Version 139.3 by Xiaoling on 2025/04/23 15:22

Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20240928101253-2.jpeg||height="603" width="603"]]
3
4
5
6
7
8
9
10
11
12
13 **Table of Contents:**
14
15 {{toc/}}
16
17
18 (% aria-label="macro:toc widget" contenteditable="false" role="region" tabindex="-1" %)
19 (((
20 (% style="background-image:url(http://wiki.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220,220,220,0.5); display:none" %)[[image:||height="15" role="presentation" title="Click and drag to move" width="15"]]
21 )))
22
23
24
25
26
27
28
29 = 1. Introduction =
30
31 == 1.1 What is RS485-LN RS485 to LoRaWAN Converter ==
32
33
34 (((
35 The Dragino RS485-LN is a (% style="color:blue" %)**RS485 to LoRaWAN Converter**(%%). It converts the RS485 signal into LoRaWAN wireless signal which simplify the IoT installation and reduce the installation/maintaining cost.
36 )))
37
38 (((
39 RS485-LN allows user to (% style="color:blue" %)**monitor / control RS485 devices**(%%) and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, building automation, and so on.
40 )))
41
42 (((
43 (% style="color:blue" %)**For data uplink**(%%), RS485-LN sends user-defined commands to RS485 devices and gets the return from the RS485 devices. RS485-LN will process these returns according to user-define rules to get the final payload and upload to LoRaWAN server.
44 )))
45
46 (((
47 (% style="color:blue" %)**For data downlink**(%%), RS485-LN runs in LoRaWAN Class C. When there downlink commands from LoRaWAN server, RS485-LN will forward the commands from LoRaWAN server to RS485 devices.
48 )))
49
50 (((
51 (% style="color:blue" %)**Demo Dashboard for RS485-LN**(%%) connect to two energy meters: [[https:~~/~~/app.datacake.de/dashboard/d/58844a26-378d-4c5a-aaf5-b5b5b153447a>>url:https://app.datacake.de/dashboard/d/58844a26-378d-4c5a-aaf5-b5b5b153447a]](% title="Click and drag to resize" %)​
52 )))
53
54
55 == 1.2 Specifications ==
56
57
58 (% style="color:#037691" %)**Hardware System:**
59
60 * STM32L072xxxx MCU
61 * SX1276/78 Wireless Chip 
62 * Power Consumption (exclude RS485 device):
63 ** Idle: 32mA@12v
64 ** 20dB Transmit: 65mA@12v
65
66 (% style="color:#037691" %)**Interface for Model:**
67
68 * RS485
69 * Power Input 7~~ 24V DC. 
70
71 (% style="color:#037691" %)**LoRa Spec:**
72
73 * Frequency Range:
74 ** Band 1 (HF): 862 ~~ 1020 Mhz
75 ** Band 2 (LF): 410 ~~ 528 Mhz
76 * 168 dB maximum link budget.
77 * +20 dBm - 100 mW constant RF output vs.
78 * +14 dBm high efficiency PA.
79 * Programmable bit rate up to 300 kbps.
80 * High sensitivity: down to -148 dBm.
81 * Bullet-proof front end: IIP3 = -12.5 dBm.
82 * Excellent blocking immunity.
83 * Low RX current of 10.3 mA, 200 nA register retention.
84 * Fully integrated synthesizer with a resolution of 61 Hz.
85 * FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation.
86 * Built-in bit synchronizer for clock recovery.
87 * Preamble detection.
88 * 127 dB Dynamic Range RSSI.
89 * Automatic RF Sense and CAD with ultra-fast AFC.
90 * Packet engine up to 256 bytes with CRC
91
92 == 1.3 Features ==
93
94
95 * LoRaWAN Class A & Class C protocol (default Class C)
96 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865/RU864/MA869
97 * AT Commands to change parameters
98 * Remote configure parameters via LoRa Downlink
99 * Firmware upgradable via program port
100 * Support multiply RS485 devices by flexible rules
101 * Support Modbus protocol
102 * Support Interrupt uplink (Since hardware version v1.2)
103
104 == 1.4 Applications ==
105
106
107 * Smart Buildings & Home Automation
108 * Logistics and Supply Chain Management
109 * Smart Metering
110 * Smart Agriculture
111 * Smart Cities
112 * Smart Factory
113
114 == 1.5 Firmware Change log ==
115
116
117 [[RS485-LN Image files – Download link and Change log>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/]]
118
119
120 == 1.6 Hardware Change log ==
121
122
123 (((
124 (((
125 (((
126 v1.2: Add External Interrupt Pin.
127 )))
128
129 (((
130 v1.0: Release
131 )))
132
133
134 == 1.7 Pin Definitions ==
135
136
137 The following diagram shows the V1.2 hardware version.
138
139 [[image:image-20240928101253-2.jpeg||height="542" width="542"]]
140
141 [[image:image-20240925161157-2.jpeg||height="367" width="545"]]
142
143
144 )))
145 )))
146
147 = 2. Power ON Device =
148
149
150 (((
151 The RS485-LN can be powered by 7 ~~ 24V DC power source. Connection as below
152
153 * Power Source VIN to RS485-LN VIN+
154 * Power Source GND to RS485-LN VIN-
155
156 (((
157 Once there is power, the RS485-LN will be on.
158 )))
159
160 (% aria-label="1653268091319-405.png image widget" contenteditable="false" role="region" tabindex="-1" %)[[image:1653268091319-405.png||data-widget="image"]](% style="background-image:url(http://wiki.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220,220,220,0.5); display:none" %)[[image:||draggable="true" height="15" role="presentation" title="Click and drag to move" width="15"]](% title="Click and drag to resize" %)​
161
162
163 )))
164
165 = 3. Operation Mode =
166
167 == 3.1 How it works? ==
168
169
170 (((
171 (((
172 The RS485-LN is configured as LoRaWAN OTAA Class C mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the RS485-LN. It will auto join the network via OTAA.
173 )))
174
175
176 )))
177
178 == 3.2 Example to join LoRaWAN network ==
179
180
181 Here shows an example for how to join the TTN V3 Network. Below is the network structure, we use [[LG308>>url:http://www.dragino.com/products/lora-lorawan-gateway/item/140-lg308.html]] as LoRaWAN gateway here. 
182
183 [[image:image-20240928102637-3.png||height="522" width="917"]]
184
185 (% style="background-image:url(http://wiki.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220,220,220,0.5); display:none" %)[[image:||draggable="true" height="15" role="presentation" title="Click and drag to move" width="15"]]
186
187 (((
188 (((
189 The RS485-LN in this example connected to two RS485 devices for demonstration, user can connect to other RS485 devices via the same method. The connection is as below:
190 )))
191
192 (((
193 485A+ and 485B- of the sensor are connected to RS485A and RA485B of RS485-LN respectively.
194 )))
195
196 (% aria-label="1653268227651-549.png image widget" contenteditable="false" role="region" tabindex="-1" %)[[image:1653268227651-549.png||data-widget="image" height="592" width="720"]](% style="background-image:url(http://wiki.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220,220,220,0.5); display:none" %)[[image:||draggable="true" height="15" role="presentation" title="Click and drag to move" width="15"]](% title="Click and drag to resize" %)​
197
198
199 (((
200 The LG308 is already set to connect to [[TTN V3 network >>path:https://www.thethingsnetwork.org/]]. So what we need to now is only configure the TTN V3:
201
202
203 )))
204
205 (((
206 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN V3 with the OTAA keys from RS485-LN.
207 )))
208
209 (((
210 Each RS485-LN is shipped with a sticker with unique device EUI:
211 )))
212 )))
213
214 (% style="background-image:url(http://wiki.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220,220,220,0.5); display:none" %)[[image:||draggable="true" height="15" role="presentation" title="Click and drag to move" width="15"]][[image:image-20230425175410-2.png]](% title="Click and drag to resize" %)​[[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDS25-LBLDS25-LS--LoRaWAN_LiDAR_Distance_Auto-Clean_Sensor_User_Manual/WebHome/image-20230426084152-1.png?width=502&height=233&rev=1.1||alt="图片-20230426084152-1.png"]]
215
216
217 You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
218
219 **Create the application.**
220
221 [[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/SAC01L_LoRaWAN_Temperature%26Humidity_Sensor_User_Manual/WebHome/image-20250423093843-1.png?width=756&height=264&rev=1.1||alt="image-20250423093843-1.png"]]
222
223 [[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LTC2-LB--LoRaWAN_Temperature_Transmitter_User_Manual/WebHome/image-20240907111305-2.png?width=1000&height=572&rev=1.1||alt="image-20240907111305-2.png"]]
224
225 **Add devices to the created Application.**
226
227 [[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LTC2-LB--LoRaWAN_Temperature_Transmitter_User_Manual/WebHome/image-20240907111659-3.png?width=977&height=185&rev=1.1||alt="image-20240907111659-3.png"]]
228
229 [[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LTC2-LB--LoRaWAN_Temperature_Transmitter_User_Manual/WebHome/image-20240907111820-5.png?width=975&height=377&rev=1.1||alt="image-20240907111820-5.png"]]
230
231
232 **Enter end device specifics manually.**
233
234 [[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LTC2-LB--LoRaWAN_Temperature_Transmitter_User_Manual/WebHome/image-20240907112136-6.png?width=697&height=687&rev=1.1||alt="image-20240907112136-6.png"]]
235
236 **Add DevEUI and AppKey.**
237
238 **Customize a platform ID for the device.**
239
240 [[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LTC2-LB--LoRaWAN_Temperature_Transmitter_User_Manual/WebHome/image-20240907112427-7.png?rev=1.1||alt="image-20240907112427-7.png"]]
241
242
243 (% style="color:blue" %)**Step 2**(%%): Add decoder.
244
245 In TTN, user can add a custom payload so it shows friendly reading.
246
247 Click this link to get the decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/>>url:https://github.com/dragino/dragino-end-node-decoder/tree/main/]]
248
249 Below is TTN screen shot:
250
251 [[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDS25-LBLDS25-LS--LoRaWAN_LiDAR_Distance_Auto-Clean_Sensor_User_Manual/WebHome/image-20241009140556-1.png?width=1184&height=488&rev=1.1||alt="image-20241009140556-1.png" height="488" width="1184"]]
252
253 [[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDS25-LBLDS25-LS--LoRaWAN_LiDAR_Distance_Auto-Clean_Sensor_User_Manual/WebHome/image-20241009140603-2.png?width=1168&height=562&rev=1.1||alt="image-20241009140603-2.png" height="562" width="1168"]]
254
255
256 (% style="color:blue" %)**Step 3**(%%): Activate on RS485-LN.
