Version 21.2 by Xiaoling on 2022/05/23 09:09

Show last authors
1 (% style="text-align:center" %)
2 [[image:1653266934636-343.png||height="385" width="385"]]
3
4
5
6 **RS485-LN – RS485 to LoRaWAN Converter User Manual**
7
8
9 **Table of Contents:**
10
11
12
13
14
15 = 1.Introduction =
16
17 == 1.1 What is RS485-LN RS485 to LoRaWAN Converter ==
18
19 (((
20 (((
21 The Dragino RS485-LN is a RS485 to LoRaWAN Converter. It converts the RS485 signal into LoRaWAN wireless signal which simplify the IoT installation and reduce the installation/maintaining cost.
22 )))
23
24 (((
25 RS485-LN allows user to monitor / control RS485 devices and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
26 )))
27
28 (((
29 For data uplink, RS485-LN sends user-defined commands to RS485 devices and gets the return from the RS485 devices. RS485-LN will process these returns according to user-define rules to get the final payload and upload to LoRaWAN server.
30 )))
31
32 (((
33 For data downlink, RS485-LN runs in LoRaWAN Class C. When there downlink commands from LoRaWAN server, RS485-LN will forward the commands from LoRaWAN server to RS485 devices.
34 )))
35 )))
36
37 [[image:1653267211009-519.png||height="419" width="724"]]
38
39 == 1.2 Specifications ==
40
41 **Hardware System:**
42
43 * STM32L072CZT6 MCU
44 * SX1276/78 Wireless Chip
45 * Power Consumption (exclude RS485 device):
46 ** Idle: 32mA@12v
47
48 *
49 ** 20dB Transmit: 65mA@12v
50
51 **Interface for Model:**
52
53 * RS485
54 * Power Input 7~~ 24V DC.
55
56 **LoRa Spec:**
57
58 * Frequency Range:
59 ** Band 1 (HF): 862 ~~ 1020 Mhz
60 ** Band 2 (LF): 410 ~~ 528 Mhz
61 * 168 dB maximum link budget.
62 * +20 dBm - 100 mW constant RF output vs.
63 * +14 dBm high efficiency PA.
64 * Programmable bit rate up to 300 kbps.
65 * High sensitivity: down to -148 dBm.
66 * Bullet-proof front end: IIP3 = -12.5 dBm.
67 * Excellent blocking immunity.
68 * Low RX current of 10.3 mA, 200 nA register retention.
69 * Fully integrated synthesizer with a resolution of 61 Hz.
70 * FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation.
71 * Built-in bit synchronizer for clock recovery.
72 * Preamble detection.
73 * 127 dB Dynamic Range RSSI.
74 * Automatic RF Sense and CAD with ultra-fast AFC.
75 * Packet engine up to 256 bytes with CRC.
76
77 == 1.3 Features ==
78
79 * LoRaWAN Class A & Class C protocol (default Class C)
80 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865/RU864
81 * AT Commands to change parameters
82 * Remote configure parameters via LoRa Downlink
83 * Firmware upgradable via program port
84 * Support multiply RS485 devices by flexible rules
85 * Support Modbus protocol
86 * Support Interrupt uplink (Since hardware version v1.2)
87
88 == 1.4 Applications ==
89
90 * Smart Buildings & Home Automation
91 * Logistics and Supply Chain Management
92 * Smart Metering
93 * Smart Agriculture
94 * Smart Cities
95 * Smart Factory
96
97 == 1.5 Firmware Change log ==
98
99 [[RS485-LN Image files – Download link and Change log>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/]]
100
101 == 1.6 Hardware Change log ==
102
103 (((
104 (((
105 v1.2: Add External Interrupt Pin.
106
107 v1.0: Release
108 )))
109 )))
110
111 = 2. Power ON Device =
112
113 (((
114 The RS485-LN can be powered by 7 ~~ 24V DC power source. Connection as below
115
116 * Power Source VIN to RS485-LN VIN+
117 * Power Source GND to RS485-LN VIN-
118
119 (((
120 Once there is power, the RS485-LN will be on.
121 )))
122
123 [[image:1653268091319-405.png]]
124 )))
125
126 = 3. Operation Mode =
127
128 == 3.1 How it works? ==
129
130 (((
131 The RS485-LN is configured as LoRaWAN OTAA Class C mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the RS485-LN. It will auto join the network via OTAA.
132 )))
133
134 == 3.2 Example to join LoRaWAN network ==
135
136 Here shows an example for how to join the TTN V3 Network. Below is the network structure, we use [[LG308>>url:http://www.dragino.com/products/lora-lorawan-gateway/item/140-lg308.html]] as LoRaWAN gateway here. 
137
138 [[image:1653268155545-638.png||height="334" width="724"]]
139
140 (((
141 The RS485-BL in this example connected to two RS485 devices for demonstration, user can connect to other RS485 devices via the same method.
142 )))
143
144 (((
145 The LG308 is already set to connect to [[TTN V3 network >>url:https://www.thethingsnetwork.org/]]. So what we need to now is only configure the TTN V3:
146 )))
147
148 (((
149 **Step 1**: Create a device in TTN V3 with the OTAA keys from RS485-BL.
