Show last authors
1 (% style="text-align:center" %)
2 [[image:1653266934636-343.png||height="385" width="385"]]
3
4
5
6 **RS485-LN – RS485 to LoRaWAN Converter User Manual**
7
8
9 **Table of Contents:**
10
11
12
13
14
15 = 1.Introduction =
16
17 == 1.1 What is RS485-LN RS485 to LoRaWAN Converter ==
18
19 (((
20 (((
21 The Dragino RS485-LN is a (% style="color:blue" %)**RS485 to LoRaWAN Converter**(%%). It converts the RS485 signal into LoRaWAN wireless signal which simplify the IoT installation and reduce the installation/maintaining cost.
22 )))
23
24 (((
25 RS485-LN allows user to (% style="color:blue" %)**monitor / control RS485 devices**(%%) and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
26 )))
27
28 (((
29 (% style="color:blue" %)**For data uplink**(%%), RS485-LN sends user-defined commands to RS485 devices and gets the return from the RS485 devices. RS485-LN will process these returns according to user-define rules to get the final payload and upload to LoRaWAN server.
30 )))
31
32 (((
33 (% style="color:blue" %)**For data downlink**(%%), RS485-LN runs in LoRaWAN Class C. When there downlink commands from LoRaWAN server, RS485-LN will forward the commands from LoRaWAN server to RS485 devices.
34
35 (% style="color:blue" %)**Demo Dashboard for RS485-LN**(%%) connect to two energy meters: [[https:~~/~~/app.datacake.de/dashboard/d/58844a26-378d-4c5a-aaf5-b5b5b153447a>>url:https://app.datacake.de/dashboard/d/58844a26-378d-4c5a-aaf5-b5b5b153447a]]
36 )))
37 )))
38
39 [[image:1653267211009-519.png||height="419" width="724"]]
40
41
42 == 1.2 Specifications ==
43
44
45 **Hardware System:**
46
47 * STM32L072CZT6 MCU
48 * SX1276/78 Wireless Chip 
49 * Power Consumption (exclude RS485 device):
50 ** Idle: 32mA@12v
51 ** 20dB Transmit: 65mA@12v
52
53 **Interface for Model:**
54
55 * RS485
56 * Power Input 7~~ 24V DC. 
57
58 **LoRa Spec:**
59
60 * Frequency Range:
61 ** Band 1 (HF): 862 ~~ 1020 Mhz
62 ** Band 2 (LF): 410 ~~ 528 Mhz
63 * 168 dB maximum link budget.
64 * +20 dBm - 100 mW constant RF output vs.
65 * +14 dBm high efficiency PA.
66 * Programmable bit rate up to 300 kbps.
67 * High sensitivity: down to -148 dBm.
68 * Bullet-proof front end: IIP3 = -12.5 dBm.
69 * Excellent blocking immunity.
70 * Low RX current of 10.3 mA, 200 nA register retention.
71 * Fully integrated synthesizer with a resolution of 61 Hz.
72 * FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation.
73 * Built-in bit synchronizer for clock recovery.
74 * Preamble detection.
75 * 127 dB Dynamic Range RSSI.
76 * Automatic RF Sense and CAD with ultra-fast AFC.
77 * Packet engine up to 256 bytes with CRC.
78
79
80
81 == 1.3 Features ==
82
83 * LoRaWAN Class A & Class C protocol (default Class C)
84 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865/RU864
85 * AT Commands to change parameters
86 * Remote configure parameters via LoRa Downlink
87 * Firmware upgradable via program port
88 * Support multiply RS485 devices by flexible rules
89 * Support Modbus protocol
90 * Support Interrupt uplink (Since hardware version v1.2)
91
92
93
94 == 1.4 Applications ==
95
96 * Smart Buildings & Home Automation
97 * Logistics and Supply Chain Management
98 * Smart Metering
99 * Smart Agriculture
100 * Smart Cities
101 * Smart Factory
102
103
104
105 == 1.5 Firmware Change log ==
106
107 [[RS485-LN Image files – Download link and Change log>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/]]
108
109
110 == 1.6 Hardware Change log ==
111
112 (((
113 (((
114 v1.2: Add External Interrupt Pin.
115
116 v1.0: Release
117
118
119 )))
120 )))
121
122 = 2. Power ON Device =
123
124 (((
125 The RS485-LN can be powered by 7 ~~ 24V DC power source. Connection as below
126
127 * Power Source VIN to RS485-LN VIN+
128 * Power Source GND to RS485-LN VIN-
129
130 (((
131 Once there is power, the RS485-LN will be on.
132 )))
133
134 [[image:1653268091319-405.png]]
135
136
137 )))
138
139 = 3. Operation Mode =
140
141 == 3.1 How it works? ==
142
143 (((
144 The RS485-LN is configured as LoRaWAN OTAA Class C mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the RS485-LN. It will auto join the network via OTAA.
145
146
147 )))
148
149 == 3.2 Example to join LoRaWAN network ==
150
151 Here shows an example for how to join the TTN V3 Network. Below is the network structure, we use [[LG308>>url:http://www.dragino.com/products/lora-lorawan-gateway/item/140-lg308.html]] as LoRaWAN gateway here. 
