Changes for page RS485-LN – RS485 to LoRaWAN Converter User Manual
Last modified by Xiaoling on 2025/04/23 15:56
Summary
-
Page properties (1 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 13 removed)
- 1653269403619-508.png
- 1653269438444-278.png
- 1653269551753-223.png
- 1653269568276-930.png
- 1653269593172-426.png
- 1653269618463-608.png
- 1653269759169-150.png
- 1653269916228-732.png
- 1653270130359-810.png
- image-20220602153621-1.png
- image-20220602153621-2.png
- image-20220602153621-3.png
- image-20220602155039-4.png
Details
- Page properties
-
- Content
-
... ... @@ -18,42 +18,40 @@ 18 18 19 19 ((( 20 20 ((( 21 -The Dragino RS485-LN is a (% style="color:blue" %)**RS485 to LoRaWAN Converter**(%%). It converts the RS485 signal into LoRaWAN wireless signal which simplify the IoT installation and reduce the installation/maintaining cost.21 +The Dragino RS485-LN is a RS485 to LoRaWAN Converter. It converts the RS485 signal into LoRaWAN wireless signal which simplify the IoT installation and reduce the installation/maintaining cost. 22 22 ))) 23 23 24 24 ((( 25 -RS485-LN allows user to (% style="color:blue" %)**monitor / control RS485 devices**(%%)and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.25 +RS485-LN allows user to monitor / control RS485 devices and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on. 26 26 ))) 27 27 28 28 ((( 29 - (% style="color:blue" %)**For data uplink**(%%), RS485-LN sends user-defined commands to RS485 devices and gets the return from the RS485 devices. RS485-LN will process these returns according to user-define rules to get the final payload and upload to LoRaWAN server.29 +For data uplink, RS485-LN sends user-defined commands to RS485 devices and gets the return from the RS485 devices. RS485-LN will process these returns according to user-define rules to get the final payload and upload to LoRaWAN server. 30 30 ))) 31 31 32 32 ((( 33 -(% style="color:blue" %)**For data downlink**(%%), RS485-LN runs in LoRaWAN Class C. When there downlink commands from LoRaWAN server, RS485-LN will forward the commands from LoRaWAN server to RS485 devices. 34 - 35 -(% style="color:blue" %)**Demo Dashboard for RS485-LN**(%%) connect to two energy meters: [[https:~~/~~/app.datacake.de/dashboard/d/58844a26-378d-4c5a-aaf5-b5b5b153447a>>url:https://app.datacake.de/dashboard/d/58844a26-378d-4c5a-aaf5-b5b5b153447a]] 33 +For data downlink, RS485-LN runs in LoRaWAN Class C. When there downlink commands from LoRaWAN server, RS485-LN will forward the commands from LoRaWAN server to RS485 devices. 36 36 ))) 37 37 ))) 38 38 39 39 [[image:1653267211009-519.png||height="419" width="724"]] 40 40 41 - 42 42 == 1.2 Specifications == 43 43 44 - 45 45 **Hardware System:** 46 46 47 47 * STM32L072CZT6 MCU 48 -* SX1276/78 Wireless Chip 44 +* SX1276/78 Wireless Chip 49 49 * Power Consumption (exclude RS485 device): 50 50 ** Idle: 32mA@12v 47 + 48 +* 51 51 ** 20dB Transmit: 65mA@12v 52 52 53 53 **Interface for Model:** 54 54 55 55 * RS485 56 -* Power Input 7~~ 24V DC. 54 +* Power Input 7~~ 24V DC. 57 57 58 58 **LoRa Spec:** 59 59 ... ... @@ -100,7 +100,6 @@ 100 100 101 101 [[RS485-LN Image files – Download link and Change log>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/]] 102 102 103 - 104 104 == 1.6 Hardware Change log == 105 105 106 106 ((( ... ... @@ -108,8 +108,6 @@ 108 108 v1.2: Add External Interrupt Pin. 109 109 110 110 v1.0: Release 111 - 112 - 113 113 ))) 114 114 ))) 115 