150 )))
151
152 (((
153 Each RS485-BL is shipped with a sticker with unique device EUI:
154 )))
155
156 [[image:1652953462722-299.png]]
157
158 (((
159 User can enter this key in their LoRaWAN Server portal. Below is TTN V3 screen shot:
160 )))
161
162 (((
163 Add APP EUI in the application.
164 )))
165
166
167
168
169 [[image:image-20220519174512-1.png]]
170
171 [[image:image-20220519174512-2.png||height="328" width="731"]]
172
173 [[image:image-20220519174512-3.png||height="556" width="724"]]
174
175 [[image:image-20220519174512-4.png]]
176
177 You can also choose to create the device manually.
178
179 [[image:1652953542269-423.png||height="710" width="723"]]
180
181 Add APP KEY and DEV EUI
182
183 [[image:1652953553383-907.png||height="514" width="724"]]
184
185
186 (((
187 **Step 2**: Power on RS485-BL and it will auto join to the TTN V3 network. After join success, it will start to upload message to TTN V3 and user can see in the panel.
188 )))
189
190 [[image:1652953568895-172.png||height="232" width="724"]]
191
192 == 3.3 Configure Commands to read data ==
193
194 (((
195 There are plenty of RS485 and TTL level devices in the market and each device has different command to read the valid data. To support these devices in flexible, RS485-BL supports flexible command set. User can use [[AT Commands or LoRaWAN Downlink>>path:#AT_COMMAND]] Command to configure how RS485-BL should read the sensor and how to handle the return from RS485 or TTL sensors.
196 )))
197
198 === 3.3.1 onfigure UART settings for RS485 or TTL communication ===
199
200 RS485-BL can connect to either RS485 sensors or TTL sensor. User need to specify what type of sensor need to connect.
201
202 **~1. RS485-MODBUS mode:**
203
204 AT+MOD=1 ~/~/ Support RS485-MODBUS type sensors. User can connect multiply RS485 , Modbus sensors to the A / B pins.
205
206 **2. TTL mode:**
207
208 AT+MOD=2 ~/~/ Support TTL Level sensors, User can connect one TTL Sensor to the TXD/RXD/GND pins.
209
210 RS485-BL default UART settings is **9600, no parity, stop bit 1**. If the sensor has a different settings, user can change the RS485-BL setting to match.
211
212 (% border="1" style="background-color:#ffffcc; color:green; width:795px" %)
213 |(((
214 **AT Commands**
215 )))|(% style="width:285px" %)(((
216 **Description**
217 )))|(% style="width:347px" %)(((
218 **Example**
219 )))
220 |(((
221 AT+BAUDR
222 )))|(% style="width:285px" %)(((
223 Set the baud rate (for RS485 connection). Default Value is: 9600.
224 )))|(% style="width:347px" %)(((
225 (((
226 AT+BAUDR=9600
227 )))
228
229 (((
230 Options: (1200,2400,4800,14400,19200,115200)
231 )))
232 )))
233 |(((
234 AT+PARITY
235 )))|(% style="width:285px" %)(((
236 (((
237 Set UART parity (for RS485 connection)
238 )))
239
240 (((
241 Default Value is: no parity.
242 )))
243 )))|(% style="width:347px" %)(((
244 (((
245 AT+PARITY=0
246 )))
247
248 (((
249 Option: 0: no parity, 1: odd parity, 2: even parity
250 )))
251 )))
252 |(((
253 AT+STOPBIT
254 )))|(% style="width:285px" %)(((
255 (((
256 Set serial stopbit (for RS485 connection)
257 )))
258
259 (((
260 Default Value is: 1bit.
261 )))
262 )))|(% style="width:347px" %)(((
263 (((
264 AT+STOPBIT=0 for 1bit
265 )))
266
267 (((
268 AT+STOPBIT=1 for 1.5 bit
269 )))
270
271 (((
272 AT+STOPBIT=2 for 2 bits
273 )))
274 )))
275
276 === 3.3.2 Configure sensors ===
277
278 (((
279 Some sensors might need to configure before normal operation. User can configure such sensor via PC or through RS485-BL AT Commands (% style="color:#4f81bd" %)**AT+CFGDEV**.
280 )))
281
282 (((
283 When user issue an (% style="color:#4f81bd" %)**AT+CFGDEV**(%%) command, Each (% style="color:#4f81bd" %)**AT+CFGDEV**(%%) equals to send a command to the RS485 or TTL sensors. This command will only run when user input it and won’t run during each sampling.
284 )))
285
286 (% border="1" style="background-color:#ffffcc; color:green; width:806px" %)
287 |**AT Commands**|(% style="width:418px" %)**Description**|(% style="width:256px" %)**Example**
288 |AT+CFGDEV|(% style="width:418px" %)(((
289 This command is used to configure the RS485/TTL devices; they won’t be used during sampling.
290
291 AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,
292
293 mm: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command
294 )))|(% style="width:256px" %)AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m
295
296 Detail of AT+CFGDEV command see [[AT+CFGDEV detail>>path:#AT_CFGDEV]].
297
298 === 3.3.3 Configure read commands for each sampling ===
299
300 (((
301 RS485-BL is a battery powered device; it will sleep most of time. And wake up on each period and read RS485 / TTL sensor data and uplink.