152
153 [[image:1653268155545-638.png||height="334" width="724"]]
154
155
156 (((
157 (((
158 The RS485-LN in this example connected to two RS485 devices for demonstration, user can connect to other RS485 devices via the same method. The connection is as below:
159 )))
160
161 (((
162 485A+ and 485B- of the sensor are connected to RS485A and RA485B of RS485-LN respectively.
163 )))
164
165 [[image:1653268227651-549.png||height="592" width="720"]]
166
167 (((
168 The LG308 is already set to connect to [[TTN V3 network >>path:eu1.cloud.thethings.network/]]. So what we need to now is only configure the TTN V3:
169 )))
170
171 (((
172 **Step 1**: Create a device in TTN V3 with the OTAA keys from RS485-LN.
173 )))
174
175 (((
176 Each RS485-LN is shipped with a sticker with unique device EUI:
177 )))
178 )))
179
180 [[image:1652953462722-299.png]]
181
182 (((
183 (((
184 User can enter this key in their LoRaWAN Server portal. Below is TTN V3 screen shot:
185 )))
186
187 (((
188 Add APP EUI in the application.
189 )))
190 )))
191
192 [[image:image-20220519174512-1.png]]
193
194 [[image:image-20220519174512-2.png||height="323" width="720"]]
195
196 [[image:image-20220519174512-3.png||height="556" width="724"]]
197
198 [[image:image-20220519174512-4.png]]
199
200 You can also choose to create the device manually.
201
202 [[image:1652953542269-423.png||height="710" width="723"]]
203
204 Add APP KEY and DEV EUI
205
206 [[image:1652953553383-907.png||height="514" width="724"]]
207
208
209 (((
210 **Step 2**: Power on RS485-LN and it will auto join to the TTN V3 network. After join success, it will start to upload message to TTN V3 and user can see in the panel.
211 )))
212
213 [[image:1652953568895-172.png||height="232" width="724"]]
214
215 == 3.3 Configure Commands to read data ==
216
217 (((
218 (((
219 There are plenty of RS485 devices in the market and each device has different command to read the valid data. To support these devices in flexible, RS485-LN supports flexible command set. User can use [[AT Commands>>path:#AT_COMMAND]] or LoRaWAN Downlink Command to configure what commands RS485-LN should send for each sampling and how to handle the return from RS485 devices.
220 )))
221
222 (((
223 (% style="color:red" %)Note: below description and commands are for firmware version >v1.1, if you have firmware version v1.0. Please check the [[user manual v1.0>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/&file=RS485-LN_UserManual_v1.0.1.pdf]] or upgrade the firmware to v1.1
224 )))
225 )))
226
227 === 3.3.1 onfigure UART settings for RS485 or TTL communication ===
228
229 To use RS485-LN to read data from RS485 sensors, connect the RS485-LN A/B traces to the sensors. And user need to make sure RS485-LN use the match UART setting to access the sensors. The related commands for UART settings are:
230
231 (% border="1" style="background-color:#ffffcc; color:green; width:795px" %)
232 |(((
233 **AT Commands**
234 )))|(% style="width:285px" %)(((
235 **Description**
236 )))|(% style="width:347px" %)(((
237 **Example**
238 )))
239 |(((
240 AT+BAUDR
241 )))|(% style="width:285px" %)(((
242 Set the baud rate (for RS485 connection). Default Value is: 9600.
243 )))|(% style="width:347px" %)(((
244 (((
245 AT+BAUDR=9600
246 )))
247
248 (((
249 Options: (1200,2400,4800,14400,19200,115200)
250 )))
251 )))
252 |(((
253 AT+PARITY
254 )))|(% style="width:285px" %)(((
255 Set UART parity (for RS485 connection)
256 )))|(% style="width:347px" %)(((
257 (((
258 AT+PARITY=0
259 )))
260
261 (((
262 Option: 0: no parity, 1: odd parity, 2: even parity
263 )))
264 )))
265 |(((
266 AT+STOPBIT
267 )))|(% style="width:285px" %)(((
268 (((
269 Set serial stopbit (for RS485 connection)
270 )))
271
272 (((
273
274 )))
275 )))|(% style="width:347px" %)(((
276 (((
277 AT+STOPBIT=0 for 1bit
278 )))
279
280 (((
281 AT+STOPBIT=1 for 1.5 bit
282 )))
283
284 (((
285 AT+STOPBIT=2 for 2 bits
286 )))
287 )))
288
289 === 3.3.2 Configure sensors ===
290
291 (((
292 (((
293 Some sensors might need to configure before normal operation. User can configure such sensor via PC and RS485 adapter or through RS485-LN AT Commands (% style="color:#4f81bd" %)**AT+CFGDEV**(%%). Each (% style="color:#4f81bd" %)**AT+CFGDEV **(%%)equals to send a RS485 command to sensors. This command will only run when user input it and won’t run during each sampling.
294 )))
295 )))
296
297 (% border="1" style="background-color:#ffffcc; color:green; width:806px" %)
298 |**AT Commands**|(% style="width:418px" %)**Description**|(% style="width:256px" %)**Example**
299 |AT+CFGDEV|(% style="width:418px" %)(((
300 This command is used to configure the RS485/TTL devices; they won’t be used during sampling.
301
302 AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,
303
304 mm: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command
305 )))|(% style="width:256px" %)AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m
306
307 === 3.3.3 Configure read commands for each sampling ===
308
309 (((
310 RS485-BL is a battery powered device; it will sleep most of time. And wake up on each period and read RS485 / TTL sensor data and uplink.
