
537 * For AU915/AS923 bands, if UplinkDwell time=1, max 11 bytes for each uplink ( so 11 -5 = 6 max valid date).
538
539 * For US915 band, max 11 bytes for each uplink ( so 11 -5 = 6 max valid date).
540
541 ~* For all other bands: max 51 bytes for each uplink  ( so 51 -5 = 46 max valid date).
542
543 === 3.3.5 Uplink on demand ===
544
545 Except uplink periodically, RS485-BL is able to uplink on demand. The server sends downlink command to RS485-BL and RS485 will uplink data base on the command.
546
547 Downlink control command:
548
549 [[0x08 command>>path:#downlink_08]]: Poll an uplink with current command set in RS485-BL.
550
551 [[0xA8 command>>path:#downlink_A8]]: Send a command to RS485-BL and uplink the output from sensors.
552
553
554
555 1.
556 11.
557 111. Uplink on Interrupt
558
559 Put the interrupt sensor between 3.3v_out and GPIO ext.[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image022.png]]
560
561 AT+INTMOD=0  Disable Interrupt
562
563 AT+INTMOD=1  Interrupt trigger by rising or falling edge.
564
565 AT+INTMOD=2  Interrupt trigger by falling edge. ( Default Value)
566
567 AT+INTMOD=3  Interrupt trigger by rising edge.
568
569
570 1.
571 11. Uplink Payload
572
573 |**Size(bytes)**|**2**|**1**|**Length depends on the return from the commands**
574 |Value|(((
575 Battery(mV)
576
577 &
578
579 Interrupt _Flag
580 )))|(((
581 PAYLOAD_VER
582
583
584 )))|If the valid payload is too long and exceed the maximum support payload length in server, server will show payload not provided in the LoRaWAN server.
585
586 Below is the decoder for the first 3 bytes. The rest bytes are dynamic depends on different RS485 sensors.
587
588
589 function Decoder(bytes, port) {
590
591 ~/~/Payload Formats of RS485-BL Deceive
592
593 return {
594
595 ~/~/Battery,units:V
596
597 BatV:((bytes[0]<<8 | bytes[1])&0x7fff)/1000,
598
599 ~/~/GPIO_EXTI 
600
601 EXTI_Trigger:(bytes[0] & 0x80)? "TRUE":"FALSE",
602
603 ~/~/payload of version
604
605 Pay_ver:bytes[2],
606
607 };
608
609 }
610
611
612
613
614
615
616
617 TTN V3 uplink screen shot.
618
619 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image023.png]]
620
621 1.
622 11. Configure RS485-BL via AT or Downlink
623
624 User can configure RS485-BL via [[AT Commands >>path:#_​Using_the_AT]]or LoRaWAN Downlink Commands
625
626 There are two kinds of Commands:
627
628 * **Common Commands**: They should be available for each sensor, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: http:~/~/wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands
629
630 * **Sensor Related Commands**: These commands are special designed for RS485-BL.  User can see these commands below:
631
632 1.
633 11.
634 111. Common Commands:
635
636 They should be available for each of Dragino Sensors, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: [[http:~~/~~/wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands>>url:http://wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands]]
637
638
639 1.
640 11.
641 111. Sensor related commands:
642
643 ==== Choose Device Type (RS485 or TTL) ====
644
645 RS485-BL can connect to either RS485 sensors or TTL sensor. User need to specify what type of sensor need to connect.
646
647 * AT Command
648
649 **AT+MOD=1** ~/~/ Set to support RS485-MODBUS type sensors. User can connect multiply RS485 , Modbus sensors to the A / B pins.
650
651 **AT+MOD=2** ~/~/ Set to support TTL Level sensors, User can connect one TTL Sensor to the TXD/RXD/GND pins.
652
653
654 * Downlink Payload
655
656 **0A aa**     à same as AT+MOD=aa
657
658
659
660 ==== [[RS485 Debug Command>>path:#downlink_A8]] (AT+CFGDEV) ====
661
662 This command is used to configure the RS485 or TTL sensors; they won’t be used during sampling.
663
664 * AT Command
665
666 AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m
667
668 m: 0: no CRC; 1: add CRC-16/MODBUS in the end of this command.
669
670
671
672 * Downlink Payload
673
674 Format: A8 MM NN XX XX XX XX YY
675
676 Where:
677
678 * MM: 1: add CRC-16/MODBUS ; 0: no CRC
679 * NN: The length of RS485 command
680 * XX XX XX XX: RS485 command total NN bytes
681 * YY: How many bytes will be uplink from the return of this RS485 command, if YY=0, RS485-BL will execute the downlink command without uplink; if YY>0, RS485-BL will uplink total YY bytes from the output of this RS485 command
682
683 **Example 1:**
684
685 To connect a Modbus Alarm with below commands.
686
687 * The command to active alarm is: 0A 05 00 04 00 01 4C B0. Where 0A 05 00 04 00 01 is the Modbus command to read the register 00 40 where stored the DI status. The 4C B0 is the CRC-16/MODBUS which calculate manually.