302 )))
303
304 (((
305 During each sampling, we need to confirm what commands we need to send to the sensors to read data. After the RS485/TTL sensors send back the value, it normally includes some bytes and we only need a few from them for a shorten payload.
306 )))
307
308 (((
309 To save the LoRaWAN network bandwidth, we might need to read data from different sensors and combine their valid value into a short payload.
310 )))
311
312 (((
313 This section describes how to achieve above goals.
314 )))
315
316 (((
317 During each sampling, the RS485-BL can support 15 commands to read sensors. And combine the return to one or several uplink payloads.
318 )))
319
320 (((
321 **Command from RS485-BL to Sensor:**
322 )))
323
324 (((
325 RS485-BL can send out pre-set max 15 strings via **AT+COMMAD1**, **ATCOMMAND2**,…, to **AT+COMMANDF** . All commands are of same grammar.
326 )))
327
328 (((
329 **Handle return from sensors to RS485-BL**:
330 )))
331
332 (((
333 After RS485-BL send out a string to sensor, RS485-BL will wait for the return from RS485 or TTL sensor. And user can specify how to handle the return, by **AT+DATACUT or AT+SEARCH commands**
334 )))
335
336 * (((
337 **AT+DATACUT**
338 )))
339
340 (((
341 When the return value from sensor have fix length and we know which position the valid value we should get, we can use AT+DATACUT command.
342 )))
343
344 * (((
345 **AT+SEARCH**
346 )))
347
348 (((
349 When the return value from sensor is dynamic length and we are not sure which bytes the valid data is, instead, we know what value the valid value following. We can use AT+SEARCH to search the valid value in the return string.
350 )))
351
352 (((
353 **Define wait timeout:**
354 )))
355
356 (((
357 Some RS485 device might has longer delay on reply, so user can use AT+CMDDL to set the timeout for getting reply after the RS485 command is sent. For example, AT+CMDDL1=1000 to send the open time to 1000ms
358 )))
359
360 (((
361 After we got the valid value from each RS485 commands, we need to combine them together with the command **AT+DATAUP**.
362 )))
363
364 **Examples:**
365
366 Below are examples for the how above AT Commands works.
367
368 **AT+COMMANDx : **This command will be sent to RS485/TTL devices during each sampling, Max command length is 14 bytes. The grammar is:
369
370 (% border="1" class="table-bordered" %)
371 |(((
372 **AT+COMMANDx=xx xx xx xx xx xx xx xx xx xx xx xx,m**
373
374 **xx xx xx xx xx xx xx xx xx xx xx xx: The RS485 command to be sent**
375
376 **m: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command**
377 )))
378
379 For example, if we have a RS485 sensor. The command to get sensor value is: 01 03 0B B8 00 02 46 0A. Where 01 03 0B B8 00 02 is the Modbus command to read the register 0B B8 where stored the sensor value. The 46 0A is the CRC-16/MODBUS which calculate manually.
380
381 In the RS485-BL, we should use this command AT+COMMAND1=01 03 0B B8 00 02,1 for the same.
382
383 **AT+SEARCHx**: This command defines how to handle the return from AT+COMMANDx.
384
385 (% border="1" class="table-bordered" %)
386 |(((
387 **AT+SEARCHx=aa,xx xx xx xx xx**
388
389 * **aa: 1: prefix match mode; 2: prefix and suffix match mode**
390 * **xx xx xx xx xx: match string. Max 5 bytes for prefix and 5 bytes for suffix**
391
392
393 )))
394
395 Examples:
396
397 1. For a return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
398
399 If we set AT+SEARCH1=1,1E 56 34.      (max 5 bytes for prefix)
400
401 The valid data will be all bytes after 1E 56 34 , so it is 2e 30 58 5f 36 41 30 31 00 49
402
403 [[image:1652954654347-831.png]]
404
405
406 1. For a return string from AT+COMMAND1:  16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
407
408 If we set AT+SEARCH1=2, 1E 56 34+31 00 49
409
410 Device will search the bytes between 1E 56 34 and 31 00 49. So it is 2e 30 58 5f 36 41 30
411
412 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image014.png]]
413
414
415 **AT+DATACUTx : **This command defines how to handle the return from AT+COMMANDx, max return length is 45 bytes.
416
417 |(((
418 **AT+DATACUTx=a,b,c**
419
420 * **a: length for the return of AT+COMMAND**
421 * **b:1: grab valid value by byte, max 6 bytes. 2: grab valid value by bytes section, max 3 sections.**
422 * **c: define the position for valid value.  **
423 )))
424
425 Examples:
426
427 * Grab bytes:
428
429 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image015.png]]
430
431 * Grab a section.
432
433 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image016.png]]
434
435 * Grab different sections.
436
437 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image017.png]]
438
439
440 Note:
441
442 AT+SEARCHx and AT+DATACUTx can be used together, if both commands are set, RS485-BL will first process AT+SEARCHx on the return string and get a temporary string, and then process AT+DATACUTx on this temporary string to get the final payload. In this case, AT+DATACUTx need to set to format AT+DATACUTx=0,xx,xx where the return bytes set to 0.