311 )))
312
313 (((
314 During each sampling, we need to confirm what commands we need to send to the sensors to read data. After the RS485/TTL sensors send back the value, it normally includes some bytes and we only need a few from them for a shorten payload.
315 )))
316
317 (((
318 To save the LoRaWAN network bandwidth, we might need to read data from different sensors and combine their valid value into a short payload.
319 )))
320
321 (((
322 This section describes how to achieve above goals.
323 )))
324
325 (((
326 During each sampling, the RS485-BL can support 15 commands to read sensors. And combine the return to one or several uplink payloads.
327 )))
328
329 (((
330 **Command from RS485-BL to Sensor:**
331 )))
332
333 (((
334 RS485-BL can send out pre-set max 15 strings via **AT+COMMAD1**, **ATCOMMAND2**,…, to **AT+COMMANDF** . All commands are of same grammar.
335 )))
336
337 (((
338 **Handle return from sensors to RS485-BL**:
339 )))
340
341 (((
342 After RS485-BL send out a string to sensor, RS485-BL will wait for the return from RS485 or TTL sensor. And user can specify how to handle the return, by **AT+DATACUT or AT+SEARCH commands**
343 )))
344
345 * (((
346 **AT+DATACUT**
347 )))
348
349 (((
350 When the return value from sensor have fix length and we know which position the valid value we should get, we can use AT+DATACUT command.
351 )))
352
353 * (((
354 **AT+SEARCH**
355 )))
356
357 (((
358 When the return value from sensor is dynamic length and we are not sure which bytes the valid data is, instead, we know what value the valid value following. We can use AT+SEARCH to search the valid value in the return string.
359 )))
360
361 (((
362 **Define wait timeout:**
363 )))
364
365 (((
366 Some RS485 device might has longer delay on reply, so user can use AT+CMDDL to set the timeout for getting reply after the RS485 command is sent. For example, AT+CMDDL1=1000 to send the open time to 1000ms
367 )))
368
369 (((
370 After we got the valid value from each RS485 commands, we need to combine them together with the command **AT+DATAUP**.
371 )))
372
373 **Examples:**
374
375 Below are examples for the how above AT Commands works.
376
377 **AT+COMMANDx : **This command will be sent to RS485/TTL devices during each sampling, Max command length is 14 bytes. The grammar is:
378
379 (% border="1" class="table-bordered" %)
380 |(((
381 **AT+COMMANDx=xx xx xx xx xx xx xx xx xx xx xx xx,m**
382
383 **xx xx xx xx xx xx xx xx xx xx xx xx: The RS485 command to be sent**
384
385 **m: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command**
386 )))
387
388 (((
389 For example, if we have a RS485 sensor. The command to get sensor value is: 01 03 0B B8 00 02 46 0A. Where 01 03 0B B8 00 02 is the Modbus command to read the register 0B B8 where stored the sensor value. The 46 0A is the CRC-16/MODBUS which calculate manually.
390 )))
391
392 (((
393 In the RS485-BL, we should use this command AT+COMMAND1=01 03 0B B8 00 02,1 for the same.
394 )))
395
396 (((
397 **AT+SEARCHx**: This command defines how to handle the return from AT+COMMANDx.
398 )))
399
400 (% border="1" class="table-bordered" %)
401 |(((
402 **AT+SEARCHx=aa,xx xx xx xx xx**
403
404 * **aa: 1: prefix match mode; 2: prefix and suffix match mode**
405 * **xx xx xx xx xx: match string. Max 5 bytes for prefix and 5 bytes for suffix**
406
407
408 )))
409
410 **Examples:**
411
412 ~1. For a return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
413
414 If we set AT+SEARCH1=1,1E 56 34.      (max 5 bytes for prefix)
415
416 The valid data will be all bytes after 1E 56 34 , so it is (% style="background-color:yellow" %)** 2e 30 58 5f 36 41 30 31 00 49**
417
418 [[image:1653269403619-508.png]]
419
420 2. For a return string from AT+COMMAND1:  16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
421
422 If we set AT+SEARCH1=2, 1E 56 34+31 00 49
423
424 Device will search the bytes between 1E 56 34 and 31 00 49. So it is (% style="background-color:yellow" %)** 2e 30 58 5f 36 41 30**
425
426 [[image:1653269438444-278.png]]
427
428 **AT+DATACUTx : **This command defines how to handle the return from AT+COMMANDx, max return length is 45 bytes.
429
430 |(((
431 **AT+DATACUTx=a,b,c**
432
433 * **a: length for the return of AT+COMMAND**
434 * **b:1: grab valid value by byte, max 6 bytes. 2: grab valid value by bytes section, max 3 sections.**
435 * **c: define the position for valid value.  **
436 )))
437
438 Examples:
439
440 * Grab bytes:
441
442 [[image:1653269551753-223.png||height="311" width="717"]]
443
444 * Grab a section.
445
446 [[image:1653269568276-930.png||height="325" width="718"]]
447
448 * Grab different sections.
449
450 [[image:1653269593172-426.png||height="303" width="725"]]
451
452 (% style="color:red" %)**Note:**
453
454 AT+SEARCHx and AT+DATACUTx can be used together, if both commands are set, RS485-BL will first process AT+SEARCHx on the return string and get a temporary string, and then process AT+DATACUTx on this temporary string to get the final payload. In this case, AT+DATACUTx need to set to format AT+DATACUTx=0,xx,xx where the return bytes set to 0.
