Version 32.10 by Xiaoling on 2022/06/02 15:26

Show last authors
1 (% style="text-align:center" %)
2 [[image:1653266934636-343.png||height="385" width="385"]]
3
4
5
6 **RS485-LN – RS485 to LoRaWAN Converter User Manual**
7
8
9 **Table of Contents:**
10
11
12
13
14
15 = 1.Introduction =
16
17 == 1.1 What is RS485-LN RS485 to LoRaWAN Converter ==
18
19 (((
20 (((
21 The Dragino RS485-LN is a (% style="color:blue" %)**RS485 to LoRaWAN Converter**(%%). It converts the RS485 signal into LoRaWAN wireless signal which simplify the IoT installation and reduce the installation/maintaining cost.
22 )))
23
24 (((
25 RS485-LN allows user to (% style="color:blue" %)**monitor / control RS485 devices**(%%) and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
26 )))
27
28 (((
29 (% style="color:blue" %)**For data uplink**(%%), RS485-LN sends user-defined commands to RS485 devices and gets the return from the RS485 devices. RS485-LN will process these returns according to user-define rules to get the final payload and upload to LoRaWAN server.
30 )))
31
32 (((
33 (% style="color:blue" %)**For data downlink**(%%), RS485-LN runs in LoRaWAN Class C. When there downlink commands from LoRaWAN server, RS485-LN will forward the commands from LoRaWAN server to RS485 devices.
34
35 (% style="color:blue" %)**Demo Dashboard for RS485-LN**(%%) connect to two energy meters: [[https:~~/~~/app.datacake.de/dashboard/d/58844a26-378d-4c5a-aaf5-b5b5b153447a>>url:https://app.datacake.de/dashboard/d/58844a26-378d-4c5a-aaf5-b5b5b153447a]]
36 )))
37 )))
38
39 [[image:1653267211009-519.png||height="419" width="724"]]
40
41
42 == 1.2 Specifications ==
43
44
45 **Hardware System:**
46
47 * STM32L072CZT6 MCU
48 * SX1276/78 Wireless Chip 
49 * Power Consumption (exclude RS485 device):
50 ** Idle: 32mA@12v
51 ** 20dB Transmit: 65mA@12v
52
53 **Interface for Model:**
54
55 * RS485
56 * Power Input 7~~ 24V DC. 
57
58 **LoRa Spec:**
59
60 * Frequency Range:
61 ** Band 1 (HF): 862 ~~ 1020 Mhz
62 ** Band 2 (LF): 410 ~~ 528 Mhz
63 * 168 dB maximum link budget.
64 * +20 dBm - 100 mW constant RF output vs.
65 * +14 dBm high efficiency PA.
66 * Programmable bit rate up to 300 kbps.
67 * High sensitivity: down to -148 dBm.
68 * Bullet-proof front end: IIP3 = -12.5 dBm.
69 * Excellent blocking immunity.
70 * Low RX current of 10.3 mA, 200 nA register retention.
71 * Fully integrated synthesizer with a resolution of 61 Hz.
72 * FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation.
73 * Built-in bit synchronizer for clock recovery.
74 * Preamble detection.
75 * 127 dB Dynamic Range RSSI.
76 * Automatic RF Sense and CAD with ultra-fast AFC.
77 * Packet engine up to 256 bytes with CRC.
78
79
80
81 == 1.3 Features ==
82
83 * LoRaWAN Class A & Class C protocol (default Class C)
84 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865/RU864
85 * AT Commands to change parameters
86 * Remote configure parameters via LoRa Downlink
87 * Firmware upgradable via program port
88 * Support multiply RS485 devices by flexible rules
89 * Support Modbus protocol
90 * Support Interrupt uplink (Since hardware version v1.2)
91
92
93
94 == 1.4 Applications ==
95
96 * Smart Buildings & Home Automation
97 * Logistics and Supply Chain Management
98 * Smart Metering
99 * Smart Agriculture
100 * Smart Cities
101 * Smart Factory
102
103
104
105 == 1.5 Firmware Change log ==
106
107 [[RS485-LN Image files – Download link and Change log>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/]]
108
109
110 == 1.6 Hardware Change log ==
111
112 (((
113 (((
114 v1.2: Add External Interrupt Pin.
115
116 v1.0: Release
117
118
119 )))
120 )))
121
122 = 2. Power ON Device =
123
124 (((
125 The RS485-LN can be powered by 7 ~~ 24V DC power source. Connection as below
126
127 * Power Source VIN to RS485-LN VIN+
128 * Power Source GND to RS485-LN VIN-
129
130 (((
131 Once there is power, the RS485-LN will be on.
132 )))
133
134 [[image:1653268091319-405.png]]
135 )))
136
137 = 3. Operation Mode =
138
139 == 3.1 How it works? ==
140
141 (((
142 The RS485-LN is configured as LoRaWAN OTAA Class C mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the RS485-LN. It will auto join the network via OTAA.
143 )))
144
145 == 3.2 Example to join LoRaWAN network ==
146
147 Here shows an example for how to join the TTN V3 Network. Below is the network structure, we use [[LG308>>url:http://www.dragino.com/products/lora-lorawan-gateway/item/140-lg308.html]] as LoRaWAN gateway here. 