115 ... ... @@ -126,8 +126,6 @@ 126 126 ))) 127 127 128 128 [[image:1653268091319-405.png]] 129 - 130 - 131 131 ))) 132 132 133 133 = 3. Operation Mode = ... ... @@ -136,8 +136,6 @@ 136 136 137 137 ((( 138 138 The RS485-LN is configured as LoRaWAN OTAA Class C mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the RS485-LN. It will auto join the network via OTAA. 139 - 140 - 141 141 ))) 142 142 143 143 == 3.2 Example to join LoRaWAN network == ... ... @@ -146,15 +146,10 @@ 146 146 147 147 [[image:1653268155545-638.png||height="334" width="724"]] 148 148 149 - 150 150 ((( 151 -((( 152 152 The RS485-LN in this example connected to two RS485 devices for demonstration, user can connect to other RS485 devices via the same method. The connection is as below: 153 -))) 154 154 155 -((( 156 156 485A+ and 485B- of the sensor are connected to RS485A and RA485B of RS485-LN respectively. 157 -))) 158 158 159 159 [[image:1653268227651-549.png||height="592" width="720"]] 160 160 ... ... @@ -174,7 +174,6 @@ 174 174 [[image:1652953462722-299.png]] 175 175 176 176 ((( 177 -((( 178 178 User can enter this key in their LoRaWAN Server portal. Below is TTN V3 screen shot: 179 179 ))) 180 180 ... ... @@ -181,11 +181,13 @@ 181 181 ((( 182 182 Add APP EUI in the application. 183 183 ))) 184 -))) 185 185 170 + 171 + 172 + 186 186 [[image:image-20220519174512-1.png]] 187 187 188 -[[image:image-20220519174512-2.png||height="32 3" width="720"]]175 +[[image:image-20220519174512-2.png||height="328" width="731"]] 189 189 190 190 [[image:image-20220519174512-3.png||height="556" width="724"]] 191 191 ... ... @@ -201,43 +201,44 @@ 201 201 202 202 203 203 ((( 204 -**Step 2**: Power on RS485-L Nand it will auto join to the TTN V3 network. After join success, it will start to upload message to TTN V3 and user can see in the panel.191 +**Step 2**: Power on RS485-BL and it will auto join to the TTN V3 network. After join success, it will start to upload message to TTN V3 and user can see in the panel. 205 205 ))) 206 206 207 207 [[image:1652953568895-172.png||height="232" width="724"]] 208 208 209 - 210 210 == 3.3 Configure Commands to read data == 211 211 212 212 ((( 213 -((( 214 -There are plenty of RS485 devices in the market and each device has different command to read the valid data. To support these devices in flexible, RS485-LN supports flexible command set. User can use [[AT Commands>>path:#AT_COMMAND]] or LoRaWAN Downlink Command to configure what commands RS485-LN should send for each sampling and how to handle the return from RS485 devices. 199 +There are plenty of RS485 and TTL level devices in the market and each device has different command to read the valid data. To support these devices in flexible, RS485-BL supports flexible command set. User can use [[AT Commands or LoRaWAN Downlink>>path:#AT_COMMAND]] Command to configure how RS485-BL should read the sensor and how to handle the return from RS485 or TTL sensors. 215 215 ))) 216 216 217 -((( 218 -(% style="color:red" %)Note: below description and commands are for firmware version >v1.1, if you have firmware version v1.0. Please check the [[user manual v1.0>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/&file=RS485-LN_UserManual_v1.0.1.pdf]] or upgrade the firmware to v1.1 202 +=== 3.3.1 onfigure UART settings for RS485 or TTL communication === 219 219 220 - 221 -))) 222 -))) 204 +RS485-BL can connect to either RS485 sensors or TTL sensor. User need to specify what type of sensor need to connect. 