257
258 Press the button for 5 seconds to activate the RS485-LN. Power on RS485-BL and it will auto join to the TTN V3 network. After join success, it will start to upload message to TTN V3 and user can see in the panel.
259
260 (% aria-label="1652953568895-172.png image widget" contenteditable="false" role="region" tabindex="-1" %)[[image:1652953568895-172.png||data-widget="image" height="232" width="724"]](% style="background-image:url(http://wiki.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220,220,220,0.5); display:none" %)[[image:||draggable="true" height="15" role="presentation" title="Click and drag to move" width="15"]](% title="Click and drag to resize" %)​
261
262
263 == 3.3 Configure Device to Read RS485 Sensors ==
264
265
266 There are plenty of RS485 and TTL level devices in the market and each device has different commands to read the valid data. To support these devices in most flexible, RS485-LN supports flexible command set. User can use [[Dragino RS485 Tool>>url:https://www.dropbox.com/sh/us9qecn39fwt8n1/AABREdqUCzEmJMRrfuWuXasoa?dl=0]],  [[AT Commands or LoRaWAN Downlink>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/RS485-LB_Waterproof_RS485UART_to_LoRaWAN_Converter/#H3.5ConfigureRS485-LBviaATorDownlink]] Command to configure how RS485-LN should read the sensor and how to handle the return from RS485 or TTL sensors.
267
268
269 (((
270 (((
271 (((
272 (% style="color:red" %)**Note: below description and commands are for firmware version >v1.1, if you have firmware version v1.0. Please check the [[user manual v1.0>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/&file=RS485-LN_UserManual_v1.0.1.pdf]] or upgrade the firmware to v1.1**
273 )))
274
275
276 === 3.3.1 Method 1 ~-~- via RS485 Configure Tool ===
277
278
279 Use the RS485 Configure tool is the recommand method. Please see the instruction of how to use the tool:
280
281 * **[[RS485 Configure Tool Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/RS485_Configure_Tool/]]**
282
283 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/RS485-LB_Waterproof_RS485UART_to_LoRaWAN_Converter/WebHome/image-20231127144411-1.png?width=494&height=368&rev=1.1||alt="image-20231127144411-1.png" height="368" width="494"]]
284
285
286 === 3.3.2  Method 2 ~-~- via AT Commands ===
287 )))
288 )))
289
290 ==== 3.3.2.1 Configure UART settings for RS485 communication ====
291
292
293 To use RS485-LN to read data from RS485 sensors, connect the RS485-LN A/B traces to the sensors. The related commands for UART settings are:
294
295 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
296 |=(% style="width: 126px; background-color:#4F81BD;color:white" %)(((
297 **AT Commands**
298 )))|=(% style="width: 187px; background-color:#4F81BD;color:white" %)(((
299 **Description**
300 )))|=(% style="width: 197px;background-color:#4F81BD;color:white" %)(((
301 **Example**
302 )))
303 |(% style="width:126px" %)(((
304
305
306 (((
307 AT+BAUDR
308 )))
309 )))|(% style="width:177px" %)(((
310 Set the baud rate (for RS485 connection). Default Value is: 9600.
311 )))|(% style="width:193px" %)(((
312 (((
313 AT+BAUDR=9600
314 )))
315
316 (((
317 Options: (1200,2400,4800,
318 14400,19200,115200)
319 )))
320 )))
321 |(% style="width:126px" %)(((
322 AT+PARITY
323 )))|(% style="width:177px" %)(((
324 Set UART parity (for RS485 connection)
325 )))|(% style="width:193px" %)(((
326 (((
327 AT+PARITY=0
328 )))
329
330 (((
331 Option: 0: no parity,
332 1: odd parity,
333 2: even parity
334 )))
335 )))
336 |(% style="width:126px" %)(((
337 AT+STOPBIT
338 )))|(% style="width:177px" %)(((
339 (((
340 Set serial stopbit (for RS485 connection)
341 )))
342 )))|(% style="width:193px" %)(((
343 (((
344 AT+STOPBIT=0 for 1bit
345 )))
346
347 (((
348 AT+STOPBIT=1 for 1.5 bit
349 )))
350
351 (((
352 AT+STOPBIT=2 for 2 bits
353 )))
354 )))
355
356 === 3.3.3 Configure sensors ===
357
358
359 (((
360 Some sensors might need to configure before normal operation. User can configure such sensor via PC and RS485 adapter or through RS485-LN AT Commands (% style="color:#4f81bd" %)**AT+CFGDEV**(%%). Each (% style="color:#4f81bd" %)**AT+CFGDEV **(%%)equals to send a RS485 command to sensors. This command will only run when user input it and won't run during each sampling.
361 )))
362
363 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
364 |=(% style="width: 122px; background-color:#4F81BD;color:white" %)**AT Commands**|=(% style="width: 198px; background-color:#4F81BD;color:white" %)**Description**|=(% style="width: 190px;background-color:#4F81BD;color:white" %)**Example**
365 |(% style="width:122px" %)AT+CFGDEV|(% style="width:196px" %)(((
366 (((
367 This command is used to configure the RS485/TTL devices; they won’t be used during sampling.
368 )))
369
370 (((
371 AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,
372 )))
373
374 (((
375 mm: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command
376 )))
377 )))|(% style="width:190px" %)AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m
378
379 === 3.3.4 Configure read commands for each sampling ===
380
381
382 (((
383 During each sampling, we need confirm what commands we need to send to the RS485 sensors to read data. After the RS485 sensors send back the value, it normally include some bytes and we only need a few from them for a shorten payload.
384
385 To save the LoRaWAN network bandwidth, we might need to read data from different sensors and combine their valid value into a short payload.
386
387 This section describes how to achieve above goals.
388
389 During each sampling, the RS485-LN can support 15 commands to read sensors. And combine the return to one or several uplink payloads.
390
391
392 (% style="color:#037691" %)**Each RS485 commands include two parts:**
393
394
395 ~1. What commands RS485-LN will send to the RS485 sensors. There are total 15 commands from **AT+COMMAD1**, **ATCOMMAND2**,…, to **AT+COMMANDF**. All commands are of same grammar.
396
397 2. How to get wanted value the from RS485 sensors returns from by 1). There are total 15 AT Commands to handle the return, commands are **AT+DATACUT1**,**AT+DATACUT2**,…, **AT+DATACUTF** corresponding to the commands from 1). All commands are of same grammar.
398
399 3. Some RS485 device might has longer delay on reply, so user can use AT+CMDDL to set the timeout for getting reply after the RS485 command is sent. For example **AT+CMDDL1=1000** to send the open time to 1000ms
400
401
402 After we got the valid value from each RS485 commands, we need to combine them together with the command **AT+DATAUP**.
403
404 Below are examples for the how above AT Commands works.
405
406
407 (% style="color:#037691" %)**AT+COMMANDx **(%%)**: **This command will be sent to RS485 devices during each sampling, Max command length is 14 bytes. The grammar is:
408
409 (% border="1" style="background-color:#f2f2f2; width:499px" %)
410 |(% style="width:496px" %)(((
411 **AT+COMMANDx=xx xx xx xx xx xx xx xx xx xx xx xx,m**
412
413 **xx xx xx xx xx xx xx xx xx xx xx xx: The RS485 command to be sent**
414
415 **m: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command**
416 )))
417
418 For example, if we have a RS485 sensor. The command to get sensor value is: 01 03 0B B8 00 02 46 0A. Where 01 03 0B B8 00 02 is the Modbus command to read the register 0B B8 where stored the sensor value. The 46 0A is the CRC-16/MODBUS which calculate manually.
419
420 In the RS485-LN, we should use this command AT+COMMAND1=01 03 0B B8 00 02,1 for the same.
421
422
423 If a single command exceeds 14 bytes, you can use the command splicing function.
424
425 When AT+CMDDLx=1, the commands of AT+COMMANDx and AT+COMMAND(x+1) will be merged.
426
427
428 **Examples:** To send 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F data it should be configured:
429
430 AT+COMMAND1=00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D,0
431
432 AT+COMMAND1=1
433
434 AT+COMMAND2=0E 0F,0
435
436
437 (% style="color:#037691" %)**AT+DATACUTx **(%%)**: **This command defines how to handle the return from AT+COMMANDx, max return length is 100 bytes.
438
439 (% border="1" style="background-color:#f2f2f2; width:510px" %)
440 |(% style="width:510px" %)(((
441 **AT+DATACUTx=a,b,c**
442
443 * **a: length for the return of AT+COMMAND**
444 * **b:1: grab valid value by byte, max 6 bytes. 2: grab valid value by bytes section, max 3 sections.**
445 * **c: define the position for valid value.  **
446 )))
447
448 **Examples:**
449
450
451 * (% style="color:#037691" %)**Grab bytes**
452
453 (% aria-label="image-20220602153621-1.png image widget" contenteditable="false" role="region" tabindex="-1" %)[[image:image-20220602153621-1.png||data-widget="image"]](% style="background-image:url(http://wiki.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220,220,220,0.5); display:none" %)[[image:||draggable="true" height="15" role="presentation" title="Click and drag to move" width="15"]](% title="Click and drag to resize" %)​
454
455
456
457 * (% style="color:#037691" %)**Grab a section**
458
459 (% aria-label="image-20220602153621-2.png image widget" contenteditable="false" role="region" tabindex="-1" %)[[image:image-20220602153621-2.png||data-widget="image"]](% style="background-image:url(http://wiki.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220,220,220,0.5); display:none" %)[[image:||draggable="true" height="15" role="presentation" title="Click and drag to move" width="15"]](% title="Click and drag to resize" %)​
460
461
462
463 * (% style="color:#037691" %)**Grab different sections**
464
465 (% aria-label="image-20220602153621-3.png image widget" contenteditable="false" role="region" tabindex="-1" %)[[image:image-20220602153621-3.png||data-widget="image"]](% style="background-image:url(http://wiki.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220,220,220,0.5); display:none" %)[[image:||draggable="true" height="15" role="presentation" title="Click and drag to move" width="15"]](% title="Click and drag to resize" %)​
466
467
468 )))
469
470 === 3.3.5 Compose the uplink payload ===
471
472
473 (((
474 Through AT+COMMANDx and AT+DATACUTx we got valid value from each RS485 commands, Assume these valid value are RETURN1, RETURN2, .., to RETURNx. The next step is how to compose the LoRa Uplink Payload by these RETURNs. The command is **AT+DATAUP.**
475
476
477 )))
478
479 (((
480 (% style="color:#037691" %)**Examples: AT+DATAUP=0**
481
482
483 )))
484
485 (((
486 Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**A SIGNLE UPLINK**.
