Version 32.14 by Xiaoling on 2022/06/02 15:26

Show last authors
1 (% style="text-align:center" %)
2 [[image:1653266934636-343.png||height="385" width="385"]]
3
4
5
6 **RS485-LN – RS485 to LoRaWAN Converter User Manual**
7
8
9 **Table of Contents:**
10
11
12
13
14
15 = 1.Introduction =
16
17 == 1.1 What is RS485-LN RS485 to LoRaWAN Converter ==
18
19 (((
20 (((
21 The Dragino RS485-LN is a (% style="color:blue" %)**RS485 to LoRaWAN Converter**(%%). It converts the RS485 signal into LoRaWAN wireless signal which simplify the IoT installation and reduce the installation/maintaining cost.
22 )))
23
24 (((
25 RS485-LN allows user to (% style="color:blue" %)**monitor / control RS485 devices**(%%) and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
26 )))
27
28 (((
29 (% style="color:blue" %)**For data uplink**(%%), RS485-LN sends user-defined commands to RS485 devices and gets the return from the RS485 devices. RS485-LN will process these returns according to user-define rules to get the final payload and upload to LoRaWAN server.
30 )))
31
32 (((
33 (% style="color:blue" %)**For data downlink**(%%), RS485-LN runs in LoRaWAN Class C. When there downlink commands from LoRaWAN server, RS485-LN will forward the commands from LoRaWAN server to RS485 devices.
34
35 (% style="color:blue" %)**Demo Dashboard for RS485-LN**(%%) connect to two energy meters: [[https:~~/~~/app.datacake.de/dashboard/d/58844a26-378d-4c5a-aaf5-b5b5b153447a>>url:https://app.datacake.de/dashboard/d/58844a26-378d-4c5a-aaf5-b5b5b153447a]]
36 )))
37 )))
38
39 [[image:1653267211009-519.png||height="419" width="724"]]
40
41
42 == 1.2 Specifications ==
43
44
45 **Hardware System:**
46
47 * STM32L072CZT6 MCU
48 * SX1276/78 Wireless Chip 
49 * Power Consumption (exclude RS485 device):
50 ** Idle: 32mA@12v
51 ** 20dB Transmit: 65mA@12v
52
53 **Interface for Model:**
54
55 * RS485
56 * Power Input 7~~ 24V DC. 
57
58 **LoRa Spec:**
59
60 * Frequency Range:
61 ** Band 1 (HF): 862 ~~ 1020 Mhz
62 ** Band 2 (LF): 410 ~~ 528 Mhz
63 * 168 dB maximum link budget.
64 * +20 dBm - 100 mW constant RF output vs.
65 * +14 dBm high efficiency PA.
66 * Programmable bit rate up to 300 kbps.
67 * High sensitivity: down to -148 dBm.
68 * Bullet-proof front end: IIP3 = -12.5 dBm.
69 * Excellent blocking immunity.
70 * Low RX current of 10.3 mA, 200 nA register retention.
71 * Fully integrated synthesizer with a resolution of 61 Hz.
72 * FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation.
73 * Built-in bit synchronizer for clock recovery.
74 * Preamble detection.
75 * 127 dB Dynamic Range RSSI.
76 * Automatic RF Sense and CAD with ultra-fast AFC.
77 * Packet engine up to 256 bytes with CRC.
78
79
80
81 == 1.3 Features ==
82
83 * LoRaWAN Class A & Class C protocol (default Class C)
84 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865/RU864
85 * AT Commands to change parameters
86 * Remote configure parameters via LoRa Downlink
87 * Firmware upgradable via program port
88 * Support multiply RS485 devices by flexible rules
89 * Support Modbus protocol
90 * Support Interrupt uplink (Since hardware version v1.2)
91
92
93
94 == 1.4 Applications ==
95
96 * Smart Buildings & Home Automation
97 * Logistics and Supply Chain Management
98 * Smart Metering
99 * Smart Agriculture
100 * Smart Cities
101 * Smart Factory
102
103
104
105 == 1.5 Firmware Change log ==
106
107 [[RS485-LN Image files – Download link and Change log>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/]]
108
109
110 == 1.6 Hardware Change log ==
111
112 (((
113 (((
114 v1.2: Add External Interrupt Pin.
115
116 v1.0: Release
117
118
119 )))
120 )))
121
122 = 2. Power ON Device =
123
124 (((
125 The RS485-LN can be powered by 7 ~~ 24V DC power source. Connection as below
126
127 * Power Source VIN to RS485-LN VIN+
128 * Power Source GND to RS485-LN VIN-
129
130 (((
131 Once there is power, the RS485-LN will be on.
132 )))
133
134 [[image:1653268091319-405.png]]
135
136
137 )))
138
139 = 3. Operation Mode =
140
141 == 3.1 How it works? ==
142
143 (((
144 The RS485-LN is configured as LoRaWAN OTAA Class C mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the RS485-LN. It will auto join the network via OTAA.
145
146
147 )))
148
149 == 3.2 Example to join LoRaWAN network ==
150
151 Here shows an example for how to join the TTN V3 Network. Below is the network structure, we use [[LG308>>url:http://www.dragino.com/products/lora-lorawan-gateway/item/140-lg308.html]] as LoRaWAN gateway here. 