455
456 Example:
457
458 (% style="color:red" %)AT+COMMAND1=11 01 1E D0,0
459
460 (% style="color:red" %)AT+SEARCH1=1,1E 56 34
461
462 (% style="color:red" %)AT+DATACUT1=0,2,1~~5
463
464 (% style="color:red" %)Return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
465
466 (% style="color:red" %)String after SEARCH command: 2e 30 58 5f 36 41 30 31 00 49
467
468 (% style="color:red" %)Valid payload after DataCUT command: 2e 30 58 5f 36
469
470 [[image:1653269618463-608.png]]
471
472 === 3.3.4 Compose the uplink payload ===
473
474 (((
475 Through AT+COMMANDx and AT+DATACUTx we got valid value from each RS485 commands, Assume these valid value are RETURN1, RETURN2, .., to RETURNx. The next step is how to compose the LoRa Uplink Payload by these RETURNs. The command is **AT+DATAUP.**
476 )))
477
478 (((
479 (% style="color:#4f81bd" %)**Examples: AT+DATAUP=0**
480 )))
481
482 (((
483 Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**A SIGNLE UPLINK**.
484 )))
485
486 (((
487 Final Payload is
488 )))
489
490 (((
491 (% style="color:#4f81bd" %)**Battery Info+PAYVER + VALID Value from RETURN1 + Valid Value from RETURN2 + … + RETURNx**
492 )))
493
494 (((
495 Where PAYVER is defined by AT+PAYVER, below is an example screen shot.
496 )))
497
498 [[image:1653269759169-150.png||height="513" width="716"]]
499
500 (% style="color:#4f81bd" %)**Examples: AT+DATAUP=1**
501
502 Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**Multiply UPLINKs**.
503
504 Final Payload is
505
506 (% style="color:#4f81bd" %)**Battery Info+PAYVER + PAYLOAD COUNT + PAYLOAD# + DATA**
507
508 1. Battery Info (2 bytes): Battery voltage
509 1. PAYVER (1 byte): Defined by AT+PAYVER
510 1. PAYLOAD COUNT (1 byte): Total how many uplinks of this sampling.
511 1. PAYLOAD# (1 byte): Number of this uplink. (from 0,1,2,3…,to PAYLOAD COUNT)
512 1. DATA: Valid value: max 6 bytes(US915 version here, Notice*!) for each uplink so each uplink <= 11 bytes. For the last uplink, DATA will might less than 6 bytes
513
514 [[image:1653269916228-732.png||height="433" width="711"]]
515
516
517 So totally there will be 3 uplinks for this sampling, each uplink includes 6 bytes DATA
518
519 DATA1=RETURN1 Valid Value = (% style="background-color:green; color:white" %)20 20 0a 33 90 41
520
521 DATA2=1^^st^^ ~~ 6^^th^^ byte of Valid value of RETURN10=(% style="background-color:green; color:white" %) 02 aa 05 81 0a 20
522
523 DATA3=7^^th^^ ~~ 11^^th^^ bytes of Valid value of RETURN10 = (% style="background-color:green; color:white" %)20 20 20 2d 30
524
525 Below are the uplink payloads:
526
527 [[image:1653270130359-810.png]]
528
529
530 (% style="color:red" %)**Notice: the Max bytes is according to the max support bytes in different Frequency Bands for lowest SF. As below:**
531
532 ~* For AU915/AS923 bands, if UplinkDwell time=0, max 51 bytes for each uplink ( so 51 -5 = 46 max valid date)
533
534 * For AU915/AS923 bands, if UplinkDwell time=1, max 11 bytes for each uplink ( so 11 -5 = 6 max valid date).
535
536 * For US915 band, max 11 bytes for each uplink ( so 11 -5 = 6 max valid date).
537
538 ~* For all other bands: max 51 bytes for each uplink  ( so 51 -5 = 46 max valid date).
539
540 === 3.3.5 Uplink on demand ===
541
542 Except uplink periodically, RS485-BL is able to uplink on demand. The server sends downlink command to RS485-BL and RS485 will uplink data base on the command.
543
544 Downlink control command:
545
546 [[0x08 command>>path:#downlink_08]]: Poll an uplink with current command set in RS485-BL.
547
548 [[0xA8 command>>path:#downlink_A8]]: Send a command to RS485-BL and uplink the output from sensors.
549
550
551
552 1.
553 11.
554 111. Uplink on Interrupt
555
556 Put the interrupt sensor between 3.3v_out and GPIO ext.[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image022.png]]
557
558 AT+INTMOD=0  Disable Interrupt
559
560 AT+INTMOD=1  Interrupt trigger by rising or falling edge.
561
562 AT+INTMOD=2  Interrupt trigger by falling edge. ( Default Value)
563
564 AT+INTMOD=3  Interrupt trigger by rising edge.
565
566
567 1.
568 11. Uplink Payload
569
570 |**Size(bytes)**|**2**|**1**|**Length depends on the return from the commands**
571 |Value|(((
572 Battery(mV)
573
574 &
575
576 Interrupt _Flag
577 )))|(((
578 PAYLOAD_VER
579
580
581 )))|If the valid payload is too long and exceed the maximum support payload length in server, server will show payload not provided in the LoRaWAN server.