688
689 * The command to deactivate alarm is: 0A 05 00 04 00 00 8D 70. Where 0A 05 00 04 00 00 is the Modbus command to read the register 00 40 where stored the DI status. The 8D 70 is the CRC-16/MODBUS which calculate manually.
690
691 So if user want to use downlink command to control to RS485 Alarm, he can use:
692
693 **A8 01 06 0A 05 00 04 00 01 00**: to activate the RS485 Alarm
694
695 **A8 01 06 0A 05 00 04 00 00 00**: to deactivate the RS485 Alarm
696
697 A8 is type code and 01 means add CRC-16/MODBUS at the end, the 3^^rd^^ byte is 06, means the next 6 bytes are the command to be sent to the RS485 network, the final byte 00 means this command don’t need to acquire output.
698
699
700 **Example 2:**
701
702 Check TTL Sensor return:
703
704 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image024.png]]
705
706
707
708
709 ==== Set Payload version ====
710
711 This is the first byte of the uplink payload. RS485-BL can connect to different sensors. User can set the PAYVER field to tell server how to decode the current payload.
712
713 * AT Command:
714
715 AT+PAYVER: Set PAYVER field = 1
716
717
718 * Downlink Payload:
719
720 0xAE 01   à Set PAYVER field =  0x01
721
722 0xAE 0F   à Set PAYVER field =  0x0F
723
724
725 ==== Set RS485 Sampling Commands ====
726
727 AT+COMMANDx, AT+DATACUTx and AT+SEARCHx
728
729 These three commands are used to configure how the RS485-BL polling data from Modbus device. Detail of usage please see : [[polling RS485 device>>path:#polling_485]].
730
731
732 * AT Command:
733
734 AT+COMMANDx: Configure RS485 read command to sensor.
735
736 AT+DATACUTx: Configure how to handle return from RS485 devices.
737
738 AT+SEARCHx: Configure search command
739
740
741 * Downlink Payload:
742
743 0xAF downlink command can be used to set AT+COMMANDx or AT+DATACUTx.
744
745 Note: if user use AT+COMMANDx to add a new command, he also need to send AT+DATACUTx downlink.
746
747 Format: AF MM NN LL XX XX XX XX YY
748
749 Where:
750
751 * MM: the ATCOMMAND or AT+DATACUT to be set. Value from 01 ~~ 0F,
752 * NN: 0: no CRC; 1: add CRC-16/MODBUS ; 2: set the AT+DATACUT value.
753 * LL: The length of AT+COMMAND or AT+DATACUT command
754 * XX XX XX XX: AT+COMMAND or AT+DATACUT command
755 * YY: If YY=0, RS485-BL will execute the downlink command without uplink; if YY=1, RS485-BL will execute an uplink after got this command.
756
757 Example:
758
759 **AF 03 01 06 0A 05 00 04 00 01 00**: Same as AT+COMMAND3=0A 05 00 04 00 01,1
760
761 **AF 03 02 06 10 01 05 06 09 0A 00**: Same as AT+DATACUT3=**16**,**1**,**5+6+9+10**
762
763 **AF 03 02 06 0B 02 05 07 08 0A 00**: Same as AT+DATACUT3=**11**,**2**,**5~~7+8~~10**
764
765
766 0xAB downlink command can be used for set AT+SEARCHx
767
768 Example: **AB aa 01 03 xx xx xx** (03 here means there are total 3 bytes after 03) So
769
770 * AB aa 01 03 xx xx xx  same as AT+SEARCHaa=1,xx xx xx
771 * AB aa 02 03 xx xx xx 02 yy yy(03 means there are 3 bytes after 03, they are xx xx xx;02 means there are 2 bytes after 02, they are yy yy) so the commands
772
773 **AB aa 02 03 xx xx xx 02 yy yy**  same as **AT+SEARCHaa=2,xx xx xx+yy yy**
774
775
776 ==== Fast command to handle MODBUS device ====
777
778 AT+MBFUN is valid since v1.3 firmware version. The command is for fast configure to read Modbus devices. It is only valid for the devices which follow the [[MODBUS-RTU protocol>>url:https://www.modbustools.com/modbus.html]].