152
153 [[image:1653268155545-638.png||height="334" width="724"]]
154
155
156 (((
157 (((
158 The RS485-LN in this example connected to two RS485 devices for demonstration, user can connect to other RS485 devices via the same method. The connection is as below:
159 )))
160
161 (((
162 485A+ and 485B- of the sensor are connected to RS485A and RA485B of RS485-LN respectively.
163 )))
164
165 [[image:1653268227651-549.png||height="592" width="720"]]
166
167 (((
168 The LG308 is already set to connect to [[TTN V3 network >>path:eu1.cloud.thethings.network/]]. So what we need to now is only configure the TTN V3:
169 )))
170
171 (((
172 **Step 1**: Create a device in TTN V3 with the OTAA keys from RS485-LN.
173 )))
174
175 (((
176 Each RS485-LN is shipped with a sticker with unique device EUI:
177 )))
178 )))
179
180 [[image:1652953462722-299.png]]
181
182 (((
183 (((
184 User can enter this key in their LoRaWAN Server portal. Below is TTN V3 screen shot:
185 )))
186
187 (((
188 Add APP EUI in the application.
189 )))
190 )))
191
192 [[image:image-20220519174512-1.png]]
193
194 [[image:image-20220519174512-2.png||height="323" width="720"]]
195
196 [[image:image-20220519174512-3.png||height="556" width="724"]]
197
198 [[image:image-20220519174512-4.png]]
199
200 You can also choose to create the device manually.
201
202 [[image:1652953542269-423.png||height="710" width="723"]]
203
204 Add APP KEY and DEV EUI
205
206 [[image:1652953553383-907.png||height="514" width="724"]]
207
208
209 (((
210 **Step 2**: Power on RS485-LN and it will auto join to the TTN V3 network. After join success, it will start to upload message to TTN V3 and user can see in the panel.
211 )))
212
213 [[image:1652953568895-172.png||height="232" width="724"]]
214
215
216 == 3.3 Configure Commands to read data ==
217
218 (((
219 (((
220 There are plenty of RS485 devices in the market and each device has different command to read the valid data. To support these devices in flexible, RS485-LN supports flexible command set. User can use [[AT Commands>>path:#AT_COMMAND]] or LoRaWAN Downlink Command to configure what commands RS485-LN should send for each sampling and how to handle the return from RS485 devices.
221 )))
222
223 (((
224 (% style="color:red" %)Note: below description and commands are for firmware version >v1.1, if you have firmware version v1.0. Please check the [[user manual v1.0>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/&file=RS485-LN_UserManual_v1.0.1.pdf]] or upgrade the firmware to v1.1
225 )))
226 )))
227
228 === 3.3.1 onfigure UART settings for RS485 or TTL communication ===
229
230 To use RS485-LN to read data from RS485 sensors, connect the RS485-LN A/B traces to the sensors. And user need to make sure RS485-LN use the match UART setting to access the sensors. The related commands for UART settings are:
231
232 (% border="1" style="background-color:#ffffcc; color:green; width:795px" %)
233 |(((
234 **AT Commands**
235 )))|(% style="width:285px" %)(((
236 **Description**
237 )))|(% style="width:347px" %)(((
238 **Example**
239 )))
240 |(((
241 AT+BAUDR
242 )))|(% style="width:285px" %)(((
243 Set the baud rate (for RS485 connection). Default Value is: 9600.
244 )))|(% style="width:347px" %)(((
245 (((
246 AT+BAUDR=9600
247 )))
248
249 (((
250 Options: (1200,2400,4800,14400,19200,115200)
251 )))
252 )))
253 |(((
254 AT+PARITY
255 )))|(% style="width:285px" %)(((
256 Set UART parity (for RS485 connection)
257 )))|(% style="width:347px" %)(((
258 (((
259 AT+PARITY=0
260 )))
261
262 (((
263 Option: 0: no parity, 1: odd parity, 2: even parity
264 )))
265 )))
266 |(((
267 AT+STOPBIT
268 )))|(% style="width:285px" %)(((
269 (((
270 Set serial stopbit (for RS485 connection)
271 )))
272
273 (((
274
275 )))
276 )))|(% style="width:347px" %)(((
277 (((
278 AT+STOPBIT=0 for 1bit
279 )))
280
281 (((
282 AT+STOPBIT=1 for 1.5 bit
283 )))
284
285 (((
286 AT+STOPBIT=2 for 2 bits
287 )))
288 )))
289
290 === 3.3.2 Configure sensors ===
291
292 (((
293 (((
294 Some sensors might need to configure before normal operation. User can configure such sensor via PC and RS485 adapter or through RS485-LN AT Commands (% style="color:#4f81bd" %)**AT+CFGDEV**(%%). Each (% style="color:#4f81bd" %)**AT+CFGDEV **(%%)equals to send a RS485 command to sensors. This command will only run when user input it and won’t run during each sampling.
295 )))
296 )))
297
298 (% border="1" style="background-color:#ffffcc; color:green; width:806px" %)
299 |**AT Commands**|(% style="width:418px" %)**Description**|(% style="width:256px" %)**Example**
300 |AT+CFGDEV|(% style="width:418px" %)(((
301 This command is used to configure the RS485/TTL devices; they won’t be used during sampling.
302
303 AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,
304
305 mm: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command
306 )))|(% style="width:256px" %)AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m
307
308 === 3.3.3 Configure read commands for each sampling ===
309
310 (((
311 RS485-BL is a battery powered device; it will sleep most of time. And wake up on each period and read RS485 / TTL sensor data and uplink.