487 )))
488
489 (((
490 Final Payload is (% style="color:#4f81bd" %)**Battery Info+PAYVER + VALID Value from RETURN1 + Valid Value from RETURN2 + … + RETURNx**
491 )))
492
493 (((
494 Where PAYVER is defined by AT+PAYVER, below is an example screen shot.
495 )))
496
497 [[image:image-20220929111027-1.png||height="509" width="685"]](% title="Click and drag to resize" %)​
498
499
500 (% style="color:#037691" %)**Examples: AT+DATAUP=1**
501
502
503 Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**Multiply UPLINKs**.
504
505 Final Payload is (% style="color:#4f81bd" %)**PAYVER + PAYLOAD COUNT + PAYLOAD# + DATA**
506
507
508 ~1. PAYVER: Defined by AT+PAYVER
509
510 2. PAYLOAD COUNT: Total how many uplinks of this sampling.
511
512 3. PAYLOAD#: Number of this uplink. (from 0,1,2,3…,to PAYLOAD COUNT)
513
514 4. DATA: Valid value: max 8 bytes for each uplink so each uplink <= 11 bytes. For the last uplink, DATA will might less than 8 bytes
515
516
517 (% aria-label="image-20220602155039-4.png image widget" contenteditable="false" role="region" tabindex="-1" %)[[image:image-20220602155039-4.png||data-widget="image"]](% style="background-image:url(http://wiki.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220,220,220,0.5); display:none" %)[[image:||draggable="true" height="15" role="presentation" title="Click and drag to move" width="15"]](% title="Click and drag to resize" %)​
518
519
520 So totally there will be 3 uplinks for this sampling, each uplink include 8 bytes DATA
521
522 DATA1=RETURN1 Valid Value + the first two of Valid value of RETURN10= **20 20 0a 33 90 41 02 aa**
523
524 DATA2=3^^rd^^ ~~ 10^^th^^ byte of Valid value of RETURN10= **05 81 0a 20 20 20 20 2d**
525
526 DATA3=the rest of Valid value of RETURN10= **30**
527
528
529 (% style="color:red" %)**Notice: In firmware v1.3, the Max bytes has been changed according to the max bytes in different Frequency Bands for lowest SF. As below:**
530
531
532 ~* For AU915/AS923 bands, if UplinkDwell time=0, max 51 bytes for each uplink.
533
534 * For AU915/AS923 bands, if UplinkDwell time=0, max 11 bytes for each uplink.
535
536 * For US915 band, max 11 bytes for each uplink.
537
538 ~* For all other bands: max 51 bytes for each uplink.
539
540
541 (% style="color:red" %)** When AT+DATAUP=1, the maximum number of segments is 15, and the maximum total number of bytes is 1500;**
542
543 (% style="color:red" %)** When AT+DATAUP=1 and AT+ADR=0, the maximum number of bytes of each payload is determined by the DR value. (Since v1.4.0)**
544
545
546 Below are the uplink payloads:
547
548 (% aria-label="1654157178836-407.png image widget" contenteditable="false" role="region" tabindex="-1" %)[[image:1654157178836-407.png||data-widget="image"]](% style="background-image:url(http://wiki.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220,220,220,0.5); display:none" %)[[image:||draggable="true" height="15" role="presentation" title="Click and drag to move" width="15"]](% title="Click and drag to resize" %)​
549
550
551 === 3.3.6 Uplink on demand ===
552
553
554 Except uplink periodically, RS485-LN is able to uplink on demand. The server send downlink command to RS485-LN and RS485 will uplink data base on the command.
555
556 (% style="color:blue" %)**Downlink control command:**
557
558 (% style="color:#4472c4" %)** 0x08 command**(%%): Poll an uplink with current command set in RS485-LN.
559
560 (% style="color:#4472c4" %)** 0xA8 command**(%%): Send a command to RS485-LN and uplink the output from sensors.
561
562
563 === 3.3.7 Uplink on Interrupt ===
564
565
566 RS485-LN support external Interrupt uplink since hardware v1.2 release.
567
568 (% aria-label="1654157342174-798.png image widget" contenteditable="false" role="region" tabindex="-1" %)[[image:1654157342174-798.png||data-widget="image"]](% style="background-image:url(http://wiki.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220,220,220,0.5); display:none" %)[[image:||draggable="true" height="15" role="presentation" title="Click and drag to move" width="15"]]
569
570
571 ==== 3.3.7.1 Set Interrupt Mode ====
572
573
574 Before using the interrupt function of the **INT** pin, users can set the interrupt triggering mode as required.
575
576 (% style="color:blue" %)**AT command:**
577
578 * (% style="color:#037691" %)**AT+INTMOD **(%%) ~/~/ Set the trigger interrupt mode
579
580 * (% style="color:#037691" %)**AT+INTMOD=0 **(%%) ~/~/ Disable Interrupt
581
582 * (% style="color:#037691" %)**AT+INTMOD=1 **(%%) ~/~/ Trigger by rising and falling edge
583
584 * (% style="color:#037691" %)**AT+INTMOD=2 **(%%) ~/~/ Trigger by falling edge **(default)**
585
586 * (% style="color:#037691" %)**AT+INTMOD=3  **(%%) ~/~/ Trigger by rising edge
587
588 (% style="color:blue" %)**Downlink Commands: **(% style="color:#037691" %)**0x06**
589
590 Format: Command Code (0x06) followed by 3 bytes.
591
592 Example1:  Downlink Payload: **06 00 00 01    **~/~/ AT+INTMOD=1
593
594 Example2:  Downlink Payload: **06 00 00 03    **~/~/AT+INTMOD=3
595
596
597 ==== 3.3.7.2 Practical application ====
598
599
600 The following uses the default interrupt triggering mode (% style="color:blue" %)**(AT+INTMOD=2)**(%%) as an example to show the interrupt function of (% style="color:blue" %)**INT**(%%):
601
602 When a high voltage is given to the INT pin and then the level of the (% style="color:blue" %)**INT**(%%) pin changes from high to low, the interrupt is triggered by a falling edge and the RS485-LN sends an uplink data.
603
604 (% style="color:red" %)**Note: The level that triggers the interrupt ranges from 3.3V to 24V. Generally, it is recommended to use less than 12V.**
605
606 **Example:**
607
608 * Use a dry contact to connect the (% style="color:blue" %)**INT**(%%) pin and (% style="color:blue" %)**VIN+**(%%) pin of the RS485-LN.
609
610 When the dry contact is closed, INT and VIN+ conduct and INT is high.
611
612 Disconnecting the dry contact, the level of the INT pin changes from high to low, triggering an interrupt (triggered along the falling edge), and the RS485-LN sends an uplink data.
613
614 [[image:image-20240925174124-5.jpeg||height="439" width="703"]]
615
616 * Use a regulated power supply or a wet contact to connect the 485-LN to trigger the interruption.(This section uses a regulated power supply as an example.)
617
618 The positive pole of the stabilized power supply is connected to the (% style="color:blue" %)**INT**(%%) pin of RS485-LN, and the negative pole of the stabilized power supply is connected to the (% style="color:blue" %)**VIN-**(%%) pin of RS485-LN.
619
620 When the regulated power supply is operating, a high voltage is given to the INT pin and the INT level is high. When the regulated power supply is turned off, the level of the INT pin changes from
621
622 high to low, at which time an interrupt is triggered (triggered along the falling edge), and the device will send an uplink data.
623
624 [[image:image-20240925173243-4.jpeg||height="404" width="900"]]
625
626 * Example of interrupt data in TTN.
627
628 The first byte of the payload of the interrupted packet is (% style="color:blue" %)**0x81**(%%).
629
630 [[image:image-20240925181010-1.png||height="348" width="953"]]
631
632
633 == 3.4 Uplink Payload ==
634
635
636 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
637 |(% style="background-color:#4f81bd; color:white; width:70px" %)(((
638 **Size(bytes)**
639 )))|(% style="background-color:#4f81bd; color:white; width:80px" %)**1**|(% style="background-color:#4f81bd; color:white; width:360px" %)(((
640 **Length depends on the return from the commands**
641 )))
642 |(% style="width:90px" %)(((
643 Value
644 )))|(% style="width:114px" %)(((
645 PAYLOAD_VER
646 )))|(% style="width:353px" %)(((
647 If the valid payload is too long and exceed the maximum
648
649 support payload length in server, server will show payload not
650
651 provided in the LoRaWAN server.
652 )))
653
654 (% style="background-image:url(http://wiki.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220,220,220,0.5); display:none" %)[[image:||draggable="true" height="15" role="presentation" title="Click and drag to move" width="15"]](%%)Below is the decoder for the first 3 bytes. The rest bytes are dynamic depends on different RS485 sensors.
655
656
657 == 3.5 Configure RS485-LN via AT or Downlink ==
658
659
660 (((
661 User can configure RS485-LN via AT Commands or LoRaWAN Downlink Commands
662 )))
663
664 (((
665 There are two kinds of Commands:
666 )))
667
668 * (((
669 (% style="color:#4f81bd" %)**Common Commands**(%%): They should be available for each sensor, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: [[AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
670 )))
671
672 * (((
673 (% style="color:#4f81bd" %)**Sensor Related Commands**(%%): These commands are special designed for RS485-LN.  User can see these commands below:
674 )))
675
676 (((
677
678 )))
679
680
681 === 3.5.1 Common Commands ===
682
683
684 They should be available for each of Dragino Sensors, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
685
686
687 === 3.5.2 Downlink Response(Since firmware v1.4) ===
688
689
690 Response feature is added to the server's downlink, a special package with a FPort of 200 will be uploaded immediately after receiving the data sent by the server.
691
692
693 (% aria-label="image-20220602163333-5.png image widget" contenteditable="false" role="region" tabindex="-1" %)[[image:image-20220602163333-5.png||data-widget="image" height="263" width="1160"]]
694
695 (% title="Click and drag to resize" %)​
696
697 The first byte of this package represents whether the configuration is successful, 00 represents failure, 01 represents success. Except for the first byte, the other is the previous downlink. (All commands except A8 type commands are applicable)
698
699
700 === 3.5.3 Sensor related commands ===
701
702
703
704 ==== (% style="color:blue" %)**RS485 Debug Command**(%%) ====
705
706
707 (((
708 This command is used to configure the RS485 devices; they won't be used during sampling. Max Length of AT+CFGDEV is **40 bytes**.