443
444 Example:
445
446 AT+COMMAND1=11 01 1E D0,0
447
448 AT+SEARCH1=1,1E 56 34
449
450 AT+DATACUT1=0,2,1~~5
451
452 Return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
453
454 String after SEARCH command: 2e 30 58 5f 36 41 30 31 00 49
455
456 Valid payload after DataCUT command: 2e 30 58 5f 36
457
458 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image018.png]]
459
460
461
462
463 1.
464 11.
465 111. Compose the uplink payload
466
467 Through AT+COMMANDx and AT+DATACUTx we got valid value from each RS485 commands, Assume these valid value are RETURN1, RETURN2, .., to RETURNx. The next step is how to compose the LoRa Uplink Payload by these RETURNs. The command is **AT+DATAUP.**
468
469
470 **Examples: AT+DATAUP=0**
471
472 Compose the uplink payload with value returns in sequence and send with **A SIGNLE UPLINK**.
473
474 Final Payload is
475
476 Battery Info+PAYVER + VALID Value from RETURN1 + Valid Value from RETURN2 + … + RETURNx
477
478 Where PAYVER is defined by AT+PAYVER, below is an example screen shot.
479
480 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image019.png]]
481
482
483
484 **Examples: AT+DATAUP=1**
485
486 Compose the uplink payload with value returns in sequence and send with **Multiply UPLINKs**.
487
488 Final Payload is
489
490 Battery Info+PAYVER + PAYLOAD COUNT + PAYLOAD# + DATA
491
492 1. Battery Info (2 bytes): Battery voltage
493 1. PAYVER (1 byte): Defined by AT+PAYVER
494 1. PAYLOAD COUNT (1 byte): Total how many uplinks of this sampling.
495 1. PAYLOAD# (1 byte): Number of this uplink. (from 0,1,2,3…,to PAYLOAD COUNT)
496 1. DATA: Valid value: max 6 bytes(US915 version here, [[Notice*!>>path:#max_byte]]) for each uplink so each uplink <= 11 bytes. For the last uplink, DATA will might less than 6 bytes
497
498 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
499
500
501 So totally there will be 3 uplinks for this sampling, each uplink includes 6 bytes DATA
502
503 DATA1=RETURN1 Valid Value = 20 20 0a 33 90 41
504
505 DATA2=1^^st^^ ~~ 6^^th^^ byte of Valid value of RETURN10= 02 aa 05 81 0a 20
506
507 DATA3=7^^th^^ ~~ 11^^th^^ bytes of Valid value of RETURN10 = 20 20 20 2d 30
508
509
510
511 Below are the uplink payloads:
512
513 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image021.png]]
514
515
516 Notice: the Max bytes is according to the max support bytes in different Frequency Bands for lowest SF. As below:
517
518 ~* For AU915/AS923 bands, if UplinkDwell time=0, max 51 bytes for each uplink ( so 51 -5 = 46 max valid date)
519
520 * For AU915/AS923 bands, if UplinkDwell time=1, max 11 bytes for each uplink ( so 11 -5 = 6 max valid date).
521
522 * For US915 band, max 11 bytes for each uplink ( so 11 -5 = 6 max valid date).
523
524 ~* For all other bands: max 51 bytes for each uplink  ( so 51 -5 = 46 max valid date).
525
526
527
528 1.
529 11.
530 111. Uplink on demand
531
532 Except uplink periodically, RS485-BL is able to uplink on demand. The server sends downlink command to RS485-BL and RS485 will uplink data base on the command.
533
534 Downlink control command:
535
536 [[0x08 command>>path:#downlink_08]]: Poll an uplink with current command set in RS485-BL.
537
538 [[0xA8 command>>path:#downlink_A8]]: Send a command to RS485-BL and uplink the output from sensors.
539
540
541
542 1.
543 11.
544 111. Uplink on Interrupt
545
546 Put the interrupt sensor between 3.3v_out and GPIO ext.[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image022.png]]
547
548 AT+INTMOD=0  Disable Interrupt
549
550 AT+INTMOD=1  Interrupt trigger by rising or falling edge.
551
552 AT+INTMOD=2  Interrupt trigger by falling edge. ( Default Value)
553
554 AT+INTMOD=3  Interrupt trigger by rising edge.
555
556
557 1.
558 11. Uplink Payload
559
560 |**Size(bytes)**|**2**|**1**|**Length depends on the return from the commands**
561 |Value|(((
562 Battery(mV)
563
564 &
565
566 Interrupt _Flag
567 )))|(((
568 PAYLOAD_VER
569
570
571 )))|If the valid payload is too long and exceed the maximum support payload length in server, server will show payload not provided in the LoRaWAN server.
572
573 Below is the decoder for the first 3 bytes. The rest bytes are dynamic depends on different RS485 sensors.
574
575
576 function Decoder(bytes, port) {
577
578 ~/~/Payload Formats of RS485-BL Deceive
579
580 return {
581
582 ~/~/Battery,units:V
583
584 BatV:((bytes[0]<<8 | bytes[1])&0x7fff)/1000,
585
586 ~/~/GPIO_EXTI 
587
588 EXTI_Trigger:(bytes[0] & 0x80)? "TRUE":"FALSE",
589
590 ~/~/payload of version
591
592 Pay_ver:bytes[2],
593
594 };
595
596 }
597
598
599
600
601
602
603
604 TTN V3 uplink screen shot.
605
606 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image023.png]]
607
608 1.