312 )))
313
314 (((
315 During each sampling, we need to confirm what commands we need to send to the sensors to read data. After the RS485/TTL sensors send back the value, it normally includes some bytes and we only need a few from them for a shorten payload.
316 )))
317
318 (((
319 To save the LoRaWAN network bandwidth, we might need to read data from different sensors and combine their valid value into a short payload.
320 )))
321
322 (((
323 This section describes how to achieve above goals.
324 )))
325
326 (((
327 During each sampling, the RS485-BL can support 15 commands to read sensors. And combine the return to one or several uplink payloads.
328 )))
329
330 (((
331 **Command from RS485-BL to Sensor:**
332 )))
333
334 (((
335 RS485-BL can send out pre-set max 15 strings via **AT+COMMAD1**, **ATCOMMAND2**,…, to **AT+COMMANDF** . All commands are of same grammar.
336 )))
337
338 (((
339 **Handle return from sensors to RS485-BL**:
340 )))
341
342 (((
343 After RS485-BL send out a string to sensor, RS485-BL will wait for the return from RS485 or TTL sensor. And user can specify how to handle the return, by **AT+DATACUT or AT+SEARCH commands**
344 )))
345
346 * (((
347 **AT+DATACUT**
348 )))
349
350 (((
351 When the return value from sensor have fix length and we know which position the valid value we should get, we can use AT+DATACUT command.
352 )))
353
354 * (((
355 **AT+SEARCH**
356 )))
357
358 (((
359 When the return value from sensor is dynamic length and we are not sure which bytes the valid data is, instead, we know what value the valid value following. We can use AT+SEARCH to search the valid value in the return string.
360 )))
361
362 (((
363 **Define wait timeout:**
364 )))
365
366 (((
367 Some RS485 device might has longer delay on reply, so user can use AT+CMDDL to set the timeout for getting reply after the RS485 command is sent. For example, AT+CMDDL1=1000 to send the open time to 1000ms
368 )))
369
370 (((
371 After we got the valid value from each RS485 commands, we need to combine them together with the command **AT+DATAUP**.
372 )))
373
374 **Examples:**
375
376 Below are examples for the how above AT Commands works.
377
378 **AT+COMMANDx : **This command will be sent to RS485/TTL devices during each sampling, Max command length is 14 bytes. The grammar is:
379
380 (% border="1" class="table-bordered" %)
381 |(((
382 **AT+COMMANDx=xx xx xx xx xx xx xx xx xx xx xx xx,m**
383
384 **xx xx xx xx xx xx xx xx xx xx xx xx: The RS485 command to be sent**
385
386 **m: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command**
387 )))
388
389 (((
390 For example, if we have a RS485 sensor. The command to get sensor value is: 01 03 0B B8 00 02 46 0A. Where 01 03 0B B8 00 02 is the Modbus command to read the register 0B B8 where stored the sensor value. The 46 0A is the CRC-16/MODBUS which calculate manually.
391 )))
392
393 (((
394 In the RS485-BL, we should use this command AT+COMMAND1=01 03 0B B8 00 02,1 for the same.
395 )))
396
397 (((
398 **AT+SEARCHx**: This command defines how to handle the return from AT+COMMANDx.
399 )))
400
401 (% border="1" class="table-bordered" %)
402 |(((
403 **AT+SEARCHx=aa,xx xx xx xx xx**
404
405 * **aa: 1: prefix match mode; 2: prefix and suffix match mode**
406 * **xx xx xx xx xx: match string. Max 5 bytes for prefix and 5 bytes for suffix**
407
408
409 )))
410
411 **Examples:**
412
413 ~1. For a return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
414
415 If we set AT+SEARCH1=1,1E 56 34.      (max 5 bytes for prefix)
416
417 The valid data will be all bytes after 1E 56 34 , so it is (% style="background-color:yellow" %)** 2e 30 58 5f 36 41 30 31 00 49**
418
419 [[image:1653269403619-508.png]]
420
421 2. For a return string from AT+COMMAND1:  16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
422
423 If we set AT+SEARCH1=2, 1E 56 34+31 00 49
424
425 Device will search the bytes between 1E 56 34 and 31 00 49. So it is (% style="background-color:yellow" %)** 2e 30 58 5f 36 41 30**
426
427 [[image:1653269438444-278.png]]
428
429 **AT+DATACUTx : **This command defines how to handle the return from AT+COMMANDx, max return length is 45 bytes.
430
431 |(((
432 **AT+DATACUTx=a,b,c**
433
434 * **a: length for the return of AT+COMMAND**
435 * **b:1: grab valid value by byte, max 6 bytes. 2: grab valid value by bytes section, max 3 sections.**
436 * **c: define the position for valid value.  **
437 )))
438
439 Examples:
440
441 * Grab bytes:
442
443 [[image:1653269551753-223.png||height="311" width="717"]]
444
445 * Grab a section.
446
447 [[image:1653269568276-930.png||height="325" width="718"]]
448
449 * Grab different sections.
450
451 [[image:1653269593172-426.png||height="303" width="725"]]
452
453 (% style="color:red" %)**Note:**
454
455 AT+SEARCHx and AT+DATACUTx can be used together, if both commands are set, RS485-BL will first process AT+SEARCHx on the return string and get a temporary string, and then process AT+DATACUTx on this temporary string to get the final payload. In this case, AT+DATACUTx need to set to format AT+DATACUTx=0,xx,xx where the return bytes set to 0.