148
149 [[image:1653268155545-638.png||height="334" width="724"]]
150
151 (((
152 The RS485-LN in this example connected to two RS485 devices for demonstration, user can connect to other RS485 devices via the same method. The connection is as below:
153
154 485A+ and 485B- of the sensor are connected to RS485A and RA485B of RS485-LN respectively.
155
156 [[image:1653268227651-549.png||height="592" width="720"]]
157
158 (((
159 The LG308 is already set to connect to [[TTN V3 network >>path:eu1.cloud.thethings.network/]]. So what we need to now is only configure the TTN V3:
160 )))
161
162 (((
163 **Step 1**: Create a device in TTN V3 with the OTAA keys from RS485-LN.
164 )))
165
166 (((
167 Each RS485-LN is shipped with a sticker with unique device EUI:
168 )))
169 )))
170
171 [[image:1652953462722-299.png]]
172
173 (((
174 (((
175 User can enter this key in their LoRaWAN Server portal. Below is TTN V3 screen shot:
176 )))
177
178 (((
179 Add APP EUI in the application.
180 )))
181 )))
182
183 [[image:image-20220519174512-1.png]]
184
185 [[image:image-20220519174512-2.png||height="323" width="720"]]
186
187 [[image:image-20220519174512-3.png||height="556" width="724"]]
188
189 [[image:image-20220519174512-4.png]]
190
191 You can also choose to create the device manually.
192
193 [[image:1652953542269-423.png||height="710" width="723"]]
194
195 Add APP KEY and DEV EUI
196
197 [[image:1652953553383-907.png||height="514" width="724"]]
198
199
200 (((
201 **Step 2**: Power on RS485-LN and it will auto join to the TTN V3 network. After join success, it will start to upload message to TTN V3 and user can see in the panel.
202 )))
203
204 [[image:1652953568895-172.png||height="232" width="724"]]
205
206 == 3.3 Configure Commands to read data ==
207
208 (((
209 (((
210 There are plenty of RS485 devices in the market and each device has different command to read the valid data. To support these devices in flexible, RS485-LN supports flexible command set. User can use [[AT Commands>>path:#AT_COMMAND]] or LoRaWAN Downlink Command to configure what commands RS485-LN should send for each sampling and how to handle the return from RS485 devices.
211 )))
212
213 (((
214 (% style="color:red" %)Note: below description and commands are for firmware version >v1.1, if you have firmware version v1.0. Please check the [[user manual v1.0>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/&file=RS485-LN_UserManual_v1.0.1.pdf]] or upgrade the firmware to v1.1
215 )))
216 )))
217
218 === 3.3.1 onfigure UART settings for RS485 or TTL communication ===
219
220 To use RS485-LN to read data from RS485 sensors, connect the RS485-LN A/B traces to the sensors. And user need to make sure RS485-LN use the match UART setting to access the sensors. The related commands for UART settings are:
221
222 (% border="1" style="background-color:#ffffcc; color:green; width:795px" %)
223 |(((
224 **AT Commands**
225 )))|(% style="width:285px" %)(((
226 **Description**
227 )))|(% style="width:347px" %)(((
228 **Example**
229 )))
230 |(((
231 AT+BAUDR
232 )))|(% style="width:285px" %)(((
233 Set the baud rate (for RS485 connection). Default Value is: 9600.
234 )))|(% style="width:347px" %)(((
235 (((
236 AT+BAUDR=9600
237 )))
238
239 (((
240 Options: (1200,2400,4800,14400,19200,115200)
241 )))
242 )))
243 |(((
244 AT+PARITY
245 )))|(% style="width:285px" %)(((
246 Set UART parity (for RS485 connection)
247 )))|(% style="width:347px" %)(((
248 (((
249 AT+PARITY=0
250 )))
251
252 (((
253 Option: 0: no parity, 1: odd parity, 2: even parity
254 )))
255 )))
256 |(((
257 AT+STOPBIT
258 )))|(% style="width:285px" %)(((
259 (((
260 Set serial stopbit (for RS485 connection)
261 )))
262
263 (((
264
265 )))
266 )))|(% style="width:347px" %)(((
267 (((
268 AT+STOPBIT=0 for 1bit
269 )))
270
271 (((
272 AT+STOPBIT=1 for 1.5 bit
273 )))
274
275 (((
276 AT+STOPBIT=2 for 2 bits
277 )))
278 )))
279
280 === 3.3.2 Configure sensors ===
281
282 (((
283 (((
284 Some sensors might need to configure before normal operation. User can configure such sensor via PC and RS485 adapter or through RS485-LN AT Commands (% style="color:#4f81bd" %)**AT+CFGDEV**(%%). Each (% style="color:#4f81bd" %)**AT+CFGDEV **(%%)equals to send a RS485 command to sensors. This command will only run when user input it and won’t run during each sampling.
285 )))
286 )))
287
288 (% border="1" style="background-color:#ffffcc; color:green; width:806px" %)
289 |**AT Commands**|(% style="width:418px" %)**Description**|(% style="width:256px" %)**Example**
290 |AT+CFGDEV|(% style="width:418px" %)(((
291 This command is used to configure the RS485/TTL devices; they won’t be used during sampling.
292
293 AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,
294
295 mm: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command
296 )))|(% style="width:256px" %)AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m
297
298 === 3.3.3 Configure read commands for each sampling ===
299
300 (((
301 RS485-BL is a battery powered device; it will sleep most of time. And wake up on each period and read RS485 / TTL sensor data and uplink.