709 )))
710
711 (((
712 * (% style="color:#037691" %)**AT Command**
713
714 (((
715 (% style="color:#4472c4" %)** AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m**  (%%) m: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command
716 )))
717 )))
718
719 (((
720
721 )))
722
723 * (((
724 (% style="color:#037691" %)**Downlink Payload**
725 )))
726
727 (((
728 Format: (% style="color:#4472c4" %)** A8 MM NN XX XX XX XX YY**
729 )))
730
731 (((
732 Where:
733 )))
734
735 * (((
736 MM: 1: add CRC-16/MODBUS ; 0: no CRC
737 )))
738 * (((
739 NN: The length of RS485 command
740 )))
741 * (((
742 XX XX XX XX: RS485 command total NN bytes
743 )))
744 * (((
745 (((
746 YY: How many bytes will be uplink from the return of this RS485 command,
747 )))
748
749 * (((
750 if YY=0, RS485-LN will execute the downlink command without uplink;
751 )))
752 * (((
753 if YY>0, RS485-LN will uplink total YY bytes from the output of this RS485 command; Fport=200
754 )))
755 * (((
756 if YY=FF, RS485-LN will uplink RS485 output with the downlink command content; Fport=200.
757 )))
758 )))
759
760 (((
761
762
763 (% style="color:blue" %)**Example 1:**  (%%) ~-~-> Configure without ask for uplink (YY=0)
764 )))
765
766 (((
767 To connect a Modbus Alarm with below commands.
768 )))
769
770 * (((
771 The command to active alarm is: 0A 05 00 04 00 01 4C B0. Where 0A 05 00 04 00 01 is the Modbus command to read the register 00 40 where stored the DI status. The 4C B0 is the CRC-16/MODBUS which calculate manually.
772 )))
773
774 * (((
775 The command to deactivate alarm is: 0A 05 00 04 00 00 8D 70. Where 0A 05 00 04 00 00 is the Modbus command to read the register 00 40 where stored the DI status. The 8D 70 is the CRC-16/MODBUS which calculate manually.
776 )))
777
778 (((
779
780
781 So if user want to use downlink command to control to RS485 Alarm, he can use:
782 )))
783
784 (((
785 (% style="color:#4f81bd" %)**A8 01 06 0A 05 00 04 00 01 00**(%%): to activate the RS485 Alarm
786 )))
787
788 (((
789 (% style="color:#4f81bd" %)**A8 01 06 0A 05 00 04 00 00 00**(%%): to deactivate the RS485 Alarm
790 )))
791
792 (((
793 A8 is type code and 01 means add CRC-16/MODBUS at the end, the 3^^rd^^ byte is 06, means the next 6 bytes are the command to be sent to the RS485 network, the final byte 00 means this command don’t need to acquire output.
794 )))
795
796 (((
797
798 )))
799
800 (((
801 (% style="color:blue" %)**Example 2:**  (%%)
802 )))
803
804 (((
805 Check TTL Sensor return:
806 )))
807
808 (((
809 (((
810 [[image:http://8.211.40.43/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/test/WebHome/1654132684752-193.png?rev=1.1||alt="1654132684752-193.png"]](% title="Click and drag to resize" %)​
811 )))
812 )))
813
814
815
816 ==== (% style="color:blue" %)**Set Payload version**(%%) ====
817
818
819 (((
820 This is the first byte of the uplink payload. RS485-LN can connect to different sensors. User can set the PAYVER field to tell server how to decode the current payload.
821 )))
822
823 (((
824 * (% style="color:#037691" %)**AT Command:**
825
826 (% style="color:#4472c4" %)** AT+PAYVER:    ** (%%) Set PAYVER field = 1
827
828
829 )))
830
831 * (((
832 (% style="color:#037691" %)**Downlink Payload:**
833 )))
834
835 (((
836 (% style="color:#4472c4" %)** 0xAE 01** (%%) ~-~->  Set PAYVER field =  0x01
837 )))
838
839 (((
840 (% style="color:#4472c4" %)** 0xAE 0F**   (%%) ~-~->  Set PAYVER field =  0x0F
841 )))
842
843
844 **1 )  Add the interrupt flag at the highest bit of the Payver byte, that is, Byte7 of the first byte. (Since v1.4.0)**
845
846
847 [[image:image-20220824145428-2.png||height="168" width="1300"]]
848
849
850 **2 )  if the data intercepted by AT+DATACUT or AT+MBFUN is empty, it will display NULL, and the payload will be filled with n FFs.**
851
852
853 [[image:image-20220824145428-3.png||height="308" width="1200"]]
854
855
856
857 ==== (% style="color:blue" %)**Set RS485 Sampling Commands**(%%) ====
858
859
860 (((
861 AT+COMMANDx or AT+DATACUTx
862 )))
863
864 (((
865 These three commands are used to configure how the RS485-LN polling data from Modbus device. Detail of usage please see : [[polling RS485 device>>||anchor="H3.3.3Configurereadcommandsforeachsampling"]].
866 )))
867
868 (((
869
870 )))
871
872 * (((
873 (% style="color:#037691" %)**AT Command:**
874 )))
875
876 (% style="color:#4472c4" %)** AT+COMMANDx:    ** (%%) Configure RS485 read command to sensor.
877
878 (% style="color:#4472c4" %)** AT+DATACUTx:        **(%%) Configure how to handle return from RS485 devices.
879
880
881 * (((
882 (% style="color:#037691" %)**Downlink Payload:**
883 )))
884
885 (((
886 (% style="color:#4472c4" %)** 0xAF**(%%) downlink command can be used to set AT+COMMANDx or AT+DATACUTx.
887
888
889 )))
890
891 (((
892 (% style="color:red" %)**Note : if user use AT+COMMANDx to add a new command, he also need to send AT+DATACUTx downlink.**
893
894
895 )))
896
897 (((
898 Format: (% style="color:#4472c4" %)** AF MM NN LL XX XX XX XX YY**
899 )))
900
901 (((
902 Where:
903 )))
904
905 * (((
906 MM: the ATCOMMAND or AT+DATACUT to be set. Value from 01 ~~ 0F,
907 )))
908 * (((
909 NN:  0: no CRC; 1: add CRC-16/MODBUS ; 2: set the AT+DATACUT value.
910 )))
911 * (((
912 LL:  The length of AT+COMMAND or AT+DATACUT command
913 )))
914 * (((
915 XX XX XX XX: AT+COMMAND or AT+DATACUT command
916 )))
917 * (((
918 YY:  If YY=0, RS485-LN will execute the downlink command without uplink; if YY=1, RS485-LN will execute an uplink after got this command.
919 )))
920
921 (((
922
923
924 **Example:**
925 )))
926
927 (((
928 (% style="color:#037691" %)**AF 03 01 06 0A 05 00 04 00 01 00**(%%): Same as AT+COMMAND3=0A 05 00 04 00 01,1
929 )))
930
931 (((
932 (% style="color:#037691" %)**AF 03 02 06**(% style="color:orange" %)** 10 **(% style="color:red" %)**01 **(% style="color:green" %)**05 06 09 0A**(% style="color:#037691" %)** 00**(%%): Same as AT+DATACUT3=(% style="color:orange" %)**16**(%%),(% style="color:red" %)**1**(%%),(% style="color:green" %)**5+6+9+10**
933 )))
934
935 (((
936 (% style="color:#037691" %)**AF 03 02 06 **(% style="color:orange" %)**0B**(% style="color:red" %)** 02 **(% style="color:green" %)**05 07 08 0A **(% style="color:#037691" %)**00**(%%): Same as AT+DATACUT3=(% style="color:orange" %)**11**(%%),(% style="color:red" %)**2**(%%),(% style="color:green" %)**5~~7+8~~10**
937 )))
938
939
940
941 ==== (% style="color:blue" %)**Fast command to handle MODBUS device**(%%) ====
942
943
944 (((
945 (% style="color:#4472c4" %)** AT+MBFUN**(%%) is valid since v1.3 firmware version. The command is for fast configure to read Modbus devices. It is only valid for the devices which follow the [[MODBUS-RTU protocol>>url:https://www.modbustools.com/modbus.html]].
946 )))
947
948 (((
949 This command is valid since v1.3 firmware version
950 )))
951
952 (((
953 AT+MBFUN can auto read the Modbus function code: 01, 02, 03 or 04. AT+MBFUN has lower priority vs AT+DATACUT command. If AT+DATACUT command is configured, AT+MBFUN will be ignore.
954 )))
955
956 (((
957
958 )))
959
960 (((
961 **Example:**
962 )))
963
964 * (((
965 AT+MBFUN=1 and AT+DATACUT1/AT+DATACUT2  are not configure (0,0,0). So RS485-LN.
966 )))
967 * (((
968 AT+COMMAND1= 01 03 00 10 00 08,1  ~-~-> read slave address 01 , function code 03, start address 00 01, quantity of registers 00 08.
969 )))
970 * (((
971 AT+COMMAND2= 01 02 00 40 00 10,1  ~-~-> read slave address 01 , function code 02, start address 00 40, quantity of inputs 00 10.
972
973
974 )))
975
976 (% aria-label="image-20220602165351-6.png image widget" contenteditable="false" role="region" tabindex="-1" %)[[image:image-20220602165351-6.png||data-widget="image"]]
977
978 (% title="Click and drag to resize" %)​
979
980 (% aria-label="image-20220602165351-7.png image widget" contenteditable="false" role="region" tabindex="-1" %)[[image:image-20220602165351-7.png||data-widget="image"]](% title="Click and drag to resize" %)​
981
982 * (((
983 (% style="color:#037691" %)**Downlink Command:**
984 )))
985
986 **~ (% style="color:#4472c4" %)A9 aa(%%)** ~-~-> Same as AT+MBFUN=aa
987
988
989 ==== (% style="color:blue" %)**RS485 command timeout**(%%) ====
990
991
992 (((
993 Some Modbus device has slow action to send replies. This command is used to configure the RS485-LN to use longer time to wait for their action.