609 11. Configure RS485-BL via AT or Downlink
610
611 User can configure RS485-BL via [[AT Commands >>path:#_​Using_the_AT]]or LoRaWAN Downlink Commands
612
613 There are two kinds of Commands:
614
615 * **Common Commands**: They should be available for each sensor, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: http:~/~/wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands
616
617 * **Sensor Related Commands**: These commands are special designed for RS485-BL.  User can see these commands below:
618
619 1.
620 11.
621 111. Common Commands:
622
623 They should be available for each of Dragino Sensors, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: [[http:~~/~~/wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands>>url:http://wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands]]
624
625
626 1.
627 11.
628 111. Sensor related commands:
629
630 ==== Choose Device Type (RS485 or TTL) ====
631
632 RS485-BL can connect to either RS485 sensors or TTL sensor. User need to specify what type of sensor need to connect.
633
634 * AT Command
635
636 **AT+MOD=1** ~/~/ Set to support RS485-MODBUS type sensors. User can connect multiply RS485 , Modbus sensors to the A / B pins.
637
638 **AT+MOD=2** ~/~/ Set to support TTL Level sensors, User can connect one TTL Sensor to the TXD/RXD/GND pins.
639
640
641 * Downlink Payload
642
643 **0A aa**     à same as AT+MOD=aa
644
645
646
647 ==== [[RS485 Debug Command>>path:#downlink_A8]] (AT+CFGDEV) ====
648
649 This command is used to configure the RS485 or TTL sensors; they won’t be used during sampling.
650
651 * AT Command
652
653 AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m
654
655 m: 0: no CRC; 1: add CRC-16/MODBUS in the end of this command.
656
657
658
659 * Downlink Payload
660
661 Format: A8 MM NN XX XX XX XX YY
662
663 Where:
664
665 * MM: 1: add CRC-16/MODBUS ; 0: no CRC
666 * NN: The length of RS485 command
667 * XX XX XX XX: RS485 command total NN bytes
668 * YY: How many bytes will be uplink from the return of this RS485 command, if YY=0, RS485-BL will execute the downlink command without uplink; if YY>0, RS485-BL will uplink total YY bytes from the output of this RS485 command
669
670 **Example 1:**
671
672 To connect a Modbus Alarm with below commands.
673
674 * The command to active alarm is: 0A 05 00 04 00 01 4C B0. Where 0A 05 00 04 00 01 is the Modbus command to read the register 00 40 where stored the DI status. The 4C B0 is the CRC-16/MODBUS which calculate manually.
675
676 * The command to deactivate alarm is: 0A 05 00 04 00 00 8D 70. Where 0A 05 00 04 00 00 is the Modbus command to read the register 00 40 where stored the DI status. The 8D 70 is the CRC-16/MODBUS which calculate manually.
677
678 So if user want to use downlink command to control to RS485 Alarm, he can use:
679
680 **A8 01 06 0A 05 00 04 00 01 00**: to activate the RS485 Alarm
681
682 **A8 01 06 0A 05 00 04 00 00 00**: to deactivate the RS485 Alarm
683
684 A8 is type code and 01 means add CRC-16/MODBUS at the end, the 3^^rd^^ byte is 06, means the next 6 bytes are the command to be sent to the RS485 network, the final byte 00 means this command don’t need to acquire output.
685
686
687 **Example 2:**
688
689 Check TTL Sensor return:
690
691 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image024.png]]
692
693
694
695
696 ==== Set Payload version ====
697
698 This is the first byte of the uplink payload. RS485-BL can connect to different sensors. User can set the PAYVER field to tell server how to decode the current payload.
699
700 * AT Command:
701
702 AT+PAYVER: Set PAYVER field = 1
703
704
705 * Downlink Payload:
706
707 0xAE 01   à Set PAYVER field =  0x01
708
709 0xAE 0F   à Set PAYVER field =  0x0F
710
711
712 ==== Set RS485 Sampling Commands ====
713
714 AT+COMMANDx, AT+DATACUTx and AT+SEARCHx
715
716 These three commands are used to configure how the RS485-BL polling data from Modbus device. Detail of usage please see : [[polling RS485 device>>path:#polling_485]].
717
718
719 * AT Command:
720
721 AT+COMMANDx: Configure RS485 read command to sensor.
722
723 AT+DATACUTx: Configure how to handle return from RS485 devices.
724
725 AT+SEARCHx: Configure search command
726
727
728 * Downlink Payload:
729
730 0xAF downlink command can be used to set AT+COMMANDx or AT+DATACUTx.
731
732 Note: if user use AT+COMMANDx to add a new command, he also need to send AT+DATACUTx downlink.
733
734 Format: AF MM NN LL XX XX XX XX YY
735
736 Where:
737
738 * MM: the ATCOMMAND or AT+DATACUT to be set. Value from 01 ~~ 0F,
739 * NN: 0: no CRC; 1: add CRC-16/MODBUS ; 2: set the AT+DATACUT value.