223 223 224 - === 3.3.1onfigure UART settings for RS485or TTL communication ===206 +**~1. RS485-MODBUS mode:** 225 225 226 -T ouseRS485-LN toead datafromRS485sensors, connect the RS485-LN A/B tracesto thesensors.And user needtomakesureRS485-LNusethe match UART setting toaccessthesensors.TherelatedcommandsforUARTsettingsare:208 +AT+MOD=1 ~/~/ Support RS485-MODBUS type sensors. User can connect multiply RS485 , Modbus sensors to the A / B pins. 227 227 228 -(% border="1" style="background-color:#ffffcc; color:green; width:782px" %) 229 -|(% style="width:128px" %)((( 210 +**2. TTL mode:** 211 + 212 +AT+MOD=2 ~/~/ Support TTL Level sensors, User can connect one TTL Sensor to the TXD/RXD/GND pins. 213 + 214 +RS485-BL default UART settings is **9600, no parity, stop bit 1**. If the sensor has a different settings, user can change the RS485-BL setting to match. 215 + 216 +(% border="1" style="background-color:#ffffcc; color:green; width:795px" %) 217 +|((( 230 230 **AT Commands** 231 -)))|(% style="width: 305px" %)(((219 +)))|(% style="width:285px" %)((( 232 232 **Description** 233 -)))|(% style="width:34 6px" %)(((221 +)))|(% style="width:347px" %)((( 234 234 **Example** 235 235 ))) 236 -|( % style="width:128px" %)(((224 +|((( 237 237 AT+BAUDR 238 -)))|(% style="width: 305px" %)(((226 +)))|(% style="width:285px" %)((( 239 239 Set the baud rate (for RS485 connection). Default Value is: 9600. 240 -)))|(% style="width:34 6px" %)(((228 +)))|(% style="width:347px" %)((( 241 241 ((( 242 242 AT+BAUDR=9600 243 243 ))) ... ... @@ -246,12 +246,18 @@ 246 246 Options: (1200,2400,4800,14400,19200,115200) 247 247 ))) 248 248 ))) 249 -|( % style="width:128px" %)(((237 +|((( 250 250 AT+PARITY 251 -)))|(% style="width:305px" %)((( 239 +)))|(% style="width:285px" %)((( 240 +((( 252 252 Set UART parity (for RS485 connection) 253 -)))|(% style="width:346px" %)((( 242 +))) 243 + 254 254 ((( 245 +Default Value is: no parity. 246 +))) 247 +)))|(% style="width:347px" %)((( 248 +((( 255 255 AT+PARITY=0 256 256 ))) 257 257 ... ... @@ -259,17 +259,17 @@ 259 259 Option: 0: no parity, 1: odd parity, 2: even parity 260 260 ))) 261 261 ))) 262 -|( % style="width:128px" %)(((256 +|((( 263 263 AT+STOPBIT 264 -)))|(% style="width: 305px" %)(((258 +)))|(% style="width:285px" %)((( 265 265 ((( 266 266 Set serial stopbit (for RS485 connection) 267 267 ))) 268 268 269 269 ((( 270 - 264 +Default Value is: 1bit. 271 271 ))) 272 -)))|(% style="width:34 6px" %)(((266 +)))|(% style="width:347px" %)((( 273 273 ((( 274 274 AT+STOPBIT=0 for 1bit 275 275 ))) ... ... @@ -286,10 +286,12 @@ 286 286 === 3.3.2 Configure sensors === 287 287 288 288 ((( 283 +Some sensors might need to configure before normal operation. User can configure such sensor via PC or through RS485-BL AT Commands (% style="color:#4f81bd" %)**AT+CFGDEV**. 284 +))) 285 + 289 289 ((( 290 - Some sensors might need to configurebefore normal operation. Usercan configuresuchsensorviaPC andRS485 adapter or through RS485-LN AT Commands(% style="color:#4f81bd" %)**AT+CFGDEV**(%%).Each (% style="color:#4f81bd" %)**AT+CFGDEVRS485command to sensors. This command will only run when user input it and won’t run during each sampling.287 +When user issue an (% style="color:#4f81bd" %)**AT+CFGDEV**(%%) command, Each (% style="color:#4f81bd" %)**AT+CFGDEV**(%%) equals to send a command to the RS485 or TTL sensors. This command will only run when user input it and won’t run during each sampling. 