302 )))
303
304 (((
305 During each sampling, we need to confirm what commands we need to send to the sensors to read data. After the RS485/TTL sensors send back the value, it normally includes some bytes and we only need a few from them for a shorten payload.
306 )))
307
308 (((
309 To save the LoRaWAN network bandwidth, we might need to read data from different sensors and combine their valid value into a short payload.
310 )))
311
312 (((
313 This section describes how to achieve above goals.
314 )))
315
316 (((
317 During each sampling, the RS485-BL can support 15 commands to read sensors. And combine the return to one or several uplink payloads.
318 )))
319
320 (((
321 **Command from RS485-BL to Sensor:**
322 )))
323
324 (((
325 RS485-BL can send out pre-set max 15 strings via **AT+COMMAD1**, **ATCOMMAND2**,…, to **AT+COMMANDF** . All commands are of same grammar.
326 )))
327
328 (((
329 **Handle return from sensors to RS485-BL**:
330 )))
331
332 (((
333 After RS485-BL send out a string to sensor, RS485-BL will wait for the return from RS485 or TTL sensor. And user can specify how to handle the return, by **AT+DATACUT or AT+SEARCH commands**
334 )))
335
336 * (((
337 **AT+DATACUT**
338 )))
339
340 (((
341 When the return value from sensor have fix length and we know which position the valid value we should get, we can use AT+DATACUT command.
342 )))
343
344 * (((
345 **AT+SEARCH**
346 )))
347
348 (((
349 When the return value from sensor is dynamic length and we are not sure which bytes the valid data is, instead, we know what value the valid value following. We can use AT+SEARCH to search the valid value in the return string.
350 )))
351
352 (((
353 **Define wait timeout:**
354 )))
355
356 (((
357 Some RS485 device might has longer delay on reply, so user can use AT+CMDDL to set the timeout for getting reply after the RS485 command is sent. For example, AT+CMDDL1=1000 to send the open time to 1000ms
358 )))
359
360 (((
361 After we got the valid value from each RS485 commands, we need to combine them together with the command **AT+DATAUP**.
362 )))
363
364 **Examples:**
365
366 Below are examples for the how above AT Commands works.
367
368 **AT+COMMANDx : **This command will be sent to RS485/TTL devices during each sampling, Max command length is 14 bytes. The grammar is:
369
370 (% border="1" class="table-bordered" %)
371 |(((
372 **AT+COMMANDx=xx xx xx xx xx xx xx xx xx xx xx xx,m**
373
374 **xx xx xx xx xx xx xx xx xx xx xx xx: The RS485 command to be sent**
375
376 **m: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command**
377 )))
378
379 (((
380 For example, if we have a RS485 sensor. The command to get sensor value is: 01 03 0B B8 00 02 46 0A. Where 01 03 0B B8 00 02 is the Modbus command to read the register 0B B8 where stored the sensor value. The 46 0A is the CRC-16/MODBUS which calculate manually.
381 )))
382
383 (((
384 In the RS485-BL, we should use this command AT+COMMAND1=01 03 0B B8 00 02,1 for the same.
385 )))
386
387 (((
388 **AT+SEARCHx**: This command defines how to handle the return from AT+COMMANDx.
389 )))
390
391 (% border="1" class="table-bordered" %)
392 |(((
393 **AT+SEARCHx=aa,xx xx xx xx xx**
394
395 * **aa: 1: prefix match mode; 2: prefix and suffix match mode**
396 * **xx xx xx xx xx: match string. Max 5 bytes for prefix and 5 bytes for suffix**
397
398
399 )))
400
401 **Examples:**
402
403 ~1. For a return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
404
405 If we set AT+SEARCH1=1,1E 56 34.      (max 5 bytes for prefix)
406
407 The valid data will be all bytes after 1E 56 34 , so it is (% style="background-color:yellow" %)** 2e 30 58 5f 36 41 30 31 00 49**
408
409 [[image:1653269403619-508.png]]
410
411 2. For a return string from AT+COMMAND1:  16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
412
413 If we set AT+SEARCH1=2, 1E 56 34+31 00 49
414
415 Device will search the bytes between 1E 56 34 and 31 00 49. So it is (% style="background-color:yellow" %)** 2e 30 58 5f 36 41 30**
416
417 [[image:1653269438444-278.png]]
418
419 **AT+DATACUTx : **This command defines how to handle the return from AT+COMMANDx, max return length is 45 bytes.
420
421 |(((
422 **AT+DATACUTx=a,b,c**
423
424 * **a: length for the return of AT+COMMAND**
425 * **b:1: grab valid value by byte, max 6 bytes. 2: grab valid value by bytes section, max 3 sections.**
426 * **c: define the position for valid value.  **
427 )))
428
429 Examples:
430
431 * Grab bytes:
432
433 [[image:1653269551753-223.png||height="311" width="717"]]
434
435 * Grab a section.
436
437 [[image:1653269568276-930.png||height="325" width="718"]]
438
439 * Grab different sections.
440
441 [[image:1653269593172-426.png||height="303" width="725"]]
442
443 (% style="color:red" %)**Note:**
444
445 AT+SEARCHx and AT+DATACUTx can be used together, if both commands are set, RS485-BL will first process AT+SEARCHx on the return string and get a temporary string, and then process AT+DATACUTx on this temporary string to get the final payload. In this case, AT+DATACUTx need to set to format AT+DATACUTx=0,xx,xx where the return bytes set to 0.