740 * LL: The length of AT+COMMAND or AT+DATACUT command
741 * XX XX XX XX: AT+COMMAND or AT+DATACUT command
742 * YY: If YY=0, RS485-BL will execute the downlink command without uplink; if YY=1, RS485-BL will execute an uplink after got this command.
743
744 Example:
745
746 **AF 03 01 06 0A 05 00 04 00 01 00**: Same as AT+COMMAND3=0A 05 00 04 00 01,1
747
748 **AF 03 02 06 10 01 05 06 09 0A 00**: Same as AT+DATACUT3=**16**,**1**,**5+6+9+10**
749
750 **AF 03 02 06 0B 02 05 07 08 0A 00**: Same as AT+DATACUT3=**11**,**2**,**5~~7+8~~10**
751
752
753 0xAB downlink command can be used for set AT+SEARCHx
754
755 Example: **AB aa 01 03 xx xx xx** (03 here means there are total 3 bytes after 03) So
756
757 * AB aa 01 03 xx xx xx  same as AT+SEARCHaa=1,xx xx xx
758 * AB aa 02 03 xx xx xx 02 yy yy(03 means there are 3 bytes after 03, they are xx xx xx;02 means there are 2 bytes after 02, they are yy yy) so the commands
759
760 **AB aa 02 03 xx xx xx 02 yy yy**  same as **AT+SEARCHaa=2,xx xx xx+yy yy**
761
762
763 ==== Fast command to handle MODBUS device ====
764
765 AT+MBFUN is valid since v1.3 firmware version. The command is for fast configure to read Modbus devices. It is only valid for the devices which follow the [[MODBUS-RTU protocol>>url:https://www.modbustools.com/modbus.html]].
766
767 This command is valid since v1.3 firmware version
768
769
770 AT+MBFUN has only two value:
771
772 * AT+MBFUN=1: Enable Modbus reading. And get response base on the MODBUS return
773
774 AT+MBFUN=1, device can auto read the Modbus function code: 01, 02, 03 or 04. AT+MBFUN has lower priority vs AT+DATACUT command. If AT+DATACUT command is configured, AT+MBFUN will be ignore.
775
776 * AT+MBFUN=0: Disable Modbus fast reading.
777
778 Example:
779
780 * AT+MBFUN=1 and AT+DATACUT1/AT+DATACUT2 are not configure (0,0,0).
781 * AT+COMMAND1= 01 03 00 10 00 08,1 ~-~-> read slave address 01 , function code 03, start address 00 01, quantity of registers 00 08.
782 * AT+COMMAND2= 01 02 00 40 00 10,1 ~-~-> read slave address 01 , function code 02, start address 00 40, quantity of inputs 00 10.
783
784 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image025.png]]
785
786
787 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image026.png]]
788
789
790 * Downlink Commands:
791
792 A9 aa -à Same as AT+MBFUN=aa
793
794
795 ==== RS485 command timeout ====
796
797 Some Modbus device has slow action to send replies. This command is used to configure the RS485-BL to use longer time to wait for their action.
798
799 Default value: 0, range:  0 ~~ 5 seconds
800
801
802 * AT Command:
803
804 AT+CMDDLaa=hex(bb cc)
805
806 Example:
807
808 **AT+CMDDL1=1000** to send the open time to 1000ms
809
810
811 * Downlink Payload:
812
813 0x AA aa bb cc
814
815 Same as: AT+CMDDLaa=hex(bb cc)
816
817 Example:
818
819 0xAA 01 03 E8  à Same as **AT+CMDDL1=1000 ms**
820
821
822 ==== [[Uplink>>path:#downlink_A8]] payload mode ====
823
824 Define to use one uplink or multiple uplinks for the sampling.
825
826 The use of this command please see: [[Compose Uplink payload>>path:#DataUP]]
827
828 * AT Command:
829
830 AT+DATAUP=0
831
832 AT+DATAUP=1
833
834
835 * Downlink Payload:
836
837 0xAD 00   à Same as AT+DATAUP=0
838
839 0xAD 01   à Same as AT+DATAUP=1
840
841
842 ==== Manually trigger an Uplink ====
843
844 Ask device to send an uplink immediately.
845
846 * Downlink Payload:
847
848 0x08 FF, RS485-BL will immediately send an uplink.
849
850
851 ==== Clear RS485 Command ====
852
853 The AT+COMMANDx and AT+DATACUTx settings are stored in special location, user can use below command to clear them.
854
855
856 * AT Command:
857
858 **AT+CMDEAR=mm,nn**   mm: start position of erase ,nn: stop position of erase