456
457 Example:
458
459 (% style="color:red" %)AT+COMMAND1=11 01 1E D0,0
460
461 (% style="color:red" %)AT+SEARCH1=1,1E 56 34
462
463 (% style="color:red" %)AT+DATACUT1=0,2,1~~5
464
465 (% style="color:red" %)Return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
466
467 (% style="color:red" %)String after SEARCH command: 2e 30 58 5f 36 41 30 31 00 49
468
469 (% style="color:red" %)Valid payload after DataCUT command: 2e 30 58 5f 36
470
471 [[image:1653269618463-608.png]]
472
473 === 3.3.4 Compose the uplink payload ===
474
475 (((
476 Through AT+COMMANDx and AT+DATACUTx we got valid value from each RS485 commands, Assume these valid value are RETURN1, RETURN2, .., to RETURNx. The next step is how to compose the LoRa Uplink Payload by these RETURNs. The command is **AT+DATAUP.**
477 )))
478
479 (((
480 (% style="color:#4f81bd" %)**Examples: AT+DATAUP=0**
481 )))
482
483 (((
484 Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**A SIGNLE UPLINK**.
485 )))
486
487 (((
488 Final Payload is
489 )))
490
491 (((
492 (% style="color:#4f81bd" %)**Battery Info+PAYVER + VALID Value from RETURN1 + Valid Value from RETURN2 + … + RETURNx**
493 )))
494
495 (((
496 Where PAYVER is defined by AT+PAYVER, below is an example screen shot.
497 )))
498
499 [[image:1653269759169-150.png||height="513" width="716"]]
500
501 (% style="color:#4f81bd" %)**Examples: AT+DATAUP=1**
502
503 Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**Multiply UPLINKs**.
504
505 Final Payload is
506
507 (% style="color:#4f81bd" %)**Battery Info+PAYVER + PAYLOAD COUNT + PAYLOAD# + DATA**
508
509 1. Battery Info (2 bytes): Battery voltage
510 1. PAYVER (1 byte): Defined by AT+PAYVER
511 1. PAYLOAD COUNT (1 byte): Total how many uplinks of this sampling.
512 1. PAYLOAD# (1 byte): Number of this uplink. (from 0,1,2,3…,to PAYLOAD COUNT)
513 1. DATA: Valid value: max 6 bytes(US915 version here, Notice*!) for each uplink so each uplink <= 11 bytes. For the last uplink, DATA will might less than 6 bytes
514
515 [[image:1653269916228-732.png||height="433" width="711"]]
516
517
518 So totally there will be 3 uplinks for this sampling, each uplink includes 6 bytes DATA
519
520 DATA1=RETURN1 Valid Value = (% style="background-color:green; color:white" %)20 20 0a 33 90 41
521
522 DATA2=1^^st^^ ~~ 6^^th^^ byte of Valid value of RETURN10=(% style="background-color:green; color:white" %) 02 aa 05 81 0a 20
523
524 DATA3=7^^th^^ ~~ 11^^th^^ bytes of Valid value of RETURN10 = (% style="background-color:green; color:white" %)20 20 20 2d 30
525
526 Below are the uplink payloads:
527
528 [[image:1653270130359-810.png]]
529
530
531 (% style="color:red" %)**Notice: the Max bytes is according to the max support bytes in different Frequency Bands for lowest SF. As below:**
532
533 ~* For AU915/AS923 bands, if UplinkDwell time=0, max 51 bytes for each uplink ( so 51 -5 = 46 max valid date)
534
535 * For AU915/AS923 bands, if UplinkDwell time=1, max 11 bytes for each uplink ( so 11 -5 = 6 max valid date).
536
537 * For US915 band, max 11 bytes for each uplink ( so 11 -5 = 6 max valid date).
538
539 ~* For all other bands: max 51 bytes for each uplink  ( so 51 -5 = 46 max valid date).
540
541 === 3.3.5 Uplink on demand ===
542
543 Except uplink periodically, RS485-BL is able to uplink on demand. The server sends downlink command to RS485-BL and RS485 will uplink data base on the command.
544
545 Downlink control command:
546
547 [[0x08 command>>path:#downlink_08]]: Poll an uplink with current command set in RS485-BL.
548
549 [[0xA8 command>>path:#downlink_A8]]: Send a command to RS485-BL and uplink the output from sensors.
550
551
552
553 1.
554 11.
555 111. Uplink on Interrupt
556
557 Put the interrupt sensor between 3.3v_out and GPIO ext.[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image022.png]]
558
559 AT+INTMOD=0  Disable Interrupt
560
561 AT+INTMOD=1  Interrupt trigger by rising or falling edge.
562
563 AT+INTMOD=2  Interrupt trigger by falling edge. ( Default Value)
564
565 AT+INTMOD=3  Interrupt trigger by rising edge.
566
567
568 1.
569 11. Uplink Payload
570
571 |**Size(bytes)**|**2**|**1**|**Length depends on the return from the commands**
572 |Value|(((
573 Battery(mV)
574
575 &
576
577 Interrupt _Flag
578 )))|(((
579 PAYLOAD_VER
580
581
582 )))|If the valid payload is too long and exceed the maximum support payload length in server, server will show payload not provided in the LoRaWAN server.