446
447 Example:
448
449 (% style="color:red" %)AT+COMMAND1=11 01 1E D0,0
450
451 (% style="color:red" %)AT+SEARCH1=1,1E 56 34
452
453 (% style="color:red" %)AT+DATACUT1=0,2,1~~5
454
455 (% style="color:red" %)Return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
456
457 (% style="color:red" %)String after SEARCH command: 2e 30 58 5f 36 41 30 31 00 49
458
459 (% style="color:red" %)Valid payload after DataCUT command: 2e 30 58 5f 36
460
461 [[image:1653269618463-608.png]]
462
463 === 3.3.4 Compose the uplink payload ===
464
465 (((
466 Through AT+COMMANDx and AT+DATACUTx we got valid value from each RS485 commands, Assume these valid value are RETURN1, RETURN2, .., to RETURNx. The next step is how to compose the LoRa Uplink Payload by these RETURNs. The command is **AT+DATAUP.**
467 )))
468
469 (((
470 (% style="color:#4f81bd" %)**Examples: AT+DATAUP=0**
471 )))
472
473 (((
474 Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**A SIGNLE UPLINK**.
475 )))
476
477 (((
478 Final Payload is
479 )))
480
481 (((
482 (% style="color:#4f81bd" %)**Battery Info+PAYVER + VALID Value from RETURN1 + Valid Value from RETURN2 + … + RETURNx**
483 )))
484
485 (((
486 Where PAYVER is defined by AT+PAYVER, below is an example screen shot.
487 )))
488
489 [[image:1653269759169-150.png||height="513" width="716"]]
490
491 (% style="color:#4f81bd" %)**Examples: AT+DATAUP=1**
492
493 Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**Multiply UPLINKs**.
494
495 Final Payload is
496
497 (% style="color:#4f81bd" %)**Battery Info+PAYVER + PAYLOAD COUNT + PAYLOAD# + DATA**
498
499 1. Battery Info (2 bytes): Battery voltage
500 1. PAYVER (1 byte): Defined by AT+PAYVER
501 1. PAYLOAD COUNT (1 byte): Total how many uplinks of this sampling.
502 1. PAYLOAD# (1 byte): Number of this uplink. (from 0,1,2,3…,to PAYLOAD COUNT)
503 1. DATA: Valid value: max 6 bytes(US915 version here, Notice*!) for each uplink so each uplink <= 11 bytes. For the last uplink, DATA will might less than 6 bytes
504
505 [[image:1653269916228-732.png||height="433" width="711"]]
506
507
508 So totally there will be 3 uplinks for this sampling, each uplink includes 6 bytes DATA
509
510 DATA1=RETURN1 Valid Value = (% style="background-color:green; color:white" %)20 20 0a 33 90 41
511
512 DATA2=1^^st^^ ~~ 6^^th^^ byte of Valid value of RETURN10=(% style="background-color:green; color:white" %) 02 aa 05 81 0a 20
513
514 DATA3=7^^th^^ ~~ 11^^th^^ bytes of Valid value of RETURN10 = (% style="background-color:green; color:white" %)20 20 20 2d 30
515
516 Below are the uplink payloads:
517
518 [[image:1653270130359-810.png]]
519
520
521 (% style="color:red" %)**Notice: the Max bytes is according to the max support bytes in different Frequency Bands for lowest SF. As below:**
522
523 ~* For AU915/AS923 bands, if UplinkDwell time=0, max 51 bytes for each uplink ( so 51 -5 = 46 max valid date)
524
525 * For AU915/AS923 bands, if UplinkDwell time=1, max 11 bytes for each uplink ( so 11 -5 = 6 max valid date).
526
527 * For US915 band, max 11 bytes for each uplink ( so 11 -5 = 6 max valid date).
528
529 ~* For all other bands: max 51 bytes for each uplink  ( so 51 -5 = 46 max valid date).
530
531 === 3.3.5 Uplink on demand ===
532
533 Except uplink periodically, RS485-BL is able to uplink on demand. The server sends downlink command to RS485-BL and RS485 will uplink data base on the command.
534
535 Downlink control command:
536
537 [[0x08 command>>path:#downlink_08]]: Poll an uplink with current command set in RS485-BL.
538
539 [[0xA8 command>>path:#downlink_A8]]: Send a command to RS485-BL and uplink the output from sensors.
540
541
542
543 1.
544 11.
545 111. Uplink on Interrupt
546
547 Put the interrupt sensor between 3.3v_out and GPIO ext.[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image022.png]]
548
549 AT+INTMOD=0  Disable Interrupt
550
551 AT+INTMOD=1  Interrupt trigger by rising or falling edge.
552
553 AT+INTMOD=2  Interrupt trigger by falling edge. ( Default Value)
554
555 AT+INTMOD=3  Interrupt trigger by rising edge.
556
557
558 1.
559 11. Uplink Payload
560
561 |**Size(bytes)**|**2**|**1**|**Length depends on the return from the commands**
562 |Value|(((
563 Battery(mV)
564
565 &
566
567 Interrupt _Flag
568 )))|(((
569 PAYLOAD_VER
570
571
572 )))|If the valid payload is too long and exceed the maximum support payload length in server, server will show payload not provided in the LoRaWAN server.