994 )))
995
996 (((
997 Default value: 0, range:  0 ~~ 65 seconds
998 )))
999
1000 (((
1001 * (% style="color:#037691" %)** AT Command:**
1002
1003 (% style="color:#4472c4" %)** AT+CMDDLaa=hex(bb cc)*1000**
1004 )))
1005
1006 (((
1007
1008
1009 **Example:**
1010 )))
1011
1012 (((
1013 (% style="color:#4472c4" %)** AT+CMDDL1=1000** (%%)to send the open time to 1000ms
1014 )))
1015
1016 (((
1017
1018 )))
1019
1020 * (((
1021 (% style="color:#037691" %)** Downlink Payload:**
1022 )))
1023
1024 (((
1025 (% style="color:#4472c4" %)** 0x AA aa bb cc**(%%) Same as: AT+CMDDLaa=hex (bb cc)
1026 )))
1027
1028 (((
1029
1030
1031 **Example:**
1032 )))
1033
1034 (((
1035 **0xAA 01 03 E8**  ~-~-> Same as  **AT+CMDDL1=1000 ms**
1036 )))
1037
1038
1039
1040 ==== (% style="color:blue" %)**Uplink payload mode**(%%) ====
1041
1042
1043 (((
1044 Define to use one uplink or multiple uplinks for the sampling.
1045 )))
1046
1047 (((
1048 The use of this command please see: [[Compose Uplink payload>>||anchor="H3.3.4Composetheuplinkpayload"]]
1049
1050
1051 )))
1052
1053 (((
1054 * (% style="color:#037691" %)** AT Command:**
1055
1056 (% style="color:#4472c4" %)** AT+DATAUP=0**
1057
1058 (% style="color:#4472c4" %)** AT+DATAUP=1**
1059
1060
1061 )))
1062
1063 (% style="color:#4472c4" %)** 0xAD 01 00 00 14** (%%) **~-~->** Same as AT+DATAUP=1,20000  ~/~/  (00 00 14 is 20 seconds)
1064
1065 Each uplink is sent to the server at 20-second intervals when segmented.
1066
1067
1068 * (((
1069 (% style="color:#037691" %)** Downlink Payload:**
1070 )))
1071
1072 (% style="color:#4472c4" %)** 0xAD 00** (%%) **~-~->** Same as AT+DATAUP=0
1073
1074 (% style="color:#4472c4" %)** 0xAD 01**  (%%) **~-~->** Same as AT+DATAUP=1  ~/~/Each uplink is sent to the server one after the other as it is segmented.
1075
1076
1077 (Since firmware v1.4.0)
1078
1079 * (((
1080 (% style="color:#037691" %)** AT Command:**
1081 )))
1082
1083 (% style="color:#4472c4" %)** AT+DATAUP=1,Timeout**
1084
1085
1086 * (((
1087 (% style="color:#037691" %)** Downlink Payload:**
1088 )))
1089
1090 (% style="color:#4472c4" %)** 0xAD 01 00 00 14** (%%) **~-~->** Same as AT+DATAUP=1,20000  ~/~/  (00 00 14 is 20 seconds)
1091
1092 Each uplink is sent to the server at 20-second intervals when segmented.
1093
1094
1095 ==== (% style="color:blue" %)**Cut data separation processing(Since Version 1.4.2)**(%%) ====
1096
1097
1098 AT+NEWLINE command, which only takes effect when AT+DATAUP=1 or AT+DATAUP=1, timeout.
1099
1100 When not set, each part of AT+DATAUP is sent according to the maximum number of bytes of DR.
1101
1102 When setting, each part of AT+DATAUP is sent according to the value set by AT+NEWLINE.
1103
1104
1105 * (((
1106 (% style="color:#037691" %)** AT Command:**
1107 )))
1108
1109 (% style="color:#4472c4" %)//**AT+NEWLINE=ALL**//(%%)//   //The data cut out by each AT+COMMANDx command is sent separately as an uplink.
1110
1111 (% style="color:#4472c4" %)//**AT+NEWLINE=ALL**//(%%)//   equal:  (% style="color:#4472c4" %)**AT+NEWLINE=1+2+3+4+5+6+7+8+9+10+11+12+13+14+15**//
1112
1113
1114 (% style="color:#4472c4" %)//**AT+NEWLINE=a+b+c**//(%%)//  //The data returned by all commands is divided into three parts, COMMAND(1~~a) is the first part, COMMAND(a+1~~b) is the second part,COMMAND(b+1~~c) is the third part.
1115
1116
1117 (% style="color:#4472c4" %)//**AT+NEWLINE=NULL**//(%%)//  //Turn off the functionality of this AT command.
1118
1119
1120 * (((
1121 (% style="color:#037691" %)** Downlink Payload:**
1122 )))
1123
1124 //AT+NEWLINE=ALL  ~-~-->  (% style="color:#4472c4" %)**0xAC 01**//
1125
1126 // AT+NEWLINE= NULL  ~-~-->  (% style="color:#4472c4" %)**0xAC 00**//
1127
1128 //AT+NEWLINE= a+b+c   ~-~-->  (% style="color:#4472c4" %)**0xAC number of bytes a b c**//
1129
1130 //AT+NEWLINE= 1+5+15 ~-~-->  (% style="color:#4472c4" %)**0xAC 03 01 05 0F**//
1131
1132
1133 ==== (% style="color:blue" %)**Manually trigger an Uplink**(%%) ====
1134
1135
1136 (((
1137 Ask device to send an uplink immediately.
1138 )))
1139
1140 * (((
1141 (% style="color:#037691" %)** AT Command:**
1142 )))
1143
1144 (((
1145 No AT Command for this, user can press the [[ACT button>>||anchor="H3.7Buttons"]] for 1 second for the same.
1146 )))
1147
1148 (((
1149
1150 )))
1151
1152 * (((
1153 (% style="color:#037691" %)** Downlink Payload:**
1154 )))
1155
1156 (((
1157 (% style="color:#4472c4" %)** 0x08 FF**(%%), RS485-LN will immediately send an uplink.
1158 )))
1159
1160
1161
1162 ==== (% style="color:blue" %)**Clear RS485 Command**(%%) ====
1163
1164
1165 (((
1166 The AT+COMMANDx and AT+DATACUTx settings are stored in special location, user can use below command to clear them.
1167
1168
1169 )))
1170
1171 * (((
1172 (% style="color:#037691" %)** AT Command:**
1173 )))
1174
1175 (((
1176 (% style="color:#4472c4" %)** AT+CMDEAR=mm,nn** (%%) mm: start position of erase ,nn: stop position of erase
1177 )))
1178
1179 (((
1180
1181
1182 Etc. AT+CMDEAR=1,10 means erase AT+COMMAND1/AT+DATACUT1 to AT+COMMAND10/AT+DATACUT10
1183 )))
1184
1185 (((
1186 Example screen shot after clear all RS485 commands. 
1187 )))
1188
1189 (((
1190
1191 )))
1192
1193 (((
1194 The uplink screen shot is:
1195 )))
1196
1197 (% aria-label="1654160691922-496.png image widget" contenteditable="false" role="region" tabindex="-1" %)[[image:1654160691922-496.png||data-widget="image"]](% style="background-image:url(http://wiki.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220,220,220,0.5); display:none" %)[[image:||draggable="true" height="15" role="presentation" title="Click and drag to move" width="15"]](% title="Click and drag to resize" %)​
1198
1199
1200 * (((
1201 (% style="color:#037691" %)** Downlink Payload:**
1202 )))
1203
1204 (((
1205 (% style="color:#4472c4" %)** 0x09 aa bb** (%%) same as AT+CMDEAR=aa,bb
1206 )))
1207
1208
1209
1210 ==== (% style="color:blue" %)**Set Serial Communication Parameters**(%%) ====
1211
1212
1213 (((
1214 Set the Rs485 serial communication parameters:
1215 )))
1216
1217 (((
1218 (% style="color:#037691" %)**AT Command:**
1219 )))
1220
1221 (((
1222 * Set Baud Rate
1223 )))
1224
1225 (% style="color:#4472c4" %)** AT+BAUDR=9600** (%%) ~/~/  Options: (200~~115200)  When using low baud rate or receiving multiple bytes, you need to use AT+CMDDL to increase the receive timeout (the default receive timeout is 400ms), otherwise data will be lost
1226
1227
1228 (((
1229 * Set UART Parity
1230 )))
1231
1232 (% style="color:#4472c4" %)** AT+PARITY=0** (%%) ~/~/  Option: 0: no parity, 1: odd parity, 2: even parity
1233
1234
1235 (((
1236 * Set STOPBIT
1237 )))
1238
1239 (% style="color:#4472c4" %)** AT+STOPBIT=0** (%%) ~/~/  Option: 0 for 1bit; 1 for 1.5 bit ; 2 for 2 bits
1240
1241
1242 (((
1243 (% style="color:#037691" %)**Downlink Payload:**
1244 )))
1245
1246 (((
1247 (% style="color:#4472c4" %)** A7 01 aa bb**:   (%%) Same  AT+BAUDR=hex(aa bb)*100
1248 )))
1249
1250 (((
1251 **Example:**
1252 )))
1253
1254 * (((
1255 A7 01 00 60  same as AT+BAUDR=9600
1256 )))
1257 * (((
1258 A7 01 04 80  same as AT+BAUDR=115200
1259 )))
1260
1261 (((
1262 * A7 02 aa:  Same as  AT+PARITY=aa  (aa value: 00 , 01 or 02)
1263 )))
1264
1265 (((
1266 * A7 03 aa:  Same as  AT+STOPBIT=aa  (aa value: 00 , 01 or 02)
1267 )))
1268
1269
1270
1271
1272 ==== (% style="color:blue" %)**Configure Databit (Since Version 1.4.0)**(%%) ====
1273
1274
1275 * (((
1276 (% style="color:#037691" %)** AT Command:**
1277 )))
1278
1279 (% style="color:#4472c4" %)** AT+DATABIT=7    **(%%)~/~/ Set the data bits to 7
1280
1281 (% style="color:#4472c4" %)** AT+DATABIT=8    **(%%)~/~/ Set the data bits to 8
1282
1283 * (((
1284 (% style="color:#037691" %)**Downlink Payload:**
1285 )))
1286
1287 (% style="color:#4472c4" %)** A7 04 07**(%%): Same as  AT+DATABIT=7
1288
1289 (% style="color:#4472c4" %)** A7 04 08**(%%): Same as  AT+DATABIT=8
1290
1291
1292
1293 ==== (% style="color:blue" %)**Encrypted payload(Since Version 1.4.0)**(%%) ====
1294
1295 (((
1296
1297 )))
1298
1299 * (((
1300 (% style="color:#037691" %)** AT Command:**
1301 )))
1302
1303 (% style="color:#4472c4" %)** AT+DECRYPT=1  ** (%%) ~/~/ The payload is uploaded without encryption
1304
1305 (% style="color:#4472c4" %)** AT+DECRYPT=0  ** (%%) ~/~/ Encrypt when uploading payload (default)
1306
1307
1308
1309 ==== (% style="color:blue" %)**Get sensor value(Since Version 1.4.0)**(%%) ====
1310
1311
1312 * (((
1313 (% style="color:#037691" %)** AT Command:**
1314 )))
1315
1316 (% style="color:#4472c4" %)** AT+GETSENSORVALUE=0  **(%%) ~/~/ The serial port gets the reading of the current sensor
1317
1318 (% style="color:#4472c4" %)** AT+GETSENSORVALUE=1  **(%%) ~/~/ The serial port gets the current sensor reading and uploads it.