859
860 Etc. AT+CMDEAR=1,10 means erase AT+COMMAND1/AT+DATACUT1 to AT+COMMAND10/AT+DATACUT10
861
862 Example screen shot after clear all RS485 commands. 
863
864
865
866 The uplink screen shot is:
867
868 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image023.png]]
869
870
871 * Downlink Payload:
872
873 0x09 aa bb same as AT+CMDEAR=aa,bb
874
875
876 ==== Set Serial Communication Parameters ====
877
878 Set the Rs485 serial communication parameters:
879
880 * AT Command:
881
882 Set Baud Rate:
883
884 AT+BAUDR=9600    ~/~/ Options: (1200,2400,4800,14400,19200,115200)
885
886
887 Set UART parity
888
889 AT+PARITY=0    ~/~/ Option: 0: no parity, 1: odd parity, 2: even parity
890
891
892 Set STOPBIT
893
894 AT+STOPBIT=0    ~/~/ Option: 0 for 1bit; 1 for 1.5 bit ; 2 for 2 bits
895
896
897 * Downlink Payload:
898
899 A7 01 aa bb: Same  AT+BAUDR=hex(aa bb)*100
900
901 Example:
902
903 * A7 01 00 60   same as AT+BAUDR=9600
904 * A7 01 04 80  same as AT+BAUDR=115200
905
906 A7 02 aa: Same as  AT+PARITY=aa  (aa value: 00 , 01 or 02)
907
908 A7 03 aa: Same as  AT+STOPBIT=aa  (aa value: 00 , 01 or 02)
909
910
911 ==== Control output power duration ====
912
913 User can set the output power duration before each sampling.
914
915 * AT Command:
916
917 Example:
918
919 AT+3V3T=1000 ~/~/ 3V3 output power will open 1s before each sampling.
920
921 AT+5VT=1000 ~/~/ +5V output power will open 1s before each sampling.
922
923
924 * LoRaWAN Downlink Command:
925
926 07 01 aa bb  Same as AT+5VT=(aa bb)
927
928 07 02 aa bb  Same as AT+3V3T=(aa bb)
929
930
931
932
933 1.
934 11. Buttons
935
936 |**Button**|**Feature**
937 |**RST**|Reboot RS485-BL
938
939 1.
940 11. +3V3 Output
941
942 RS485-BL has a Controllable +3V3 output, user can use this output to power external sensor.
943
944 The +3V3 output will be valid for every sampling. RS485-BL will enable +3V3 output before all sampling and disable the +3V3 after all sampling. 
945
946
947 The +3V3 output time can be controlled by AT Command.
948
949 **AT+3V3T=1000**
950
951 Means set +3v3 valid time to have 1000ms. So, the real +3v3 output will actually have 1000ms + sampling time for other sensors.
952
953
954 By default, the AT+3V3T=0. This is a special case, means the +3V3 output is always on at any time
955
956
957 1.
958 11. +5V Output
959
960 RS485-BL has a Controllable +5V output, user can use this output to power external sensor.
961
962 The +5V output will be valid for every sampling. RS485-BL will enable +5V output before all sampling and disable the +5v after all sampling. 
963
964
965 The 5V output time can be controlled by AT Command.
966
967 **AT+5VT=1000**
968
969 Means set 5V valid time to have 1000ms. So, the real 5V output will actually have 1000ms + sampling time for other sensors.
970
971
972 By default, the AT+5VT=0. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
973
974
975
976
977 1.
978 11. LEDs
979
980 |**LEDs**|**Feature**
981 |**LED1**|Blink when device transmit a packet.
982
983 1.
984 11. Switch Jumper
985
986 |**Switch Jumper**|**Feature**
987 |**SW1**|(((
988 ISP position: Upgrade firmware via UART
989
990 Flash position: Configure device, check running status.
991 )))
992 |**SW2**|(((
993 5V position: set to compatible with 5v I/O.
994
995 3.3v position: set to compatible with 3.3v I/O.,
996 )))
997
998 +3.3V: is always ON
999
1000 +5V: Only open before every sampling. The time is by default, it is AT+5VT=0.  Max open time. 5000 ms.
1001
1002 1. Case Study
1003
1004 User can check this URL for some case studies.
1005
1006 [[http:~~/~~/wiki.dragino.com/index.php?title=APP_RS485_COMMUNICATE_WITH_SENSORS>>url:http://wiki.dragino.com/index.php?title=APP_RS485_COMMUNICATE_WITH_SENSORS]]
1007
1008
1009
1010
1011 1. Use AT Command
1012 11. Access AT Command
1013
1014 RS485-BL supports AT Command set. User can use a USB to TTL adapter plus the 3.5mm Program Cable to connect to RS485-BL to use AT command, as below.
1015
1016 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image027.png]]
1017
1018
1019 In PC, User needs to set **serial tool**(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to **9600** to access to access serial console of RS485-BL. The default password is 123456. Below is the output for reference:
1020
1021 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image028.png]]
1022
1023
1024
1025 More detail AT Command manual can be found at [[AT Command Manual>>path:#AT_COMMAND]]
1026
1027
1028
1029 1.
1030 11. Common AT Command Sequence
1031 111. Multi-channel ABP mode (Use with SX1301/LG308)
1032
1033 If device has not joined network yet:
1034
1035 AT+FDR
1036
1037 AT+NJM=0
1038
1039 ATZ
1040
1041
1042 If device already joined network:
1043
1044 AT+NJM=0
1045
1046 ATZ
1047
1048 1.
1049 11.