583
584 Below is the decoder for the first 3 bytes. The rest bytes are dynamic depends on different RS485 sensors.
585
586
587 function Decoder(bytes, port) {
588
589 ~/~/Payload Formats of RS485-BL Deceive
590
591 return {
592
593 ~/~/Battery,units:V
594
595 BatV:((bytes[0]<<8 | bytes[1])&0x7fff)/1000,
596
597 ~/~/GPIO_EXTI 
598
599 EXTI_Trigger:(bytes[0] & 0x80)? "TRUE":"FALSE",
600
601 ~/~/payload of version
602
603 Pay_ver:bytes[2],
604
605 };
606
607 }
608
609
610
611
612
613
614
615 TTN V3 uplink screen shot.
616
617 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image023.png]]
618
619 1.
620 11. Configure RS485-BL via AT or Downlink
621
622 User can configure RS485-BL via [[AT Commands >>path:#_​Using_the_AT]]or LoRaWAN Downlink Commands
623
624 There are two kinds of Commands:
625
626 * **Common Commands**: They should be available for each sensor, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: http:~/~/wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands
627
628 * **Sensor Related Commands**: These commands are special designed for RS485-BL.  User can see these commands below:
629
630 1.
631 11.
632 111. Common Commands:
633
634 They should be available for each of Dragino Sensors, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: [[http:~~/~~/wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands>>url:http://wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands]]
635
636
637 1.
638 11.
639 111. Sensor related commands:
640
641 ==== Choose Device Type (RS485 or TTL) ====
642
643 RS485-BL can connect to either RS485 sensors or TTL sensor. User need to specify what type of sensor need to connect.
644
645 * AT Command
646
647 **AT+MOD=1** ~/~/ Set to support RS485-MODBUS type sensors. User can connect multiply RS485 , Modbus sensors to the A / B pins.
648
649 **AT+MOD=2** ~/~/ Set to support TTL Level sensors, User can connect one TTL Sensor to the TXD/RXD/GND pins.
650
651
652 * Downlink Payload
653
654 **0A aa**     à same as AT+MOD=aa
655
656
657
658 ==== [[RS485 Debug Command>>path:#downlink_A8]] (AT+CFGDEV) ====
659
660 This command is used to configure the RS485 or TTL sensors; they won’t be used during sampling.
661
662 * AT Command
663
664 AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m
665
666 m: 0: no CRC; 1: add CRC-16/MODBUS in the end of this command.
667
668
669
670 * Downlink Payload
671
672 Format: A8 MM NN XX XX XX XX YY
673
674 Where:
675
676 * MM: 1: add CRC-16/MODBUS ; 0: no CRC
677 * NN: The length of RS485 command
678 * XX XX XX XX: RS485 command total NN bytes
679 * YY: How many bytes will be uplink from the return of this RS485 command, if YY=0, RS485-BL will execute the downlink command without uplink; if YY>0, RS485-BL will uplink total YY bytes from the output of this RS485 command
680
681 **Example 1:**
682
683 To connect a Modbus Alarm with below commands.
684
685 * The command to active alarm is: 0A 05 00 04 00 01 4C B0. Where 0A 05 00 04 00 01 is the Modbus command to read the register 00 40 where stored the DI status. The 4C B0 is the CRC-16/MODBUS which calculate manually.
686
687 * The command to deactivate alarm is: 0A 05 00 04 00 00 8D 70. Where 0A 05 00 04 00 00 is the Modbus command to read the register 00 40 where stored the DI status. The 8D 70 is the CRC-16/MODBUS which calculate manually.
688
689 So if user want to use downlink command to control to RS485 Alarm, he can use:
690
691 **A8 01 06 0A 05 00 04 00 01 00**: to activate the RS485 Alarm
692
693 **A8 01 06 0A 05 00 04 00 00 00**: to deactivate the RS485 Alarm
694
695 A8 is type code and 01 means add CRC-16/MODBUS at the end, the 3^^rd^^ byte is 06, means the next 6 bytes are the command to be sent to the RS485 network, the final byte 00 means this command don’t need to acquire output.
696
697
698 **Example 2:**
699
700 Check TTL Sensor return:
701
702 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image024.png]]
703
704
705
706
707 ==== Set Payload version ====
708
709 This is the first byte of the uplink payload. RS485-BL can connect to different sensors. User can set the PAYVER field to tell server how to decode the current payload.
710
711 * AT Command:
712
713 AT+PAYVER: Set PAYVER field = 1
714
715
716 * Downlink Payload:
717
718 0xAE 01   à Set PAYVER field =  0x01
719
720 0xAE 0F   à Set PAYVER field =  0x0F
721
722
723 ==== Set RS485 Sampling Commands ====
724
725 AT+COMMANDx, AT+DATACUTx and AT+SEARCHx
726
727 These three commands are used to configure how the RS485-BL polling data from Modbus device. Detail of usage please see : [[polling RS485 device>>path:#polling_485]].
728
729
730 * AT Command:
731
732 AT+COMMANDx: Configure RS485 read command to sensor.
733
734 AT+DATACUTx: Configure how to handle return from RS485 devices.
735
736 AT+SEARCHx: Configure search command
737
738
739 * Downlink Payload:
740
741 0xAF downlink command can be used to set AT+COMMANDx or AT+DATACUTx.