573
574 Below is the decoder for the first 3 bytes. The rest bytes are dynamic depends on different RS485 sensors.
575
576
577 function Decoder(bytes, port) {
578
579 ~/~/Payload Formats of RS485-BL Deceive
580
581 return {
582
583 ~/~/Battery,units:V
584
585 BatV:((bytes[0]<<8 | bytes[1])&0x7fff)/1000,
586
587 ~/~/GPIO_EXTI 
588
589 EXTI_Trigger:(bytes[0] & 0x80)? "TRUE":"FALSE",
590
591 ~/~/payload of version
592
593 Pay_ver:bytes[2],
594
595 };
596
597 }
598
599
600
601
602
603
604
605 TTN V3 uplink screen shot.
606
607 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image023.png]]
608
609 1.
610 11. Configure RS485-BL via AT or Downlink
611
612 User can configure RS485-BL via [[AT Commands >>path:#_​Using_the_AT]]or LoRaWAN Downlink Commands
613
614 There are two kinds of Commands:
615
616 * **Common Commands**: They should be available for each sensor, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: http:~/~/wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands
617
618 * **Sensor Related Commands**: These commands are special designed for RS485-BL.  User can see these commands below:
619
620 1.
621 11.
622 111. Common Commands:
623
624 They should be available for each of Dragino Sensors, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: [[http:~~/~~/wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands>>url:http://wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands]]
625
626
627 1.
628 11.
629 111. Sensor related commands:
630
631 ==== Choose Device Type (RS485 or TTL) ====
632
633 RS485-BL can connect to either RS485 sensors or TTL sensor. User need to specify what type of sensor need to connect.
634
635 * AT Command
636
637 **AT+MOD=1** ~/~/ Set to support RS485-MODBUS type sensors. User can connect multiply RS485 , Modbus sensors to the A / B pins.
638
639 **AT+MOD=2** ~/~/ Set to support TTL Level sensors, User can connect one TTL Sensor to the TXD/RXD/GND pins.
640
641
642 * Downlink Payload
643
644 **0A aa**     à same as AT+MOD=aa
645
646
647
648 ==== [[RS485 Debug Command>>path:#downlink_A8]] (AT+CFGDEV) ====
649
650 This command is used to configure the RS485 or TTL sensors; they won’t be used during sampling.
651
652 * AT Command
653
654 AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m
655
656 m: 0: no CRC; 1: add CRC-16/MODBUS in the end of this command.
657
658
659
660 * Downlink Payload
661
662 Format: A8 MM NN XX XX XX XX YY
663
664 Where:
665
666 * MM: 1: add CRC-16/MODBUS ; 0: no CRC
667 * NN: The length of RS485 command
668 * XX XX XX XX: RS485 command total NN bytes
669 * YY: How many bytes will be uplink from the return of this RS485 command, if YY=0, RS485-BL will execute the downlink command without uplink; if YY>0, RS485-BL will uplink total YY bytes from the output of this RS485 command
670
671 **Example 1:**
672
673 To connect a Modbus Alarm with below commands.
674
675 * The command to active alarm is: 0A 05 00 04 00 01 4C B0. Where 0A 05 00 04 00 01 is the Modbus command to read the register 00 40 where stored the DI status. The 4C B0 is the CRC-16/MODBUS which calculate manually.
676
677 * The command to deactivate alarm is: 0A 05 00 04 00 00 8D 70. Where 0A 05 00 04 00 00 is the Modbus command to read the register 00 40 where stored the DI status. The 8D 70 is the CRC-16/MODBUS which calculate manually.
678
679 So if user want to use downlink command to control to RS485 Alarm, he can use:
680
681 **A8 01 06 0A 05 00 04 00 01 00**: to activate the RS485 Alarm
682
683 **A8 01 06 0A 05 00 04 00 00 00**: to deactivate the RS485 Alarm
684
685 A8 is type code and 01 means add CRC-16/MODBUS at the end, the 3^^rd^^ byte is 06, means the next 6 bytes are the command to be sent to the RS485 network, the final byte 00 means this command don’t need to acquire output.
686
687
688 **Example 2:**
689
690 Check TTL Sensor return:
691
692 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image024.png]]
693
694
695
696
697 ==== Set Payload version ====
698
699 This is the first byte of the uplink payload. RS485-BL can connect to different sensors. User can set the PAYVER field to tell server how to decode the current payload.
700
701 * AT Command:
702
703 AT+PAYVER: Set PAYVER field = 1
704
705
706 * Downlink Payload:
707
708 0xAE 01   à Set PAYVER field =  0x01
709
710 0xAE 0F   à Set PAYVER field =  0x0F
711
712
713 ==== Set RS485 Sampling Commands ====
714
715 AT+COMMANDx, AT+DATACUTx and AT+SEARCHx
716
717 These three commands are used to configure how the RS485-BL polling data from Modbus device. Detail of usage please see : [[polling RS485 device>>path:#polling_485]].
718
719
720 * AT Command:
721
722 AT+COMMANDx: Configure RS485 read command to sensor.
723
724 AT+DATACUTx: Configure how to handle return from RS485 devices.
725
726 AT+SEARCHx: Configure search command
727
728
729 * Downlink Payload:
730
731 0xAF downlink command can be used to set AT+COMMANDx or AT+DATACUTx.