1319
1320
1321
1322 ==== (% style="color:blue" %)**Resets the downlink packet count(Since Version 1.4.0)**(%%) ====
1323
1324
1325 * (((
1326 (% style="color:#037691" %)** AT Command:**
1327 )))
1328
1329 (% style="color:#4472c4" %)** AT+DISFCNTCHECK=0  **(%%) ~/~/  When the downlink packet count sent by the server is less than the node downlink packet count or exceeds 16384, the node will no longer receive downlink packets (default)
1330
1331 (% style="color:#4472c4" %)** AT+DISFCNTCHECK=1  **(%%) ~/~/  When the downlink packet count sent by the server is less than the node downlink packet count or exceeds 16384, the node resets the downlink packet count and keeps it consistent with the server downlink packet count.
1332
1333
1334
1335 ==== (% style="color:blue" %)**When the limit bytes are exceeded, upload in batches(Since Version 1.4.0)**(%%) ====
1336
1337
1338 * (((
1339 (% style="color:#037691" %)** AT Command:**
1340 )))
1341
1342 (% style="color:#4472c4" %)** AT+DISMACANS=0**  (%%) ~/~/  When the MACANS of the reply server plus the payload exceeds the maximum number of bytes of 11 bytes (DR0 of US915, DR2 of AS923, DR2 of AU195), the node will send a packet with a payload of 00 and a port of 4. (default)
1343
1344 (% style="color:#4472c4" %)** AT+DISMACANS=1**   (%%) ~/~/  When the MACANS of the reply server plus the payload exceeds the maximum number of bytes of the DR, the node will ignore the MACANS and not reply, and only upload the payload part.
1345
1346
1347 * (((
1348 (% style="color:#037691" %)** Downlink Payload:**
1349 )))
1350
1351 (% style="color:#4472c4" %)** 0x21 00 01 ** (%%) ~/~/ Set  the DISMACANS=1
1352
1353
1354
1355 ==== (% style="color:blue" %)**Copy downlink to uplink (Since Version 1.4.0)**(%%) ====
1356
1357
1358 * (((
1359 (% style="color:#037691" %)** AT Command:**
1360 )))
1361
1362 (% style="color:#4472c4" %)** AT+RPL=5**  (%%) ~/~/ After receiving the package from the server, it will immediately upload the content of the package to the server, the port number is 100.
1363
1364 Example:**aa xx xx xx xx**         ~/~/ aa indicates whether the configuration has changed, 00 is yes, 01 is no; xx xx xx xx are the bytes sent.
1365
1366
1367 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173747-6.png?width=1124&height=165&rev=1.1||alt="image-20220823173747-6.png"]]
1368
1369 For example, sending 11 22 33 44 55 66 77 will return invalid configuration 00 11 22 33 44 55 66 77.
1370
1371
1372
1373 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173833-7.png?width=1124&height=149&rev=1.1||alt="image-20220823173833-7.png"]]
1374
1375 For example, if 01 00 02 58 is issued, a valid configuration of 01 01 00 02 58 will be returned.
1376
1377
1378
1379 ==== (% style="color:blue" %)**Query version number and frequency band 、TDC(Since Version 1.4.0)**(%%) ====
1380
1381
1382 (((
1383 * (% style="color:#037691" %)**Downlink Payload:**
1384
1385 (% style="color:#4472c4" %)** 26 01  ** (%%) ~/~/  Downlink 26 01 can query device upload frequency, frequency band, software version number, TDC time.
1386 )))
1387
1388
1389 Example:
1390
1391 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173929-8.png?width=1205&height=76&rev=1.1||alt="image-20220823173929-8.png"]]
1392
1393
1394
1395 ==== (% style="color:blue" %)** Monitor RS485 communication of other devices(Since Version 1.4.0)**(%%) ====
1396
1397
1398 * (((
1399 (% style="color:#037691" %)** AT Command:**
1400 )))
1401
1402 (% style="color:#4472c4" %)**AT+RXMODE=1,10**    (%%) ~/~/ When the RS485-LN receives more than 10 bytes from the RS485, it immediately sends the uplink of the received data.
1403
1404 (% style="color:#4472c4" %)**AT+RXMODE=2,500    ** (%%) ~/~/  RS485-LN uploads data as uplink from the first byte received by RS485 to the data received within 500ms after that.
1405
1406 (% style="color:#4472c4" %)**AT+RXMODE=0,0  ** (%%) ~/~/  Disable this mode (default)
1407
1408
1409 * (((
1410 (% style="color:#037691" %)**Downlink Payload:**
1411 )))
1412
1413 (% style="color:#4472c4" %)** A6 aa bb bb               ** (%%) ~/~/ same as AT+RXMODE=aa,bb
1414
1415 [[image:image-20220824144240-1.png]]
1416
1417
1418 == 3.6 Listening mode for RS485 network ==
1419
1420
1421 (((
1422 This feature support since firmware v1.4
1423 )))
1424
1425 (((
1426 RS485-LN supports listening mode, it can listen the RS485 network packets and send them via LoRaWAN uplink. Below is the structure. The blue arrow shows the RS485 network packets to RS485-LN.
1427
1428 [[image:image-20240928104143-6.png||height="487" width="797"]]
1429 )))
1430
1431 (% style="background-image:url(http://wiki.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220,220,220,0.5); display:none" %)[[image:||draggable="true" height="15" role="presentation" title="Click and drag to move" width="15"]]
1432
1433 (% title="Click and drag to resize" %)​
1434
1435 (((
1436 To enable the listening mode, use can run the command (% style="color:#4472c4" %)** AT+RXMODE**.
1437 )))
1438
1439 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1440 |=(% style="width: 156px; background-color:#4F81BD;color:white" %)(((
1441 **Command example**
1442 )))|=(% style="width: 355px; background-color:#4F81BD;color:white" %)(((
1443 **Function**
1444 )))
1445 |(% style="width:156px" %)(((
1446 AT+RXMODE=1,10
1447 )))|(% style="width:352px" %)(((
1448 Enable listening mode 1, if RS485-LN has received more than 10 RS485 commands from the network. RS485-LN will send these commands via LoRaWAN uplinks.
1449 )))
1450 |(% style="width:156px" %)(((
1451 AT+RXMODE=2,500
1452 )))|(% style="width:352px" %)(((
1453 Enable listening mode 2, RS485-LN will capture and send a 500ms content once from the first detect of character. Max value is 65535 ms
1454 )))
1455 |(% style="width:156px" %)(((
1456 AT+RXMODE=0,0
1457 )))|(% style="width:352px" %)(((
1458 Disable listening mode. This is the default settings.
1459 )))
1460 |(% style="width:156px" %)(((
1461
1462 )))|(% style="width:352px" %)(((
1463 A6 aa bb cc  same as AT+RXMODE=aa,(bb<<8 | cc)
1464 )))
1465
1466 (((
1467
1468
1469 (% style="color:#037691" %)**Downlink Command:**
1470 )))
1471
1472 (((
1473 (% style="color:#4472c4" %)** 0xA6 aa bb cc **(%%) same as AT+RXMODE=aa,(bb<<8 | cc)
1474 )))
1475
1476 (((
1477
1478 )))
1479
1480 (((
1481 **Example**:
1482 )))
1483
1484 (((
1485 The RS485-LN is set to AT+RXMODE=2,1000
1486 )))
1487
1488 (((
1489 There is a two Modbus commands in the RS485 network as below:
1490 )))
1491
1492 (((
1493 The Modbus master send a command: (% style="background-color:#ffc000" %)**01 03 00 00 00 02 c4 0b**
1494 )))
1495
1496 (((
1497 And Modbus slave reply with: (% style="background-color:green" %)**01 03 04 00 00 00 00 fa 33**
1498 )))
1499
1500 (((
1501 RS485-LN will capture both and send the uplink: (% style="background-color:#ffc000" %)**01 03 00 00 00 02 c4 0b  **(% style="background-color:green" %)**01 03 04 00 00 00 00 fa 33**
1502
1503
1504 )))
1505
1506 (((
1507 (% aria-label="image-20220602171200-9.png image widget" contenteditable="false" role="region" tabindex="-1" %)[[image:image-20220602171200-9.png||data-widget="image"]](% style="background-image:url(http://wiki.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220,220,220,0.5); display:none" %)[[image:||draggable="true" height="15" role="presentation" title="Click and drag to move" width="15"]](% title="Click and drag to resize" %)​
1508 )))
1509
1510
1511 (((
1512 (% style="color:red" %)**Notice: Listening mode can work with the default polling mode of RS485-LN. When RS485-LN is in to send the RS485 commands (from AT+COMMANDx), the listening mode will be interrupt for a while.**
1513 )))
1514
1515
1516 == 3.7 Buttons ==
1517
1518
1519 (% border="1.5" cellspacing="4" style="background-color:#f2f2f2; width:430px" %)
1520 |=(% style="width: 50px;background-color:#4F81BD;color:white" %)**Button**|=(% style="width: 380px;background-color:#4F81BD;color:white" %)**Feature**
1521 |(% style="width:50px" %)ACT|(% style="width:361px" %)If RS485 joined in network, press this button for more than 1 second, RS485 will upload a packet, and the SYS LED will give a (% style="color:blue" %)**Blue blink**
1522 |(% style="width:50px" %)RST|(% style="width:361px" %)Reboot RS485
1523 |(% style="width:50px" %)PRO|(% style="width:361px" %)Use for upload image, see [[How to Update Image>>||anchor="H6.1Howtoupgradetheimage3F"]]
1524
1525 == 3.8 LEDs ==
1526
1527
1528 (% border="1.5" cellspacing="4" style="background-color:#f2f2f2; width:430px" %)
1529 |=(% style="width: 50px;background-color:#4F81BD;color:white" %)**LEDs**|=(% style="width: 380px;background-color:#4F81BD;color:white" %)**Feature**
1530 |PWR|Always on if there is power
1531 |SYS|After device is powered on, the SYS will (% style="color:green" %)**fast blink in GREEN**(%%) for 5 times, means RS485-LN start to join LoRaWAN network. If join success, SYS will be (% style="color:green" %)**on GREEN for 5 seconds** (%%)**. **SYS will (% style="color:green" %)**blink Blue**(%%) on every upload and (% style="color:green" %)**blink Green**(%%) once receive a downlink message.