742
743 Note: if user use AT+COMMANDx to add a new command, he also need to send AT+DATACUTx downlink.
744
745 Format: AF MM NN LL XX XX XX XX YY
746
747 Where:
748
749 * MM: the ATCOMMAND or AT+DATACUT to be set. Value from 01 ~~ 0F,
750 * NN: 0: no CRC; 1: add CRC-16/MODBUS ; 2: set the AT+DATACUT value.
751 * LL: The length of AT+COMMAND or AT+DATACUT command
752 * XX XX XX XX: AT+COMMAND or AT+DATACUT command
753 * YY: If YY=0, RS485-BL will execute the downlink command without uplink; if YY=1, RS485-BL will execute an uplink after got this command.
754
755 Example:
756
757 **AF 03 01 06 0A 05 00 04 00 01 00**: Same as AT+COMMAND3=0A 05 00 04 00 01,1
758
759 **AF 03 02 06 10 01 05 06 09 0A 00**: Same as AT+DATACUT3=**16**,**1**,**5+6+9+10**
760
761 **AF 03 02 06 0B 02 05 07 08 0A 00**: Same as AT+DATACUT3=**11**,**2**,**5~~7+8~~10**
762
763
764 0xAB downlink command can be used for set AT+SEARCHx
765
766 Example: **AB aa 01 03 xx xx xx** (03 here means there are total 3 bytes after 03) So
767
768 * AB aa 01 03 xx xx xx  same as AT+SEARCHaa=1,xx xx xx
769 * AB aa 02 03 xx xx xx 02 yy yy(03 means there are 3 bytes after 03, they are xx xx xx;02 means there are 2 bytes after 02, they are yy yy) so the commands
770
771 **AB aa 02 03 xx xx xx 02 yy yy**  same as **AT+SEARCHaa=2,xx xx xx+yy yy**
772
773
774 ==== Fast command to handle MODBUS device ====
775
776 AT+MBFUN is valid since v1.3 firmware version. The command is for fast configure to read Modbus devices. It is only valid for the devices which follow the [[MODBUS-RTU protocol>>url:https://www.modbustools.com/modbus.html]].
777
778 This command is valid since v1.3 firmware version
779
780
781 AT+MBFUN has only two value:
782
783 * AT+MBFUN=1: Enable Modbus reading. And get response base on the MODBUS return
784
785 AT+MBFUN=1, device can auto read the Modbus function code: 01, 02, 03 or 04. AT+MBFUN has lower priority vs AT+DATACUT command. If AT+DATACUT command is configured, AT+MBFUN will be ignore.
786
787 * AT+MBFUN=0: Disable Modbus fast reading.
788
789 Example:
790
791 * AT+MBFUN=1 and AT+DATACUT1/AT+DATACUT2 are not configure (0,0,0).
792 * AT+COMMAND1= 01 03 00 10 00 08,1 ~-~-> read slave address 01 , function code 03, start address 00 01, quantity of registers 00 08.
793 * AT+COMMAND2= 01 02 00 40 00 10,1 ~-~-> read slave address 01 , function code 02, start address 00 40, quantity of inputs 00 10.
794
795 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image025.png]]
796
797
798 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image026.png]]
799
800
801 * Downlink Commands:
802
803 A9 aa -à Same as AT+MBFUN=aa
804
805
806 ==== RS485 command timeout ====
807
808 Some Modbus device has slow action to send replies. This command is used to configure the RS485-BL to use longer time to wait for their action.
809
810 Default value: 0, range:  0 ~~ 5 seconds
811
812
813 * AT Command:
814
815 AT+CMDDLaa=hex(bb cc)
816
817 Example:
818
819 **AT+CMDDL1=1000** to send the open time to 1000ms
820
821
822 * Downlink Payload:
823
824 0x AA aa bb cc
825
826 Same as: AT+CMDDLaa=hex(bb cc)
827
828 Example:
829
830 0xAA 01 03 E8  à Same as **AT+CMDDL1=1000 ms**
831
832
833 ==== [[Uplink>>path:#downlink_A8]] payload mode ====
834
835 Define to use one uplink or multiple uplinks for the sampling.
836
837 The use of this command please see: [[Compose Uplink payload>>path:#DataUP]]
838
839 * AT Command:
840
841 AT+DATAUP=0
842
843 AT+DATAUP=1
844
845
846 * Downlink Payload:
847
848 0xAD 00   à Same as AT+DATAUP=0
849
850 0xAD 01   à Same as AT+DATAUP=1
851
852
853 ==== Manually trigger an Uplink ====
854
855 Ask device to send an uplink immediately.
856
857 * Downlink Payload:
858
859 0x08 FF, RS485-BL will immediately send an uplink.