732
733 Note: if user use AT+COMMANDx to add a new command, he also need to send AT+DATACUTx downlink.
734
735 Format: AF MM NN LL XX XX XX XX YY
736
737 Where:
738
739 * MM: the ATCOMMAND or AT+DATACUT to be set. Value from 01 ~~ 0F,
740 * NN: 0: no CRC; 1: add CRC-16/MODBUS ; 2: set the AT+DATACUT value.
741 * LL: The length of AT+COMMAND or AT+DATACUT command
742 * XX XX XX XX: AT+COMMAND or AT+DATACUT command
743 * YY: If YY=0, RS485-BL will execute the downlink command without uplink; if YY=1, RS485-BL will execute an uplink after got this command.
744
745 Example:
746
747 **AF 03 01 06 0A 05 00 04 00 01 00**: Same as AT+COMMAND3=0A 05 00 04 00 01,1
748
749 **AF 03 02 06 10 01 05 06 09 0A 00**: Same as AT+DATACUT3=**16**,**1**,**5+6+9+10**
750
751 **AF 03 02 06 0B 02 05 07 08 0A 00**: Same as AT+DATACUT3=**11**,**2**,**5~~7+8~~10**
752
753
754 0xAB downlink command can be used for set AT+SEARCHx
755
756 Example: **AB aa 01 03 xx xx xx** (03 here means there are total 3 bytes after 03) So
757
758 * AB aa 01 03 xx xx xx  same as AT+SEARCHaa=1,xx xx xx
759 * AB aa 02 03 xx xx xx 02 yy yy(03 means there are 3 bytes after 03, they are xx xx xx;02 means there are 2 bytes after 02, they are yy yy) so the commands
760
761 **AB aa 02 03 xx xx xx 02 yy yy**  same as **AT+SEARCHaa=2,xx xx xx+yy yy**
762
763
764 ==== Fast command to handle MODBUS device ====
765
766 AT+MBFUN is valid since v1.3 firmware version. The command is for fast configure to read Modbus devices. It is only valid for the devices which follow the [[MODBUS-RTU protocol>>url:https://www.modbustools.com/modbus.html]].
767
768 This command is valid since v1.3 firmware version
769
770
771 AT+MBFUN has only two value:
772
773 * AT+MBFUN=1: Enable Modbus reading. And get response base on the MODBUS return
774
775 AT+MBFUN=1, device can auto read the Modbus function code: 01, 02, 03 or 04. AT+MBFUN has lower priority vs AT+DATACUT command. If AT+DATACUT command is configured, AT+MBFUN will be ignore.
776
777 * AT+MBFUN=0: Disable Modbus fast reading.
778
779 Example:
780
781 * AT+MBFUN=1 and AT+DATACUT1/AT+DATACUT2 are not configure (0,0,0).
782 * AT+COMMAND1= 01 03 00 10 00 08,1 ~-~-> read slave address 01 , function code 03, start address 00 01, quantity of registers 00 08.
783 * AT+COMMAND2= 01 02 00 40 00 10,1 ~-~-> read slave address 01 , function code 02, start address 00 40, quantity of inputs 00 10.
784
785 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image025.png]]
786
787
788 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image026.png]]
789
790
791 * Downlink Commands:
792
793 A9 aa -à Same as AT+MBFUN=aa
794
795
796 ==== RS485 command timeout ====
797
798 Some Modbus device has slow action to send replies. This command is used to configure the RS485-BL to use longer time to wait for their action.
799
800 Default value: 0, range:  0 ~~ 5 seconds
801
802
803 * AT Command:
804
805 AT+CMDDLaa=hex(bb cc)
806
807 Example:
808
809 **AT+CMDDL1=1000** to send the open time to 1000ms
810
811
812 * Downlink Payload:
813
814 0x AA aa bb cc
815
816 Same as: AT+CMDDLaa=hex(bb cc)
817
818 Example:
819
820 0xAA 01 03 E8  à Same as **AT+CMDDL1=1000 ms**
821
822
823 ==== [[Uplink>>path:#downlink_A8]] payload mode ====
824
825 Define to use one uplink or multiple uplinks for the sampling.
826
827 The use of this command please see: [[Compose Uplink payload>>path:#DataUP]]
828
829 * AT Command:
830
831 AT+DATAUP=0
832
833 AT+DATAUP=1
834
835
836 * Downlink Payload:
837
838 0xAD 00   à Same as AT+DATAUP=0
839
840 0xAD 01   à Same as AT+DATAUP=1
841
842
843 ==== Manually trigger an Uplink ====
844
845 Ask device to send an uplink immediately.
846
847 * Downlink Payload:
848
849 0x08 FF, RS485-BL will immediately send an uplink.