582
583 Below is the decoder for the first 3 bytes. The rest bytes are dynamic depends on different RS485 sensors.
584
585
586 function Decoder(bytes, port) {
587
588 ~/~/Payload Formats of RS485-BL Deceive
589
590 return {
591
592 ~/~/Battery,units:V
593
594 BatV:((bytes[0]<<8 | bytes[1])&0x7fff)/1000,
595
596 ~/~/GPIO_EXTI 
597
598 EXTI_Trigger:(bytes[0] & 0x80)? "TRUE":"FALSE",
599
600 ~/~/payload of version
601
602 Pay_ver:bytes[2],
603
604 };
605
606 }
607
608
609
610
611
612
613
614 TTN V3 uplink screen shot.
615
616 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image023.png]]
617
618 1.
619 11. Configure RS485-BL via AT or Downlink
620
621 User can configure RS485-BL via [[AT Commands >>path:#_​Using_the_AT]]or LoRaWAN Downlink Commands
622
623 There are two kinds of Commands:
624
625 * **Common Commands**: They should be available for each sensor, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: http:~/~/wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands
626
627 * **Sensor Related Commands**: These commands are special designed for RS485-BL.  User can see these commands below:
628
629 1.
630 11.
631 111. Common Commands:
632
633 They should be available for each of Dragino Sensors, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: [[http:~~/~~/wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands>>url:http://wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands]]
634
635
636 1.
637 11.
638 111. Sensor related commands:
639
640 ==== Choose Device Type (RS485 or TTL) ====
641
642 RS485-BL can connect to either RS485 sensors or TTL sensor. User need to specify what type of sensor need to connect.
643
644 * AT Command
645
646 **AT+MOD=1** ~/~/ Set to support RS485-MODBUS type sensors. User can connect multiply RS485 , Modbus sensors to the A / B pins.
647
648 **AT+MOD=2** ~/~/ Set to support TTL Level sensors, User can connect one TTL Sensor to the TXD/RXD/GND pins.
649
650
651 * Downlink Payload
652
653 **0A aa**     à same as AT+MOD=aa
654
655
656
657 ==== [[RS485 Debug Command>>path:#downlink_A8]] (AT+CFGDEV) ====
658
659 This command is used to configure the RS485 or TTL sensors; they won’t be used during sampling.
660
661 * AT Command
662
663 AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m
664
665 m: 0: no CRC; 1: add CRC-16/MODBUS in the end of this command.
666
667
668
669 * Downlink Payload
670
671 Format: A8 MM NN XX XX XX XX YY
672
673 Where:
674
675 * MM: 1: add CRC-16/MODBUS ; 0: no CRC
676 * NN: The length of RS485 command
677 * XX XX XX XX: RS485 command total NN bytes
678 * YY: How many bytes will be uplink from the return of this RS485 command, if YY=0, RS485-BL will execute the downlink command without uplink; if YY>0, RS485-BL will uplink total YY bytes from the output of this RS485 command
679
680 **Example 1:**
681
682 To connect a Modbus Alarm with below commands.
683
684 * The command to active alarm is: 0A 05 00 04 00 01 4C B0. Where 0A 05 00 04 00 01 is the Modbus command to read the register 00 40 where stored the DI status. The 4C B0 is the CRC-16/MODBUS which calculate manually.
685
686 * The command to deactivate alarm is: 0A 05 00 04 00 00 8D 70. Where 0A 05 00 04 00 00 is the Modbus command to read the register 00 40 where stored the DI status. The 8D 70 is the CRC-16/MODBUS which calculate manually.
687
688 So if user want to use downlink command to control to RS485 Alarm, he can use:
689
690 **A8 01 06 0A 05 00 04 00 01 00**: to activate the RS485 Alarm
691
692 **A8 01 06 0A 05 00 04 00 00 00**: to deactivate the RS485 Alarm
693
694 A8 is type code and 01 means add CRC-16/MODBUS at the end, the 3^^rd^^ byte is 06, means the next 6 bytes are the command to be sent to the RS485 network, the final byte 00 means this command don’t need to acquire output.
695
696
697 **Example 2:**
698
699 Check TTL Sensor return:
700
701 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image024.png]]
702
703
704
705
706 ==== Set Payload version ====
707
708 This is the first byte of the uplink payload. RS485-BL can connect to different sensors. User can set the PAYVER field to tell server how to decode the current payload.
709
710 * AT Command:
711
712 AT+PAYVER: Set PAYVER field = 1
713
714
715 * Downlink Payload:
716
717 0xAE 01   à Set PAYVER field =  0x01
718
719 0xAE 0F   à Set PAYVER field =  0x0F
720
721
722 ==== Set RS485 Sampling Commands ====
723
724 AT+COMMANDx, AT+DATACUTx and AT+SEARCHx
725
726 These three commands are used to configure how the RS485-BL polling data from Modbus device. Detail of usage please see : [[polling RS485 device>>path:#polling_485]].
727
728
729 * AT Command:
730
731 AT+COMMANDx: Configure RS485 read command to sensor.
732
733 AT+DATACUTx: Configure how to handle return from RS485 devices.
734
735 AT+SEARCHx: Configure search command
736
737
738 * Downlink Payload:
739
740 0xAF downlink command can be used to set AT+COMMANDx or AT+DATACUTx.