779
780 This command is valid since v1.3 firmware version
781
782
783 AT+MBFUN has only two value:
784
785 * AT+MBFUN=1: Enable Modbus reading. And get response base on the MODBUS return
786
787 AT+MBFUN=1, device can auto read the Modbus function code: 01, 02, 03 or 04. AT+MBFUN has lower priority vs AT+DATACUT command. If AT+DATACUT command is configured, AT+MBFUN will be ignore.
788
789 * AT+MBFUN=0: Disable Modbus fast reading.
790
791 Example:
792
793 * AT+MBFUN=1 and AT+DATACUT1/AT+DATACUT2 are not configure (0,0,0).
794 * AT+COMMAND1= 01 03 00 10 00 08,1 ~-~-> read slave address 01 , function code 03, start address 00 01, quantity of registers 00 08.
795 * AT+COMMAND2= 01 02 00 40 00 10,1 ~-~-> read slave address 01 , function code 02, start address 00 40, quantity of inputs 00 10.
796
797 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image025.png]]
798
799
800 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image026.png]]
801
802
803 * Downlink Commands:
804
805 A9 aa -à Same as AT+MBFUN=aa
806
807
808 ==== RS485 command timeout ====
809
810 Some Modbus device has slow action to send replies. This command is used to configure the RS485-BL to use longer time to wait for their action.
811
812 Default value: 0, range:  0 ~~ 5 seconds
813
814
815 * AT Command:
816
817 AT+CMDDLaa=hex(bb cc)
818
819 Example:
820
821 **AT+CMDDL1=1000** to send the open time to 1000ms
822
823
824 * Downlink Payload:
825
826 0x AA aa bb cc
827
828 Same as: AT+CMDDLaa=hex(bb cc)
829
830 Example:
831
832 0xAA 01 03 E8  à Same as **AT+CMDDL1=1000 ms**
833
834
835 ==== [[Uplink>>path:#downlink_A8]] payload mode ====
836
837 Define to use one uplink or multiple uplinks for the sampling.
838
839 The use of this command please see: [[Compose Uplink payload>>path:#DataUP]]
840
841 * AT Command:
842
843 AT+DATAUP=0
844
845 AT+DATAUP=1
846
847
848 * Downlink Payload:
849
850 0xAD 00   à Same as AT+DATAUP=0
851
852 0xAD 01   à Same as AT+DATAUP=1
853
854
855 ==== Manually trigger an Uplink ====
856
857 Ask device to send an uplink immediately.
858
859 * Downlink Payload:
860
861 0x08 FF, RS485-BL will immediately send an uplink.
862
863
864 ==== Clear RS485 Command ====
865
866 The AT+COMMANDx and AT+DATACUTx settings are stored in special location, user can use below command to clear them.
867
868
869 * AT Command:
870
871 **AT+CMDEAR=mm,nn**   mm: start position of erase ,nn: stop position of erase
872
873 Etc. AT+CMDEAR=1,10 means erase AT+COMMAND1/AT+DATACUT1 to AT+COMMAND10/AT+DATACUT10
874
875 Example screen shot after clear all RS485 commands. 
876
877
878
879 The uplink screen shot is:
880
881 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image023.png]]
882
883
884 * Downlink Payload:
885
886 0x09 aa bb same as AT+CMDEAR=aa,bb
887
888
889 ==== Set Serial Communication Parameters ====
890
891 Set the Rs485 serial communication parameters:
892
893 * AT Command:
894
895 Set Baud Rate:
896
897 AT+BAUDR=9600    ~/~/ Options: (1200,2400,4800,14400,19200,115200)
898
899
900 Set UART parity
901
902 AT+PARITY=0    ~/~/ Option: 0: no parity, 1: odd parity, 2: even parity
903
904
905 Set STOPBIT
906
907 AT+STOPBIT=0    ~/~/ Option: 0 for 1bit; 1 for 1.5 bit ; 2 for 2 bits
908
909
910 * Downlink Payload:
911
912 A7 01 aa bb: Same  AT+BAUDR=hex(aa bb)*100
913
914 Example:
915
916 * A7 01 00 60   same as AT+BAUDR=9600
917 * A7 01 04 80  same as AT+BAUDR=115200
918
919 A7 02 aa: Same as  AT+PARITY=aa  (aa value: 00 , 01 or 02)
920
921 A7 03 aa: Same as  AT+STOPBIT=aa  (aa value: 00 , 01 or 02)
922
923
924 ==== Control output power duration ====
925
926 User can set the output power duration before each sampling.
927
928 * AT Command:
929
930 Example:
931
932 AT+3V3T=1000 ~/~/ 3V3 output power will open 1s before each sampling.
933
934 AT+5VT=1000 ~/~/ +5V output power will open 1s before each sampling.
935
936
937 * LoRaWAN Downlink Command:
938
939 07 01 aa bb  Same as AT+5VT=(aa bb)
940
941 07 02 aa bb  Same as AT+3V3T=(aa bb)
942
943
944
945
946 1.