850
851
852 ==== Clear RS485 Command ====
853
854 The AT+COMMANDx and AT+DATACUTx settings are stored in special location, user can use below command to clear them.
855
856
857 * AT Command:
858
859 **AT+CMDEAR=mm,nn**   mm: start position of erase ,nn: stop position of erase
860
861 Etc. AT+CMDEAR=1,10 means erase AT+COMMAND1/AT+DATACUT1 to AT+COMMAND10/AT+DATACUT10
862
863 Example screen shot after clear all RS485 commands. 
864
865
866
867 The uplink screen shot is:
868
869 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image023.png]]
870
871
872 * Downlink Payload:
873
874 0x09 aa bb same as AT+CMDEAR=aa,bb
875
876
877 ==== Set Serial Communication Parameters ====
878
879 Set the Rs485 serial communication parameters:
880
881 * AT Command:
882
883 Set Baud Rate:
884
885 AT+BAUDR=9600    ~/~/ Options: (1200,2400,4800,14400,19200,115200)
886
887
888 Set UART parity
889
890 AT+PARITY=0    ~/~/ Option: 0: no parity, 1: odd parity, 2: even parity
891
892
893 Set STOPBIT
894
895 AT+STOPBIT=0    ~/~/ Option: 0 for 1bit; 1 for 1.5 bit ; 2 for 2 bits
896
897
898 * Downlink Payload:
899
900 A7 01 aa bb: Same  AT+BAUDR=hex(aa bb)*100
901
902 Example:
903
904 * A7 01 00 60   same as AT+BAUDR=9600
905 * A7 01 04 80  same as AT+BAUDR=115200
906
907 A7 02 aa: Same as  AT+PARITY=aa  (aa value: 00 , 01 or 02)
908
909 A7 03 aa: Same as  AT+STOPBIT=aa  (aa value: 00 , 01 or 02)
910
911
912 ==== Control output power duration ====
913
914 User can set the output power duration before each sampling.
915
916 * AT Command:
917
918 Example:
919
920 AT+3V3T=1000 ~/~/ 3V3 output power will open 1s before each sampling.
921
922 AT+5VT=1000 ~/~/ +5V output power will open 1s before each sampling.
923
924
925 * LoRaWAN Downlink Command:
926
927 07 01 aa bb  Same as AT+5VT=(aa bb)
928
929 07 02 aa bb  Same as AT+3V3T=(aa bb)
930
931
932
933
934 1.
935 11. Buttons
936
937 |**Button**|**Feature**
938 |**RST**|Reboot RS485-BL
939
940 1.
941 11. +3V3 Output
942
943 RS485-BL has a Controllable +3V3 output, user can use this output to power external sensor.
944
945 The +3V3 output will be valid for every sampling. RS485-BL will enable +3V3 output before all sampling and disable the +3V3 after all sampling. 
946
947
948 The +3V3 output time can be controlled by AT Command.
949
950 **AT+3V3T=1000**
951
952 Means set +3v3 valid time to have 1000ms. So, the real +3v3 output will actually have 1000ms + sampling time for other sensors.
953
954
955 By default, the AT+3V3T=0. This is a special case, means the +3V3 output is always on at any time
956
957
958 1.
959 11. +5V Output
960
961 RS485-BL has a Controllable +5V output, user can use this output to power external sensor.
962
963 The +5V output will be valid for every sampling. RS485-BL will enable +5V output before all sampling and disable the +5v after all sampling. 
964
965
966 The 5V output time can be controlled by AT Command.
967
968 **AT+5VT=1000**
969
970 Means set 5V valid time to have 1000ms. So, the real 5V output will actually have 1000ms + sampling time for other sensors.
971
972
973 By default, the AT+5VT=0. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
974
975
976
977
978 1.
979 11. LEDs
980
981 |**LEDs**|**Feature**
982 |**LED1**|Blink when device transmit a packet.
983
984 1.
985 11. Switch Jumper
986
987 |**Switch Jumper**|**Feature**
988 |**SW1**|(((
989 ISP position: Upgrade firmware via UART
990
991 Flash position: Configure device, check running status.
992 )))
993 |**SW2**|(((
994 5V position: set to compatible with 5v I/O.
995
996 3.3v position: set to compatible with 3.3v I/O.,
997 )))
998
999 +3.3V: is always ON
1000
1001 +5V: Only open before every sampling. The time is by default, it is AT+5VT=0.  Max open time. 5000 ms.
1002
1003 1. Case Study
1004
1005 User can check this URL for some case studies.
1006
1007 [[http:~~/~~/wiki.dragino.com/index.php?title=APP_RS485_COMMUNICATE_WITH_SENSORS>>url:http://wiki.dragino.com/index.php?title=APP_RS485_COMMUNICATE_WITH_SENSORS]]
1008
1009
1010
1011
1012 1. Use AT Command
1013 11. Access AT Command
1014
1015 RS485-BL supports AT Command set. User can use a USB to TTL adapter plus the 3.5mm Program Cable to connect to RS485-BL to use AT command, as below.
1016
1017 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image027.png]]
1018
1019
1020 In PC, User needs to set **serial tool**(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to **9600** to access to access serial console of RS485-BL. The default password is 123456. Below is the output for reference:
1021
1022 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image028.png]]
1023
1024
1025
1026 More detail AT Command manual can be found at [[AT Command Manual>>path:#AT_COMMAND]]
1027
1028
1029
1030 1.
1031 11. Common AT Command Sequence
1032 111. Multi-channel ABP mode (Use with SX1301/LG308)
1033
1034 If device has not joined network yet:
1035
1036 AT+FDR
1037
1038 AT+NJM=0
1039
1040 ATZ
1041
1042
1043 If device already joined network:
1044
1045 AT+NJM=0
1046
1047 ATZ
1048
1049 1.
1050 11.