1050 111. Single-channel ABP mode (Use with LG01/LG02)
1051
1052 AT+FDR   Reset Parameters to Factory Default, Keys Reserve
1053
1054 AT+NJM=0 Set to ABP mode
1055
1056 AT+ADR=0 Set the Adaptive Data Rate Off
1057
1058 AT+DR=5  Set Data Rate
1059
1060 AT+TDC=60000  Set transmit interval to 60 seconds
1061
1062 AT+CHS=868400000 Set transmit frequency to 868.4Mhz
1063
1064 AT+RX2FQ=868400000 Set RX2Frequency to 868.4Mhz (according to the result from server)
1065
1066 AT+RX2DR=5  Set RX2DR to match the downlink DR from server. see below
1067
1068 AT+DADDR=26 01 1A F1 Set Device Address to 26 01 1A F1, this ID can be found in the LoRa Server portal.
1069
1070 ATZ          Reset MCU
1071
1072 **Note:**
1073
1074 1. Make sure the device is set to ABP mode in the IoT Server.
1075 1. Make sure the LG01/02 gateway RX frequency is exactly the same as AT+CHS setting.
1076 1. Make sure SF / bandwidth setting in LG01/LG02 match the settings of AT+DR. refer [[this link>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_Gateway/&file=LoRaWAN%201.0.3%20Regional%20Parameters.xlsx]] to see what DR means.
1077 1. The command AT+RX2FQ and AT+RX2DR is to let downlink work. to set the correct parameters, user can check the actually downlink parameters to be used. As below. Which shows the RX2FQ should use 868400000 and RX2DR should be 5
1078
1079 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image029.png]]
1080
1081
1082 1. FAQ
1083 11. How to upgrade the image?
1084
1085 The RS485-BL LoRaWAN Controller is shipped with a 3.5mm cable, the cable is used to upload image to RS485-BL to:
1086
1087 * Support new features
1088 * For bug fix
1089 * Change LoRaWAN bands.
1090
1091 Below shows the hardware connection for how to upload an image to RS485-BL:
1092
1093 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image030.png]]
1094
1095 **Step1:** Download [[flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]].
1096
1097 **Step2**: Download the [[LT Image files>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/image/]].
1098
1099 **Step3: **Open flashloader; choose the correct COM port to update.
1100
1101
1102 |(((
1103 HOLD PRO then press the RST button, SYS will be ON, then click next
1104 )))
1105
1106 |(((
1107 Board detected
1108 )))
1109
1110 |(((
1111
1112 )))
1113
1114 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image031.png]] [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image032.png]]
1115
1116
1117
1118 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image033.png]] [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image034.png]]
1119
1120
1121 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image035.png]] [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image036.png]]
1122
1123
1124 1.
1125 11. How to change the LoRa Frequency Bands/Region?
1126
1127 User can follow the introduction for [[how to upgrade image>>path:#upgrade_image]]. When download the images, choose the required image file for download.
1128
1129
1130
1131 1.
1132 11. How many RS485-Slave can RS485-BL connects?
1133
1134 The RS485-BL can support max 32 RS485 devices. Each uplink command of RS485-BL can support max 16 different RS485 command. So RS485-BL can support max 16 RS485 devices pre-program in the device for uplink. For other devices no pre-program, user can use the [[downlink message (type code 0xA8) to poll their info>>path:#downlink_A8]].
1135
1136
1137
1138
1139 1. Trouble Shooting     
1140 11. Downlink doesn’t work, how to solve it?
1141
1142 Please see this link for debug:
1143
1144 [[http:~~/~~/wiki.dragino.com/index.php?title=Main_Page#LoRaWAN_Communication_Debug>>url:http://wiki.dragino.com/index.php?title=Main_Page#LoRaWAN_Communication_Debug]] 
1145
1146
1147
1148 1.
1149 11. Why I can’t join TTN V3 in US915 /AU915 bands?
1150
1151 It might about the channels mapping. Please see for detail.
1152
1153 [[http:~~/~~/wiki.dragino.com/index.php?title=LoRaWAN_Communication_Debug#Notice_of_US915.2FCN470.2FAU915_Frequency_band>>url:http://wiki.dragino.com/index.php?title=LoRaWAN_Communication_Debug#Notice_of_US915.2FCN470.2FAU915_Frequency_band]]
1154
1155
1156
1157 1. Order Info
1158
1159 **Part Number: RS485-BL-XXX**
1160
1161 **XXX:**
1162
1163 * **EU433**: frequency bands EU433
1164 * **EU868**: frequency bands EU868
1165 * **KR920**: frequency bands KR920
1166 * **CN470**: frequency bands CN470
1167 * **AS923**: frequency bands AS923
1168 * **AU915**: frequency bands AU915
1169 * **US915**: frequency bands US915
1170 * **IN865**: frequency bands IN865
1171 * **RU864**: frequency bands RU864
1172 * **KZ865: **frequency bands KZ865
1173
1174 1. Packing Info
1175
1176 **Package Includes**:
1177
1178 * RS485-BL x 1
1179 * Stick Antenna for LoRa RF part x 1
1180 * Program cable x 1
1181
1182 **Dimension and weight**:
1183
1184 * Device Size: 13.5 x 7 x 3 cm
1185 * Device Weight: 105g
1186 * Package Size / pcs : 14.5 x 8 x 5 cm
1187 * Weight / pcs : 170g
1188
1189 1. Support
1190
1191 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1192 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to
1193
1194 [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]]
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0