860
861
862 ==== Clear RS485 Command ====
863
864 The AT+COMMANDx and AT+DATACUTx settings are stored in special location, user can use below command to clear them.
865
866
867 * AT Command:
868
869 **AT+CMDEAR=mm,nn**   mm: start position of erase ,nn: stop position of erase
870
871 Etc. AT+CMDEAR=1,10 means erase AT+COMMAND1/AT+DATACUT1 to AT+COMMAND10/AT+DATACUT10
872
873 Example screen shot after clear all RS485 commands. 
874
875
876
877 The uplink screen shot is:
878
879 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image023.png]]
880
881
882 * Downlink Payload:
883
884 0x09 aa bb same as AT+CMDEAR=aa,bb
885
886
887 ==== Set Serial Communication Parameters ====
888
889 Set the Rs485 serial communication parameters:
890
891 * AT Command:
892
893 Set Baud Rate:
894
895 AT+BAUDR=9600    ~/~/ Options: (1200,2400,4800,14400,19200,115200)
896
897
898 Set UART parity
899
900 AT+PARITY=0    ~/~/ Option: 0: no parity, 1: odd parity, 2: even parity
901
902
903 Set STOPBIT
904
905 AT+STOPBIT=0    ~/~/ Option: 0 for 1bit; 1 for 1.5 bit ; 2 for 2 bits
906
907
908 * Downlink Payload:
909
910 A7 01 aa bb: Same  AT+BAUDR=hex(aa bb)*100
911
912 Example:
913
914 * A7 01 00 60   same as AT+BAUDR=9600
915 * A7 01 04 80  same as AT+BAUDR=115200
916
917 A7 02 aa: Same as  AT+PARITY=aa  (aa value: 00 , 01 or 02)
918
919 A7 03 aa: Same as  AT+STOPBIT=aa  (aa value: 00 , 01 or 02)
920
921
922 ==== Control output power duration ====
923
924 User can set the output power duration before each sampling.
925
926 * AT Command:
927
928 Example:
929
930 AT+3V3T=1000 ~/~/ 3V3 output power will open 1s before each sampling.
931
932 AT+5VT=1000 ~/~/ +5V output power will open 1s before each sampling.
933
934
935 * LoRaWAN Downlink Command:
936
937 07 01 aa bb  Same as AT+5VT=(aa bb)
938
939 07 02 aa bb  Same as AT+3V3T=(aa bb)
940
941
942
943
944 1.
945 11. Buttons
946
947 |**Button**|**Feature**
948 |**RST**|Reboot RS485-BL
949
950 1.
951 11. +3V3 Output
952
953 RS485-BL has a Controllable +3V3 output, user can use this output to power external sensor.
954
955 The +3V3 output will be valid for every sampling. RS485-BL will enable +3V3 output before all sampling and disable the +3V3 after all sampling. 
956
957
958 The +3V3 output time can be controlled by AT Command.
959
960 **AT+3V3T=1000**
961
962 Means set +3v3 valid time to have 1000ms. So, the real +3v3 output will actually have 1000ms + sampling time for other sensors.
963
964
965 By default, the AT+3V3T=0. This is a special case, means the +3V3 output is always on at any time
966
967
968 1.
969 11. +5V Output
970
971 RS485-BL has a Controllable +5V output, user can use this output to power external sensor.
972
973 The +5V output will be valid for every sampling. RS485-BL will enable +5V output before all sampling and disable the +5v after all sampling. 
974
975
976 The 5V output time can be controlled by AT Command.
977
978 **AT+5VT=1000**
979
980 Means set 5V valid time to have 1000ms. So, the real 5V output will actually have 1000ms + sampling time for other sensors.
981
982
983 By default, the AT+5VT=0. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
984
985
986
987
988 1.
989 11. LEDs
990
991 |**LEDs**|**Feature**
992 |**LED1**|Blink when device transmit a packet.
993
994 1.
995 11. Switch Jumper
996
997 |**Switch Jumper**|**Feature**
998 |**SW1**|(((
999 ISP position: Upgrade firmware via UART
1000
1001 Flash position: Configure device, check running status.
1002 )))
1003 |**SW2**|(((
1004 5V position: set to compatible with 5v I/O.
1005
1006 3.3v position: set to compatible with 3.3v I/O.,
1007 )))
1008
1009 +3.3V: is always ON
1010
1011 +5V: Only open before every sampling. The time is by default, it is AT+5VT=0.  Max open time. 5000 ms.
1012
1013 1. Case Study
1014
1015 User can check this URL for some case studies.
1016
1017 [[http:~~/~~/wiki.dragino.com/index.php?title=APP_RS485_COMMUNICATE_WITH_SENSORS>>url:http://wiki.dragino.com/index.php?title=APP_RS485_COMMUNICATE_WITH_SENSORS]]
1018
1019
1020
1021
1022 1. Use AT Command
1023 11. Access AT Command
1024
1025 RS485-BL supports AT Command set. User can use a USB to TTL adapter plus the 3.5mm Program Cable to connect to RS485-BL to use AT command, as below.
1026
1027 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image027.png]]
1028
1029
1030 In PC, User needs to set **serial tool**(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to **9600** to access to access serial console of RS485-BL. The default password is 123456. Below is the output for reference:
1031
1032 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image028.png]]
1033
1034
1035
1036 More detail AT Command manual can be found at [[AT Command Manual>>path:#AT_COMMAND]]
1037
1038
1039
1040 1.
1041 11. Common AT Command Sequence
1042 111. Multi-channel ABP mode (Use with SX1301/LG308)
1043
1044 If device has not joined network yet:
1045
1046 AT+FDR
1047
1048 AT+NJM=0
1049
1050 ATZ
1051
1052
1053 If device already joined network:
1054
1055 AT+NJM=0
1056
1057 ATZ
1058
1059 1.
1060 11.