1051 111. Single-channel ABP mode (Use with LG01/LG02)
1052
1053 AT+FDR   Reset Parameters to Factory Default, Keys Reserve
1054
1055 AT+NJM=0 Set to ABP mode
1056
1057 AT+ADR=0 Set the Adaptive Data Rate Off
1058
1059 AT+DR=5  Set Data Rate
1060
1061 AT+TDC=60000  Set transmit interval to 60 seconds
1062
1063 AT+CHS=868400000 Set transmit frequency to 868.4Mhz
1064
1065 AT+RX2FQ=868400000 Set RX2Frequency to 868.4Mhz (according to the result from server)
1066
1067 AT+RX2DR=5  Set RX2DR to match the downlink DR from server. see below
1068
1069 AT+DADDR=26 01 1A F1 Set Device Address to 26 01 1A F1, this ID can be found in the LoRa Server portal.
1070
1071 ATZ          Reset MCU
1072
1073 **Note:**
1074
1075 1. Make sure the device is set to ABP mode in the IoT Server.
1076 1. Make sure the LG01/02 gateway RX frequency is exactly the same as AT+CHS setting.
1077 1. Make sure SF / bandwidth setting in LG01/LG02 match the settings of AT+DR. refer [[this link>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_Gateway/&file=LoRaWAN%201.0.3%20Regional%20Parameters.xlsx]] to see what DR means.
1078 1. The command AT+RX2FQ and AT+RX2DR is to let downlink work. to set the correct parameters, user can check the actually downlink parameters to be used. As below. Which shows the RX2FQ should use 868400000 and RX2DR should be 5
1079
1080 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image029.png]]
1081
1082
1083 1. FAQ
1084 11. How to upgrade the image?
1085
1086 The RS485-BL LoRaWAN Controller is shipped with a 3.5mm cable, the cable is used to upload image to RS485-BL to:
1087
1088 * Support new features
1089 * For bug fix
1090 * Change LoRaWAN bands.
1091
1092 Below shows the hardware connection for how to upload an image to RS485-BL:
1093
1094 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image030.png]]
1095
1096 **Step1:** Download [[flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]].
1097
1098 **Step2**: Download the [[LT Image files>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/image/]].
1099
1100 **Step3: **Open flashloader; choose the correct COM port to update.
1101
1102
1103 |(((
1104 HOLD PRO then press the RST button, SYS will be ON, then click next
1105 )))
1106
1107 |(((
1108 Board detected
1109 )))
1110
1111 |(((
1112
1113 )))
1114
1115 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image031.png]] [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image032.png]]
1116
1117
1118
1119 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image033.png]] [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image034.png]]
1120
1121
1122 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image035.png]] [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image036.png]]
1123
1124
1125 1.
1126 11. How to change the LoRa Frequency Bands/Region?
1127
1128 User can follow the introduction for [[how to upgrade image>>path:#upgrade_image]]. When download the images, choose the required image file for download.
1129
1130
1131
1132 1.
1133 11. How many RS485-Slave can RS485-BL connects?
1134
1135 The RS485-BL can support max 32 RS485 devices. Each uplink command of RS485-BL can support max 16 different RS485 command. So RS485-BL can support max 16 RS485 devices pre-program in the device for uplink. For other devices no pre-program, user can use the [[downlink message (type code 0xA8) to poll their info>>path:#downlink_A8]].
1136
1137
1138
1139
1140 1. Trouble Shooting     
1141 11. Downlink doesn’t work, how to solve it?
1142
1143 Please see this link for debug:
1144
1145 [[http:~~/~~/wiki.dragino.com/index.php?title=Main_Page#LoRaWAN_Communication_Debug>>url:http://wiki.dragino.com/index.php?title=Main_Page#LoRaWAN_Communication_Debug]] 
1146
1147
1148
1149 1.
1150 11. Why I can’t join TTN V3 in US915 /AU915 bands?
1151
1152 It might about the channels mapping. Please see for detail.
1153
1154 [[http:~~/~~/wiki.dragino.com/index.php?title=LoRaWAN_Communication_Debug#Notice_of_US915.2FCN470.2FAU915_Frequency_band>>url:http://wiki.dragino.com/index.php?title=LoRaWAN_Communication_Debug#Notice_of_US915.2FCN470.2FAU915_Frequency_band]]
1155
1156
1157
1158 1. Order Info
1159
1160 **Part Number: RS485-BL-XXX**
1161
1162 **XXX:**
1163
1164 * **EU433**: frequency bands EU433
1165 * **EU868**: frequency bands EU868
1166 * **KR920**: frequency bands KR920
1167 * **CN470**: frequency bands CN470
1168 * **AS923**: frequency bands AS923
1169 * **AU915**: frequency bands AU915
1170 * **US915**: frequency bands US915
1171 * **IN865**: frequency bands IN865
1172 * **RU864**: frequency bands RU864
1173 * **KZ865: **frequency bands KZ865
1174
1175 1. Packing Info
1176
1177 **Package Includes**:
1178
1179 * RS485-BL x 1
1180 * Stick Antenna for LoRa RF part x 1
1181 * Program cable x 1
1182
1183 **Dimension and weight**:
1184
1185 * Device Size: 13.5 x 7 x 3 cm
1186 * Device Weight: 105g
1187 * Package Size / pcs : 14.5 x 8 x 5 cm
1188 * Weight / pcs : 170g
1189
1190 1. Support
1191
1192 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1193 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to
1194
1195 [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]]