741
742 Note: if user use AT+COMMANDx to add a new command, he also need to send AT+DATACUTx downlink.
743
744 Format: AF MM NN LL XX XX XX XX YY
745
746 Where:
747
748 * MM: the ATCOMMAND or AT+DATACUT to be set. Value from 01 ~~ 0F,
749 * NN: 0: no CRC; 1: add CRC-16/MODBUS ; 2: set the AT+DATACUT value.
750 * LL: The length of AT+COMMAND or AT+DATACUT command
751 * XX XX XX XX: AT+COMMAND or AT+DATACUT command
752 * YY: If YY=0, RS485-BL will execute the downlink command without uplink; if YY=1, RS485-BL will execute an uplink after got this command.
753
754 Example:
755
756 **AF 03 01 06 0A 05 00 04 00 01 00**: Same as AT+COMMAND3=0A 05 00 04 00 01,1
757
758 **AF 03 02 06 10 01 05 06 09 0A 00**: Same as AT+DATACUT3=**16**,**1**,**5+6+9+10**
759
760 **AF 03 02 06 0B 02 05 07 08 0A 00**: Same as AT+DATACUT3=**11**,**2**,**5~~7+8~~10**
761
762
763 0xAB downlink command can be used for set AT+SEARCHx
764
765 Example: **AB aa 01 03 xx xx xx** (03 here means there are total 3 bytes after 03) So
766
767 * AB aa 01 03 xx xx xx  same as AT+SEARCHaa=1,xx xx xx
768 * AB aa 02 03 xx xx xx 02 yy yy(03 means there are 3 bytes after 03, they are xx xx xx;02 means there are 2 bytes after 02, they are yy yy) so the commands
769
770 **AB aa 02 03 xx xx xx 02 yy yy**  same as **AT+SEARCHaa=2,xx xx xx+yy yy**
771
772
773 ==== Fast command to handle MODBUS device ====
774
775 AT+MBFUN is valid since v1.3 firmware version. The command is for fast configure to read Modbus devices. It is only valid for the devices which follow the [[MODBUS-RTU protocol>>url:https://www.modbustools.com/modbus.html]].
776
777 This command is valid since v1.3 firmware version
778
779
780 AT+MBFUN has only two value:
781
782 * AT+MBFUN=1: Enable Modbus reading. And get response base on the MODBUS return
783
784 AT+MBFUN=1, device can auto read the Modbus function code: 01, 02, 03 or 04. AT+MBFUN has lower priority vs AT+DATACUT command. If AT+DATACUT command is configured, AT+MBFUN will be ignore.
785
786 * AT+MBFUN=0: Disable Modbus fast reading.
787
788 Example:
789
790 * AT+MBFUN=1 and AT+DATACUT1/AT+DATACUT2 are not configure (0,0,0).
791 * AT+COMMAND1= 01 03 00 10 00 08,1 ~-~-> read slave address 01 , function code 03, start address 00 01, quantity of registers 00 08.
792 * AT+COMMAND2= 01 02 00 40 00 10,1 ~-~-> read slave address 01 , function code 02, start address 00 40, quantity of inputs 00 10.
793
794 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image025.png]]
795
796
797 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image026.png]]
798
799
800 * Downlink Commands:
801
802 A9 aa -à Same as AT+MBFUN=aa
803
804
805 ==== RS485 command timeout ====
806
807 Some Modbus device has slow action to send replies. This command is used to configure the RS485-BL to use longer time to wait for their action.
808
809 Default value: 0, range:  0 ~~ 5 seconds
810
811
812 * AT Command:
813
814 AT+CMDDLaa=hex(bb cc)
815
816 Example:
817
818 **AT+CMDDL1=1000** to send the open time to 1000ms
819
820
821 * Downlink Payload:
822
823 0x AA aa bb cc
824
825 Same as: AT+CMDDLaa=hex(bb cc)
826
827 Example:
828
829 0xAA 01 03 E8  à Same as **AT+CMDDL1=1000 ms**
830
831
832 ==== [[Uplink>>path:#downlink_A8]] payload mode ====
833
834 Define to use one uplink or multiple uplinks for the sampling.
835
836 The use of this command please see: [[Compose Uplink payload>>path:#DataUP]]
837
838 * AT Command:
839
840 AT+DATAUP=0
841
842 AT+DATAUP=1
843
844
845 * Downlink Payload:
846
847 0xAD 00   à Same as AT+DATAUP=0
848
849 0xAD 01   à Same as AT+DATAUP=1
850
851
852 ==== Manually trigger an Uplink ====
853
854 Ask device to send an uplink immediately.
855
856 * Downlink Payload:
857
858 0x08 FF, RS485-BL will immediately send an uplink.