1532
1533 = 4. Case Study =
1534
1535
1536 User can check this URL for some case studies: [[APP RS485 COMMUNICATE WITH SENSORS>>doc:Main.Application Note \: Communicate with Different Sensors ----- RS485-LN RS485-BL.WebHome]]
1537
1538
1539 = 5. Use AT Command =
1540
1541 == 5.1 Access AT Command ==
1542
1543
1544 (((
1545 RS485-LN supports AT Command set. User can use a USB to TTL adapter plus the 3.5mm Program Cable to connect to RS485-LN to use AT command, as below.
1546 )))
1547
1548 (% aria-label="1654162355560-817.png image widget" contenteditable="false" role="region" tabindex="-1" %)[[image:1654162355560-817.png||data-widget="image"]](% style="background-image:url(http://wiki.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220,220,220,0.5); display:none" %)[[image:||draggable="true" height="15" role="presentation" title="Click and drag to move" width="15"]](% title="Click and drag to resize" %)​
1549
1550
1551 (((
1552 In PC, User needs to set (% style="color:blue" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console of RS485-LN. The default password is 123456. Below is the output for reference:
1553 )))
1554
1555 (% aria-label="1654162368066-342.png image widget" contenteditable="false" role="region" tabindex="-1" %)[[image:1654162368066-342.png||data-widget="image"]](% style="background-image:url(http://wiki.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220,220,220,0.5); display:none" %)[[image:||draggable="true" height="15" role="presentation" title="Click and drag to move" width="15"]](% title="Click and drag to resize" %)​
1556
1557
1558 (((
1559 More detail AT Command manual can be found at [[AT Command Manual>>https://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]]
1560 )))
1561
1562
1563 == 5.2 Common AT Command Sequence ==
1564
1565 === 5.2.1 Multi-channel ABP mode (Use with SX1301/LG308) ===
1566
1567
1568 If device has not joined network yet:
1569
1570 * (% style="color:#037691" %)**AT+FDR**
1571 * (% style="color:#037691" %)**AT+NJM=0**
1572 * (% style="color:#037691" %)**ATZ**
1573
1574 (((
1575
1576
1577 If device already joined network:
1578
1579 * (% style="color:#037691" %)**AT+NJM=0**
1580 * (% style="color:#037691" %)**ATZ**
1581 )))
1582
1583
1584
1585 === 5.5.2 Single-channel ABP mode (Use with LG01/LG02) ===
1586
1587
1588 (% style="background-color:#dcdcdc" %)**AT+FDR** (%%) Reset Parameters to Factory Default, Keys Reserve
1589
1590 (% style="background-color:#dcdcdc" %)**AT+NJM=0 **(%%) Set to ABP mode
1591
1592 (% style="background-color:#dcdcdc" %)**AT+ADR=0** (%%) Set the Adaptive Data Rate Off
1593
1594 (% style="background-color:#dcdcdc" %)**AT+DR=5**   (%%) Set Data Rate
1595
1596 (% style="background-color:#dcdcdc" %)**AT+TDC=60000** (%%) Set transmit interval to 60 seconds
1597
1598 (% style="background-color:#dcdcdc" %)**AT+CHS=868400000**(%%)  Set transmit frequency to 868.4Mhz
1599
1600 (% style="background-color:#dcdcdc" %)**AT+RX2FQ=868400000** (%%) Set RX2Frequency to 868.4Mhz (according to the result from server)
1601
1602 (% style="background-color:#dcdcdc" %)**AT+RX2DR=5**  (%%) Set RX2DR to match the downlink DR from server. see below
1603
1604 (% style="background-color:#dcdcdc" %)**AT+DADDR=26** (%%) 01 1A F1 Set Device Address to 26 01 1A F1, this ID can be found in the LoRa Server portal.
1605
1606 (% style="background-color:#dcdcdc" %)**ATZ**       (%%) Reset MCU
1607
1608
1609 (% style="color:red" %)**Note:**
1610
1611 (((
1612 (% style="color:red" %)1. Make sure the device is set to ABP mode in the IoT Server.
1613 2. Make sure the LG01/02 gateway RX frequency is exactly the same as AT+CHS setting.
1614 3. Make sure SF / bandwidth setting in LG01/LG02 match the settings of AT+DR. refer [[this link>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_Gateway/&file=LoRaWAN%201.0.3%20Regional%20Parameters.xlsx]] to see what DR means.
1615 4. The command AT+RX2FQ and AT+RX2DR is to let downlink work. to set the correct parameters, user can check the actually downlink parameters to be used. As below. Which shows the RX2FQ should use 868400000 and RX2DR should be 5
1616
1617
1618 )))
1619
1620 (% aria-label="1654162478620-421.png image widget" contenteditable="false" role="region" tabindex="-1" %)[[image:1654162478620-421.png||data-widget="image"]](% style="background-image:url(http://wiki.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220,220,220,0.5); display:none" %)[[image:||draggable="true" height="15" role="presentation" title="Click and drag to move" width="15"]](% title="Click and drag to resize" %)​
1621
1622
1623 = 6. FAQ =
1624
1625 == 6.1 How to upgrade the image? ==
1626
1627
1628 (((
1629 The RS485-LN LoRaWAN Controller is shipped with a 3.5mm cable, the cable is used to upload image to RS485-LN to:
1630 )))
1631
1632 * (((
1633 Support new features
1634 )))
1635 * (((
1636 For bug fix
1637 )))
1638 * (((
1639 Change LoRaWAN bands.
1640 )))
1641
1642 (((
1643 Below shows the hardware connection for how to upload an image to RS485-LN:
1644 )))
1645
1646 (% aria-label="1654162535040-878.png image widget" contenteditable="false" role="region" tabindex="-1" %)[[image:1654162535040-878.png||data-widget="image"]](% style="background-image:url(http://wiki.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220,220,220,0.5); display:none" %)[[image:||draggable="true" height="15" role="presentation" title="Click and drag to move" width="15"]]
1647
1648 (% title="Click and drag to resize" %)​
1649
1650 (((
1651 (% style="color:blue" %)**Step1**(%%)**:** Download [[flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]].
1652
1653
1654 )))
1655
1656 (((
1657 (% style="color:blue" %)**Step2**(%%)**:** Download the [[LT Image files>>url:https://www.dropbox.com/sh/g99v0fxcltn9r1y/AACP33wo_ZQLsxW2MJ70oUoba/RS485-LN/Firmware?dl=0&subfolder_nav_tracking=1]].
1658
1659
1660 )))
1661
1662 (((
1663 (% style="color:blue" %)**Step3**(%%)**: **Open flashloader; choose the correct COM port to update.
1664
1665
1666 )))
1667
1668 (((
1669 (((
1670 (((
1671 (% style="color:blue" %) Hold down the PRO button and then momentarily press the RST reset button and the SYS led will change from OFF to ON, While SYS LED is RED ON, it means the RS485-LN is ready to be program.
1672 )))
1673 )))
1674 )))
1675
1676
1677 (% aria-label="image-20220602175818-12.png image widget" contenteditable="false" role="region" tabindex="-1" %)[[image:image-20220602175818-12.png||data-widget="image"]](% style="background-image:url(http://wiki.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220,220,220,0.5); display:none" %)[[image:||draggable="true" height="15" role="presentation" title="Click and drag to move" width="15"]](% title="Click and drag to resize" %)​
1678
1679
1680 (% aria-label="image-20220602175848-13.png image widget" contenteditable="false" role="region" tabindex="-1" %)[[image:image-20220602175848-13.png||data-widget="image"]](% style="background-image:url(http://wiki.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220,220,220,0.5); display:none" %)[[image:||draggable="true" height="15" role="presentation" title="Click and drag to move" width="15"]](% title="Click and drag to resize" %)​
1681
1682
1683 (% aria-label="image-20220602175912-14.png image widget" contenteditable="false" role="region" tabindex="-1" %)[[image:image-20220602175912-14.png||data-widget="image"]](% style="background-image:url(http://wiki.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220,220,220,0.5); display:none" %)[[image:||draggable="true" height="15" role="presentation" title="Click and drag to move" width="15"]](% title="Click and drag to resize" %)​
1684
1685
1686 (% style="color:red" %)**Users can select the new burning software STM32Cubeprogramer for firmware upgrade and follow the same connection steps to enter burning mode (until SYS LED is RED ON):**
1687
1688 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H4.2.FirmwareupgradeusingSTM32Cubeprogramer>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H4.2.FirmwareupgradeusingSTM32Cubeprogramer]]
1689
1690
1691 (% style="color:red" %)**Notice**: **In case user has lost the program cable. User can hand made one from a 3.5mm cable. The pin mapping is:**
1692
1693 (% aria-label="image-20220602175638-10.png image widget" contenteditable="false" role="region" tabindex="-1" %)[[image:image-20220602175638-10.png||data-widget="image"]](% style="background-image:url(http://wiki.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220,220,220,0.5); display:none" %)[[image:||draggable="true" height="15" role="presentation" title="Click and drag to move" width="15"]](% title="Click and drag to resize" %)​
1694
1695
1696 == 6.2 How to change the LoRa Frequency Bands/Region? ==
1697
1698
1699 User can follow the introduction for [[how to upgrade image>>||anchor="H6.1Howtoupgradetheimage3F"]]. When download the images, choose the required image file for download.
1700
1701
1702 == 6.3 How many RS485-Slave can RS485-LN connects? ==
1703
1704
1705 The RS485-LN can support max 32 RS485 devices. Each uplink command of RS485-LN can support max 15 different RS485 command. So RS485-LN can support max 15 RS485 devices pre-program in the device for uplink. For other devices no pre-program, user can use the [[downlink message (type code 0xA8) to poll their info>>||anchor="H3.3.3Configurereadcommandsforeachsampling"]].