1061 111. Single-channel ABP mode (Use with LG01/LG02)
1062
1063 AT+FDR   Reset Parameters to Factory Default, Keys Reserve
1064
1065 AT+NJM=0 Set to ABP mode
1066
1067 AT+ADR=0 Set the Adaptive Data Rate Off
1068
1069 AT+DR=5  Set Data Rate
1070
1071 AT+TDC=60000  Set transmit interval to 60 seconds
1072
1073 AT+CHS=868400000 Set transmit frequency to 868.4Mhz
1074
1075 AT+RX2FQ=868400000 Set RX2Frequency to 868.4Mhz (according to the result from server)
1076
1077 AT+RX2DR=5  Set RX2DR to match the downlink DR from server. see below
1078
1079 AT+DADDR=26 01 1A F1 Set Device Address to 26 01 1A F1, this ID can be found in the LoRa Server portal.
1080
1081 ATZ          Reset MCU
1082
1083 **Note:**
1084
1085 1. Make sure the device is set to ABP mode in the IoT Server.
1086 1. Make sure the LG01/02 gateway RX frequency is exactly the same as AT+CHS setting.
1087 1. Make sure SF / bandwidth setting in LG01/LG02 match the settings of AT+DR. refer [[this link>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_Gateway/&file=LoRaWAN%201.0.3%20Regional%20Parameters.xlsx]] to see what DR means.
1088 1. The command AT+RX2FQ and AT+RX2DR is to let downlink work. to set the correct parameters, user can check the actually downlink parameters to be used. As below. Which shows the RX2FQ should use 868400000 and RX2DR should be 5
1089
1090 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image029.png]]
1091
1092
1093 1. FAQ
1094 11. How to upgrade the image?
1095
1096 The RS485-BL LoRaWAN Controller is shipped with a 3.5mm cable, the cable is used to upload image to RS485-BL to:
1097
1098 * Support new features
1099 * For bug fix
1100 * Change LoRaWAN bands.
1101
1102 Below shows the hardware connection for how to upload an image to RS485-BL:
1103
1104 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image030.png]]
1105
1106 **Step1:** Download [[flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]].
1107
1108 **Step2**: Download the [[LT Image files>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/image/]].
1109
1110 **Step3: **Open flashloader; choose the correct COM port to update.
1111
1112
1113 |(((
1114 HOLD PRO then press the RST button, SYS will be ON, then click next
1115 )))
1116
1117 |(((
1118 Board detected
1119 )))
1120
1121 |(((
1122
1123 )))
1124
1125 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image031.png]] [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image032.png]]
1126
1127
1128
1129 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image033.png]] [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image034.png]]
1130
1131
1132 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image035.png]] [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image036.png]]
1133
1134
1135 1.
1136 11. How to change the LoRa Frequency Bands/Region?
1137
1138 User can follow the introduction for [[how to upgrade image>>path:#upgrade_image]]. When download the images, choose the required image file for download.
1139
1140
1141
1142 1.
1143 11. How many RS485-Slave can RS485-BL connects?
1144
1145 The RS485-BL can support max 32 RS485 devices. Each uplink command of RS485-BL can support max 16 different RS485 command. So RS485-BL can support max 16 RS485 devices pre-program in the device for uplink. For other devices no pre-program, user can use the [[downlink message (type code 0xA8) to poll their info>>path:#downlink_A8]].
1146
1147
1148
1149
1150 1. Trouble Shooting     
1151 11. Downlink doesn’t work, how to solve it?
1152
1153 Please see this link for debug:
1154
1155 [[http:~~/~~/wiki.dragino.com/index.php?title=Main_Page#LoRaWAN_Communication_Debug>>url:http://wiki.dragino.com/index.php?title=Main_Page#LoRaWAN_Communication_Debug]] 
1156
1157
1158
1159 1.
1160 11. Why I can’t join TTN V3 in US915 /AU915 bands?
1161
1162 It might about the channels mapping. Please see for detail.
1163
1164 [[http:~~/~~/wiki.dragino.com/index.php?title=LoRaWAN_Communication_Debug#Notice_of_US915.2FCN470.2FAU915_Frequency_band>>url:http://wiki.dragino.com/index.php?title=LoRaWAN_Communication_Debug#Notice_of_US915.2FCN470.2FAU915_Frequency_band]]
1165
1166
1167
1168 1. Order Info
1169
1170 **Part Number: RS485-BL-XXX**
1171
1172 **XXX:**
1173
1174 * **EU433**: frequency bands EU433
1175 * **EU868**: frequency bands EU868
1176 * **KR920**: frequency bands KR920
1177 * **CN470**: frequency bands CN470
1178 * **AS923**: frequency bands AS923
1179 * **AU915**: frequency bands AU915
1180 * **US915**: frequency bands US915
1181 * **IN865**: frequency bands IN865
1182 * **RU864**: frequency bands RU864
1183 * **KZ865: **frequency bands KZ865
1184
1185 1. Packing Info
1186
1187 **Package Includes**:
1188
1189 * RS485-BL x 1
1190 * Stick Antenna for LoRa RF part x 1
1191 * Program cable x 1
1192
1193 **Dimension and weight**:
1194
1195 * Device Size: 13.5 x 7 x 3 cm
1196 * Device Weight: 105g
1197 * Package Size / pcs : 14.5 x 8 x 5 cm
1198 * Weight / pcs : 170g
1199
1200 1. Support
1201
1202 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1203 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to
1204
1205 [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]]