859
860
861 ==== Clear RS485 Command ====
862
863 The AT+COMMANDx and AT+DATACUTx settings are stored in special location, user can use below command to clear them.
864
865
866 * AT Command:
867
868 **AT+CMDEAR=mm,nn**   mm: start position of erase ,nn: stop position of erase
869
870 Etc. AT+CMDEAR=1,10 means erase AT+COMMAND1/AT+DATACUT1 to AT+COMMAND10/AT+DATACUT10
871
872 Example screen shot after clear all RS485 commands. 
873
874
875
876 The uplink screen shot is:
877
878 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image023.png]]
879
880
881 * Downlink Payload:
882
883 0x09 aa bb same as AT+CMDEAR=aa,bb
884
885
886 ==== Set Serial Communication Parameters ====
887
888 Set the Rs485 serial communication parameters:
889
890 * AT Command:
891
892 Set Baud Rate:
893
894 AT+BAUDR=9600    ~/~/ Options: (1200,2400,4800,14400,19200,115200)
895
896
897 Set UART parity
898
899 AT+PARITY=0    ~/~/ Option: 0: no parity, 1: odd parity, 2: even parity
900
901
902 Set STOPBIT
903
904 AT+STOPBIT=0    ~/~/ Option: 0 for 1bit; 1 for 1.5 bit ; 2 for 2 bits
905
906
907 * Downlink Payload:
908
909 A7 01 aa bb: Same  AT+BAUDR=hex(aa bb)*100
910
911 Example:
912
913 * A7 01 00 60   same as AT+BAUDR=9600
914 * A7 01 04 80  same as AT+BAUDR=115200
915
916 A7 02 aa: Same as  AT+PARITY=aa  (aa value: 00 , 01 or 02)
917
918 A7 03 aa: Same as  AT+STOPBIT=aa  (aa value: 00 , 01 or 02)
919
920
921 ==== Control output power duration ====
922
923 User can set the output power duration before each sampling.
924
925 * AT Command:
926
927 Example:
928
929 AT+3V3T=1000 ~/~/ 3V3 output power will open 1s before each sampling.
930
931 AT+5VT=1000 ~/~/ +5V output power will open 1s before each sampling.
932
933
934 * LoRaWAN Downlink Command:
935
936 07 01 aa bb  Same as AT+5VT=(aa bb)
937
938 07 02 aa bb  Same as AT+3V3T=(aa bb)
939
940
941
942
943 1.
944 11. Buttons
945
946 |**Button**|**Feature**
947 |**RST**|Reboot RS485-BL
948
949 1.
950 11. +3V3 Output
951
952 RS485-BL has a Controllable +3V3 output, user can use this output to power external sensor.
953
954 The +3V3 output will be valid for every sampling. RS485-BL will enable +3V3 output before all sampling and disable the +3V3 after all sampling. 
955
956
957 The +3V3 output time can be controlled by AT Command.
958
959 **AT+3V3T=1000**
960
961 Means set +3v3 valid time to have 1000ms. So, the real +3v3 output will actually have 1000ms + sampling time for other sensors.
962
963
964 By default, the AT+3V3T=0. This is a special case, means the +3V3 output is always on at any time
965
966
967 1.
968 11. +5V Output
969
970 RS485-BL has a Controllable +5V output, user can use this output to power external sensor.
971
972 The +5V output will be valid for every sampling. RS485-BL will enable +5V output before all sampling and disable the +5v after all sampling. 
973
974
975 The 5V output time can be controlled by AT Command.
976
977 **AT+5VT=1000**
978
979 Means set 5V valid time to have 1000ms. So, the real 5V output will actually have 1000ms + sampling time for other sensors.
980
981
982 By default, the AT+5VT=0. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
983
984
985
986
987 1.
988 11. LEDs
989
990 |**LEDs**|**Feature**
991 |**LED1**|Blink when device transmit a packet.
992
993 1.
994 11. Switch Jumper
995
996 |**Switch Jumper**|**Feature**
997 |**SW1**|(((
998 ISP position: Upgrade firmware via UART
999
1000 Flash position: Configure device, check running status.
1001 )))
1002 |**SW2**|(((
1003 5V position: set to compatible with 5v I/O.
1004
1005 3.3v position: set to compatible with 3.3v I/O.,
1006 )))
1007
1008 +3.3V: is always ON
1009
1010 +5V: Only open before every sampling. The time is by default, it is AT+5VT=0.  Max open time. 5000 ms.
1011
1012 1. Case Study
1013
1014 User can check this URL for some case studies.
1015
1016 [[http:~~/~~/wiki.dragino.com/index.php?title=APP_RS485_COMMUNICATE_WITH_SENSORS>>url:http://wiki.dragino.com/index.php?title=APP_RS485_COMMUNICATE_WITH_SENSORS]]
1017
1018
1019
1020
1021 1. Use AT Command
1022 11. Access AT Command
1023
1024 RS485-BL supports AT Command set. User can use a USB to TTL adapter plus the 3.5mm Program Cable to connect to RS485-BL to use AT command, as below.
1025
1026 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image027.png]]
1027
1028
1029 In PC, User needs to set **serial tool**(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to **9600** to access to access serial console of RS485-BL. The default password is 123456. Below is the output for reference:
1030
1031 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image028.png]]
1032
1033
1034
1035 More detail AT Command manual can be found at [[AT Command Manual>>path:#AT_COMMAND]]
1036
1037
1038
1039 1.
1040 11. Common AT Command Sequence
1041 111. Multi-channel ABP mode (Use with SX1301/LG308)
1042
1043 If device has not joined network yet:
1044
1045 AT+FDR
1046
1047 AT+NJM=0
1048
1049 ATZ
1050
1051
1052 If device already joined network:
1053
1054 AT+NJM=0
1055
1056 ATZ
1057
1058 1.
1059 11.