947 11. Buttons
948
949 |**Button**|**Feature**
950 |**RST**|Reboot RS485-BL
951
952 1.
953 11. +3V3 Output
954
955 RS485-BL has a Controllable +3V3 output, user can use this output to power external sensor.
956
957 The +3V3 output will be valid for every sampling. RS485-BL will enable +3V3 output before all sampling and disable the +3V3 after all sampling. 
958
959
960 The +3V3 output time can be controlled by AT Command.
961
962 **AT+3V3T=1000**
963
964 Means set +3v3 valid time to have 1000ms. So, the real +3v3 output will actually have 1000ms + sampling time for other sensors.
965
966
967 By default, the AT+3V3T=0. This is a special case, means the +3V3 output is always on at any time
968
969
970 1.
971 11. +5V Output
972
973 RS485-BL has a Controllable +5V output, user can use this output to power external sensor.
974
975 The +5V output will be valid for every sampling. RS485-BL will enable +5V output before all sampling and disable the +5v after all sampling. 
976
977
978 The 5V output time can be controlled by AT Command.
979
980 **AT+5VT=1000**
981
982 Means set 5V valid time to have 1000ms. So, the real 5V output will actually have 1000ms + sampling time for other sensors.
983
984
985 By default, the AT+5VT=0. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
986
987
988
989
990 1.
991 11. LEDs
992
993 |**LEDs**|**Feature**
994 |**LED1**|Blink when device transmit a packet.
995
996 1.
997 11. Switch Jumper
998
999 |**Switch Jumper**|**Feature**
1000 |**SW1**|(((
1001 ISP position: Upgrade firmware via UART
1002
1003 Flash position: Configure device, check running status.
1004 )))
1005 |**SW2**|(((
1006 5V position: set to compatible with 5v I/O.
1007
1008 3.3v position: set to compatible with 3.3v I/O.,
1009 )))
1010
1011 +3.3V: is always ON
1012
1013 +5V: Only open before every sampling. The time is by default, it is AT+5VT=0.  Max open time. 5000 ms.
1014
1015 1. Case Study
1016
1017 User can check this URL for some case studies.
1018
1019 [[http:~~/~~/wiki.dragino.com/index.php?title=APP_RS485_COMMUNICATE_WITH_SENSORS>>url:http://wiki.dragino.com/index.php?title=APP_RS485_COMMUNICATE_WITH_SENSORS]]
1020
1021
1022
1023
1024 1. Use AT Command
1025 11. Access AT Command
1026
1027 RS485-BL supports AT Command set. User can use a USB to TTL adapter plus the 3.5mm Program Cable to connect to RS485-BL to use AT command, as below.
1028
1029 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image027.png]]
1030
1031
1032 In PC, User needs to set **serial tool**(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to **9600** to access to access serial console of RS485-BL. The default password is 123456. Below is the output for reference:
1033
1034 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image028.png]]
1035
1036
1037
1038 More detail AT Command manual can be found at [[AT Command Manual>>path:#AT_COMMAND]]
1039
1040
1041
1042 1.
1043 11. Common AT Command Sequence
1044 111. Multi-channel ABP mode (Use with SX1301/LG308)
1045
1046 If device has not joined network yet:
1047
1048 AT+FDR
1049
1050 AT+NJM=0
1051
1052 ATZ
1053
1054
1055 If device already joined network:
1056
1057 AT+NJM=0
1058
1059 ATZ
1060
1061 1.
1062 11.
1063 111. Single-channel ABP mode (Use with LG01/LG02)
1064
1065 AT+FDR   Reset Parameters to Factory Default, Keys Reserve
1066
1067 AT+NJM=0 Set to ABP mode
1068
1069 AT+ADR=0 Set the Adaptive Data Rate Off
1070
1071 AT+DR=5  Set Data Rate
1072
1073 AT+TDC=60000  Set transmit interval to 60 seconds
1074
1075 AT+CHS=868400000 Set transmit frequency to 868.4Mhz
1076
1077 AT+RX2FQ=868400000 Set RX2Frequency to 868.4Mhz (according to the result from server)
1078
1079 AT+RX2DR=5  Set RX2DR to match the downlink DR from server. see below
1080
1081 AT+DADDR=26 01 1A F1 Set Device Address to 26 01 1A F1, this ID can be found in the LoRa Server portal.
1082
1083 ATZ          Reset MCU
1084
1085 **Note:**
1086
1087 1. Make sure the device is set to ABP mode in the IoT Server.