1706
1707
1708 == 6.4 Compatible question to ChirpStack and TTI LoRaWAN server ? ==
1709
1710
1711 When user need to use with ChirpStack or TTI. Please set AT+RPL=4.
1712
1713 Detail info check this link: [[Set Packet Receiving Response Level>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.23SetPacketReceivingResponseLevel"]]
1714
1715
1716 == 6.5 Can i use point to point communication for RS485-LN? ==
1717
1718
1719 Yes, please updating point-to-point [[firmware>>https://www.dropbox.com/sh/g99v0fxcltn9r1y/AACP33wo_ZQLsxW2MJ70oUoba/RS485-LN/Firmware?dl=0&subfolder_nav_tracking=1]],then refer [[Point to Point Communication for RS485-LN>>Point to Point Communication for RS485-LN]].
1720
1721
1722 == 6.6 How to Use RS485-LN  to connect to RS232 devices? ==
1723
1724
1725 [[Use RS485-BL or RS485-LN to connect to RS232 devices. - DRAGINO>>url:http://8.211.40.43:8080/xwiki/bin/view/Main/RS485%20to%20RS232/]]
1726
1727
1728 == 6.7 How to judge whether there is a problem with the set COMMAND ==
1729
1730 === 6.7.1 Introduce: ===
1731
1732
1733 Users can use below the structure to fast debug the communication between RS485BL and RS485-LN. The principle is to put the PC in the RS485 network and sniff the packet between Modbus MTU and RS485-BL/LN. We can use this way to:
1734
1735 1. Test if Modbus-MTU works with PC commands.
1736 1. Check if RS485-LN sent the expected command to Mobus-MTU
1737 1. Check if Modbus-MTU return back the expected result to RS485-LN.
1738 1. If both b) and c) has issue, we can compare PC’s output and RS485-LN output.
1739
1740 [[image:image-20240816112950-1.png||height="382" width="731"]]
1741
1742
1743 Example Connection:
1744
1745 [[image:image-20221130104310-2.png]]
1746
1747
1748 === 6.7.2 Set up PC to monitor RS485 network With Serial tool ===
1749
1750
1751 (% style="color:red" %)**Note: Receive and send set to hex mode**
1752
1753 [[image:image-20221130104310-3.png||height="616" width="714"]]
1754
1755
1756 === 6.7.3 With ModRSsim2: ===
1757
1758
1759 (% style="color:blue" %)**(1) Select serial port MODBUS RS-232**
1760
1761 [[image:image-20221130104310-4.png||height="390" width="865"]]
1762
1763
1764 (% style="color:blue" %)**(2) Click the serial port icon**
1765
1766 [[image:image-20221130104310-5.png||height="392" width="870"]]
1767
1768
1769 (% style="color:blue" %)**(3) After selecting the correct serial port and baud rate, click ok**
1770
1771 [[image:image-20221130104310-6.png]]
1772
1773
1774 (% style="color:blue" %)**(4) Click the comms.**
1775
1776 [[image:image-20221130104310-7.png||height="376" width="835"]]
1777
1778 (% class="wikigeneratedid" id="HRunRS485-LN2FBLcommandandmonitorifitiscorrect." %)
1779 **Run RS485-LN/BL command and monitor if it is correct.**
1780
1781
1782 === 6.7.4 Example – Test the CFGDEV command ===
1783
1784
1785 RS485-LN sent below command:
1786
1787 (% style="color:blue" %)**AT+CFGDEV=01 03 00 20 00 01,1**(%%) to RS485 network, and PC is able to get this command and return commands from MTU to show in the serial tool.
1788
1789
1790 We can see the output from the Serial port tool to analyze. And check if they are expected result.
1791
1792 [[image:image-20221130104310-8.png||height="214" width="797"]]
1793
1794
1795 We can also use (% style="color:blue" %)**ModRSsim2**(%%) to see the output.
1796
1797 [[image:image-20221130104310-9.png||height="531" width="729"]]
1798
1799
1800 === 6.7.5 Example – Test CMD command sets. ===
1801
1802
1803 Run (% style="color:blue" %)**AT+GETSENSORVALUE=1**(%%) to test the CMD commands set in RS485-LN.
1804
1805
1806 (% style="color:blue" %)**Serial port tool:**
1807
1808 [[image:image-20221130104310-10.png||height="339" width="844"]]
1809
1810
1811 (% style="color:blue" %)**ModRSsim2:**
1812
1813 [[image:image-20221130104310-11.png||height="281" width="962"]]
1814
1815
1816 === 6.7.6 Test with PC ===
1817
1818
1819 If there is still have problem to set up correctly the commands between RS485-LN and MTU. User can test the correct RS485 command set in PC and compare with the RS485 command sent out via RS485-LN. as long as both commands are the same, the MTU should return correct result.
1820
1821
1822 Or User can send the working commands set in PC serial tool to Dragino Support to check what should be configured in RS485-LN.
1823
1824 (% style="color:blue" %)**Connection method:**
1825
1826 [[image:image-20221130104310-12.png]]
1827
1828
1829 (% style="color:blue" %)**Link situation:**
1830
1831 [[image:image-20221130104310-13.png||height="458" width="486"]]
1832
1833
1834 [[image:image-20221130104310-14.png||height="371" width="823"]]
1835
1836
1837 == 6.8 Where to get the decoder for RS485-LN? ==
1838
1839
1840 The decoder for RS485-LN needs to be written by yourself. Because the sensor to which the user is connected is custom, the read device data bytes also need custom parsing, so there is no universal decoder. We can only provide [[templates>>https://github.com/dragino/dragino-end-node-decoder/tree/main/RS485-LN]] for decoders (no intermediate data parsing part involved)
1841
1842
1843 == 6.9 How to configure RS485 commands more conveniently? ==
1844
1845
1846 Dragino has developed an application for the RS485 series of products.
1847
1848 It can help you configure RS485 sensors more conveniently
1849 Please refer to the link below for specific usage:
1850
1851 [[RS485 Configure Tool - DRAGINO>>url:http://wiki.dragino.com/xwiki/bin/view/Main/RS485_Configure_Tool/#HTableofContentsFF1A]]
1852
1853
1854
1855 == 6.10 How to determine whether the returned data value FF is valid data or invalid data? ==
1856
1857 The address of the returned data can be used as a flag.
1858
1859 The customer uses the intercept command to intercept the first bit of the returned data (the slave address of the sensor) as a judgment flag.
1860
1861 **Invalid data:**
1862
1863 If the first bit and the data are both FF, it means the data is empty.
1864
1865
1866 **Valid data:**
1867 If the first bit is a normal slave address and the data is FF, it means the data is normal.
1868
1869
1870 = 7. Trouble Shooting =
1871
1872 == 7.1 Downlink doesn't work, how to solve it? ==
1873
1874
1875 Please see this link for debug: [[LoRaWAN Communication Debug>>doc:Main.LoRaWAN Communication Debug.WebHome]]
1876
1877
1878 == 7.2 Why customers can't join TTN V3 in US915 /AU915 bands? ==
1879
1880
1881 It might about the channels mapping. Please see for detail: [[Notice of Frequency band>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]
1882
1883
1884 == 7.3 Why can't customers see the device's data in the server when the data is too long? ==
1885
1886
1887 This is due to the limitation of the lorawan protocol, and the fixed DR needs to be adjusted to improve this problem.
1888
1889 Please refer to the following link for the number of bytes limited by different frequencies and different DRs in the lorawan protocol
1890
1891 [[lora-alliance.org/wp-content/uploads/2021/05/RP002-1.0.3-FINAL-1.pdf>>url:https://lora-alliance.org/wp-content/uploads/2021/05/RP002-1.0.3-FINAL-1.pdf]]
1892
1893 Example:
1894
1895 [[image:image-20240620145456-1.png]]
1896
1897 Please refer to the following command to fix DR
1898
1899 AT+ADR=0
1900
1901 AT+DR=3
1902
1903 Downlink command:
1904
1905 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/#H7.4DataRate>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/#H7.4DataRate]]
1906
1907
1908 = 8. Order Info =
1909
1910
1911 (% style="color:blue" %)**Part Number: RS485-LN-XXX**
1912
1913 (% style="color:blue" %)**XXX:**
1914
1915 * (% style="color:red" %)**EU433**(%%):  frequency bands EU433
1916 * (% style="color:red" %)**EU868**(%%):  frequency bands EU868
1917 * (% style="color:red" %)**KR920**(%%):  frequency bands KR920
1918 * (% style="color:red" %)**CN470**(%%):  frequency bands CN470
1919 * (% style="color:red" %)**AS923**(%%):  frequency bands AS923
1920 * (% style="color:red" %)**AU915**(%%):  frequency bands AU915
1921 * (% style="color:red" %)**US915**(%%):  frequency bands US915
1922 * (% style="color:red" %)**IN865**(%%):  frequency bands IN865
1923 * (% style="color:red" %)**RU864**(%%):  frequency bands RU864
1924 * (% style="color:red" %)**KZ865**(%%):  frequency bands KZ865
1925
1926 = 9. Packing Info =
1927
1928
1929 **Package Includes**:
1930
1931 * RS485-LN x 1
1932 * Stick Antenna for LoRa RF part x 1
1933 * Program cable x 1
1934
1935 **Dimension and weight**:
1936
1937 * Device Size: 13.5 x 7 x 3 cm
1938 * Device Weight: 105g
1939 * Package Size / pcs : 14.5 x 8 x 5 cm
1940 * Weight / pcs : 170g
1941
1942 = 10. FCC Caution for RS485LN-US915 =
1943
1944
1945 (((
1946 Any Changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.
1947 )))
1948
1949 (((
1950 This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.
1951 )))
1952
1953 (((
1954
1955 )))
1956
1957 (((
1958 (% style="color:red" %)**IMPORTANT NOTE:**
1959 )))
1960
1961 (((
1962 (% style="color:red" %)**Note: **(%%)This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:
1963 )))
1964
1965 (((
1966 —Reorient or relocate the receiving antenna.
1967 )))
1968
1969 (((
1970 —Increase the separation between the equipment and receiver.
1971 )))
1972
1973 (((
1974 —Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
1975 )))
1976
1977 (((
1978 —Consult the dealer or an experienced radio/TV technician for help.
1979 )))
1980
1981 (((
1982
1983 )))
1984
1985 (((
1986 (% style="color:red" %)**FCC Radiation Exposure Statement:**
1987 )))
1988
1989 (((
1990 This equipment complies with FCC radiation exposure limits set forth for an uncontrolled environment.This equipment should be installed and operated with minimum distance 20cm between the radiator& your body.
1991 )))
1992
1993
1994 = 11. Support =
1995
1996
1997 * (((
1998 Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1999 )))
2000 * (((
2001 Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]].
2002
2003
2004
2005 )))
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0