1060 111. Single-channel ABP mode (Use with LG01/LG02)
1061
1062 AT+FDR   Reset Parameters to Factory Default, Keys Reserve
1063
1064 AT+NJM=0 Set to ABP mode
1065
1066 AT+ADR=0 Set the Adaptive Data Rate Off
1067
1068 AT+DR=5  Set Data Rate
1069
1070 AT+TDC=60000  Set transmit interval to 60 seconds
1071
1072 AT+CHS=868400000 Set transmit frequency to 868.4Mhz
1073
1074 AT+RX2FQ=868400000 Set RX2Frequency to 868.4Mhz (according to the result from server)
1075
1076 AT+RX2DR=5  Set RX2DR to match the downlink DR from server. see below
1077
1078 AT+DADDR=26 01 1A F1 Set Device Address to 26 01 1A F1, this ID can be found in the LoRa Server portal.
1079
1080 ATZ          Reset MCU
1081
1082 **Note:**
1083
1084 1. Make sure the device is set to ABP mode in the IoT Server.
1085 1. Make sure the LG01/02 gateway RX frequency is exactly the same as AT+CHS setting.
1086 1. Make sure SF / bandwidth setting in LG01/LG02 match the settings of AT+DR. refer [[this link>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_Gateway/&file=LoRaWAN%201.0.3%20Regional%20Parameters.xlsx]] to see what DR means.
1087 1. The command AT+RX2FQ and AT+RX2DR is to let downlink work. to set the correct parameters, user can check the actually downlink parameters to be used. As below. Which shows the RX2FQ should use 868400000 and RX2DR should be 5
1088
1089 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image029.png]]
1090
1091
1092 1. FAQ
1093 11. How to upgrade the image?
1094
1095 The RS485-BL LoRaWAN Controller is shipped with a 3.5mm cable, the cable is used to upload image to RS485-BL to:
1096
1097 * Support new features
1098 * For bug fix
1099 * Change LoRaWAN bands.
1100
1101 Below shows the hardware connection for how to upload an image to RS485-BL:
1102
1103 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image030.png]]
1104
1105 **Step1:** Download [[flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]].
1106
1107 **Step2**: Download the [[LT Image files>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/image/]].
1108
1109 **Step3: **Open flashloader; choose the correct COM port to update.
1110
1111
1112 |(((
1113 HOLD PRO then press the RST button, SYS will be ON, then click next
1114 )))
1115
1116 |(((
1117 Board detected
1118 )))
1119
1120 |(((
1121
1122 )))
1123
1124 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image031.png]] [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image032.png]]
1125
1126
1127
1128 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image033.png]] [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image034.png]]
1129
1130
1131 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image035.png]] [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image036.png]]
1132
1133
1134 1.
1135 11. How to change the LoRa Frequency Bands/Region?
1136
1137 User can follow the introduction for [[how to upgrade image>>path:#upgrade_image]]. When download the images, choose the required image file for download.
1138
1139
1140
1141 1.
1142 11. How many RS485-Slave can RS485-BL connects?
1143
1144 The RS485-BL can support max 32 RS485 devices. Each uplink command of RS485-BL can support max 16 different RS485 command. So RS485-BL can support max 16 RS485 devices pre-program in the device for uplink. For other devices no pre-program, user can use the [[downlink message (type code 0xA8) to poll their info>>path:#downlink_A8]].
1145
1146
1147
1148
1149 1. Trouble Shooting     
1150 11. Downlink doesn’t work, how to solve it?
1151
1152 Please see this link for debug:
1153
1154 [[http:~~/~~/wiki.dragino.com/index.php?title=Main_Page#LoRaWAN_Communication_Debug>>url:http://wiki.dragino.com/index.php?title=Main_Page#LoRaWAN_Communication_Debug]] 
1155
1156
1157
1158 1.
1159 11. Why I can’t join TTN V3 in US915 /AU915 bands?
1160
1161 It might about the channels mapping. Please see for detail.
1162
1163 [[http:~~/~~/wiki.dragino.com/index.php?title=LoRaWAN_Communication_Debug#Notice_of_US915.2FCN470.2FAU915_Frequency_band>>url:http://wiki.dragino.com/index.php?title=LoRaWAN_Communication_Debug#Notice_of_US915.2FCN470.2FAU915_Frequency_band]]
1164
1165
1166
1167 1. Order Info
1168
1169 **Part Number: RS485-BL-XXX**
1170
1171 **XXX:**
1172
1173 * **EU433**: frequency bands EU433
1174 * **EU868**: frequency bands EU868
1175 * **KR920**: frequency bands KR920
1176 * **CN470**: frequency bands CN470
1177 * **AS923**: frequency bands AS923
1178 * **AU915**: frequency bands AU915
1179 * **US915**: frequency bands US915
1180 * **IN865**: frequency bands IN865
1181 * **RU864**: frequency bands RU864
1182 * **KZ865: **frequency bands KZ865
1183
1184 1. Packing Info
1185
1186 **Package Includes**:
1187
1188 * RS485-BL x 1
1189 * Stick Antenna for LoRa RF part x 1
1190 * Program cable x 1
1191
1192 **Dimension and weight**:
1193
1194 * Device Size: 13.5 x 7 x 3 cm
1195 * Device Weight: 105g
1196 * Package Size / pcs : 14.5 x 8 x 5 cm
1197 * Weight / pcs : 170g
1198
1199 1. Support
1200
1201 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1202 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to
1203
1204 [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]]
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0