1088 1. Make sure the LG01/02 gateway RX frequency is exactly the same as AT+CHS setting.
1089 1. Make sure SF / bandwidth setting in LG01/LG02 match the settings of AT+DR. refer [[this link>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_Gateway/&file=LoRaWAN%201.0.3%20Regional%20Parameters.xlsx]] to see what DR means.
1090 1. The command AT+RX2FQ and AT+RX2DR is to let downlink work. to set the correct parameters, user can check the actually downlink parameters to be used. As below. Which shows the RX2FQ should use 868400000 and RX2DR should be 5
1091
1092 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image029.png]]
1093
1094
1095 1. FAQ
1096 11. How to upgrade the image?
1097
1098 The RS485-BL LoRaWAN Controller is shipped with a 3.5mm cable, the cable is used to upload image to RS485-BL to:
1099
1100 * Support new features
1101 * For bug fix
1102 * Change LoRaWAN bands.
1103
1104 Below shows the hardware connection for how to upload an image to RS485-BL:
1105
1106 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image030.png]]
1107
1108 **Step1:** Download [[flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]].
1109
1110 **Step2**: Download the [[LT Image files>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/image/]].
1111
1112 **Step3: **Open flashloader; choose the correct COM port to update.
1113
1114
1115 |(((
1116 HOLD PRO then press the RST button, SYS will be ON, then click next
1117 )))
1118
1119 |(((
1120 Board detected
1121 )))
1122
1123 |(((
1124
1125 )))
1126
1127 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image031.png]] [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image032.png]]
1128
1129
1130
1131 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image033.png]] [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image034.png]]
1132
1133
1134 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image035.png]] [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image036.png]]
1135
1136
1137 1.
1138 11. How to change the LoRa Frequency Bands/Region?
1139
1140 User can follow the introduction for [[how to upgrade image>>path:#upgrade_image]]. When download the images, choose the required image file for download.
1141
1142
1143
1144 1.
1145 11. How many RS485-Slave can RS485-BL connects?
1146
1147 The RS485-BL can support max 32 RS485 devices. Each uplink command of RS485-BL can support max 16 different RS485 command. So RS485-BL can support max 16 RS485 devices pre-program in the device for uplink. For other devices no pre-program, user can use the [[downlink message (type code 0xA8) to poll their info>>path:#downlink_A8]].
1148
1149
1150
1151
1152 1. Trouble Shooting     
1153 11. Downlink doesn’t work, how to solve it?
1154
1155 Please see this link for debug:
1156
1157 [[http:~~/~~/wiki.dragino.com/index.php?title=Main_Page#LoRaWAN_Communication_Debug>>url:http://wiki.dragino.com/index.php?title=Main_Page#LoRaWAN_Communication_Debug]] 
1158
1159
1160
1161 1.
1162 11. Why I can’t join TTN V3 in US915 /AU915 bands?
1163
1164 It might about the channels mapping. Please see for detail.
1165
1166 [[http:~~/~~/wiki.dragino.com/index.php?title=LoRaWAN_Communication_Debug#Notice_of_US915.2FCN470.2FAU915_Frequency_band>>url:http://wiki.dragino.com/index.php?title=LoRaWAN_Communication_Debug#Notice_of_US915.2FCN470.2FAU915_Frequency_band]]
1167
1168
1169
1170 1. Order Info
1171
1172 **Part Number: RS485-BL-XXX**
1173
1174 **XXX:**
1175
1176 * **EU433**: frequency bands EU433
1177 * **EU868**: frequency bands EU868
1178 * **KR920**: frequency bands KR920
1179 * **CN470**: frequency bands CN470
1180 * **AS923**: frequency bands AS923
1181 * **AU915**: frequency bands AU915
1182 * **US915**: frequency bands US915
1183 * **IN865**: frequency bands IN865
1184 * **RU864**: frequency bands RU864
1185 * **KZ865: **frequency bands KZ865
1186
1187 1. Packing Info
1188
1189 **Package Includes**:
1190
1191 * RS485-BL x 1
1192 * Stick Antenna for LoRa RF part x 1
1193 * Program cable x 1
1194
1195 **Dimension and weight**:
1196
1197 * Device Size: 13.5 x 7 x 3 cm
1198 * Device Weight: 105g
1199 * Package Size / pcs : 14.5 x 8 x 5 cm
1200 * Weight / pcs : 170g
1201
1202 1. Support
1203
1204 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1205 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to
1206
1207 [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]]
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0