291 291 ))) 292 -))) 293 293 294 294 (% border="1" style="background-color:#ffffcc; color:green; width:806px" %) 295 295 |**AT Commands**|(% style="width:418px" %)**Description**|(% style="width:256px" %)**Example** ... ... @@ -301,37 +301,82 @@ 301 301 mm: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command 302 302 )))|(% style="width:256px" %)AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m 303 303 300 +Detail of AT+CFGDEV command see [[AT+CFGDEV detail>>path:#AT_CFGDEV]]. 301 + 304 304 === 3.3.3 Configure read commands for each sampling === 305 305 306 306 ((( 307 -During each sampling, we need confirm what commands we need to send to the RS485 sensors to read data. After the RS485 sensors send back the value, it normally include some bytes and we only need a few from them for a shorten payload. 305 +RS485-BL is a battery powered device; it will sleep most of time. And wake up on each period and read RS485 / TTL sensor data and uplink. 306 +))) 308 308 308 +((( 309 +During each sampling, we need to confirm what commands we need to send to the sensors to read data. After the RS485/TTL sensors send back the value, it normally includes some bytes and we only need a few from them for a shorten payload. 310 +))) 311 + 312 +((( 309 309 To save the LoRaWAN network bandwidth, we might need to read data from different sensors and combine their valid value into a short payload. 314 +))) 310 310 316 +((( 311 311 This section describes how to achieve above goals. 318 +))) 312 312 313 -During each sampling, the RS485-LN can support 15 commands to read sensors. And combine the return to one or several uplink payloads. 320 +((( 321 +During each sampling, the RS485-BL can support 15 commands to read sensors. And combine the return to one or several uplink payloads. 322 +))) 314 314 324 +((( 325 +**Command from RS485-BL to Sensor:** 326 +))) 315 315 316 -**Each RS485 commands include two parts:** 328 +((( 329 +RS485-BL can send out pre-set max 15 strings via **AT+COMMAD1**, **ATCOMMAND2**,…, to **AT+COMMANDF** . All commands are of same grammar. 330 +))) 317 317 318 -~1. What commands RS485-LN will send to the RS485 sensors. There are total 15 commands from **AT+COMMAD1**, **ATCOMMAND2**,…, to **AT+COMMANDF**. All commands are of same grammar. 332 +((( 333 +**Handle return from sensors to RS485-BL**: 334 +))) 319 319 320 -2. How to get wanted value the from RS485 sensors returns from by 1). There are total 15 AT Commands to handle the return, commands are **AT+DATACUT1**,**AT+DATACUT2**,…, **AT+DATACUTF** corresponding to the commands from 1). All commands are of same grammar. 336 +((( 337 +After RS485-BL send out a string to sensor, RS485-BL will wait for the return from RS485 or TTL sensor. And user can specify how to handle the return, by **AT+DATACUT or AT+SEARCH commands** 338 +))) 321 321 322 -3. Some RS485 device might has longer delay on reply, so user can use AT+CMDDL to set the timeout for getting reply after the RS485 command is sent. For example **AT+CMDDL1=1000** to send the open time to 1000ms 340 +* ((( 341 +**AT+DATACUT** 342 +))) 323 323 344 +((( 345 +When the return value from sensor have fix length and we know which position the valid value we should get, we can use AT+DATACUT command. 346 +))) 324 324 348 +* ((( 349 +**AT+SEARCH** 350 +))) 351 + 352 +((( 353 +When the return value from sensor is dynamic length and we are not sure which bytes the valid data is, instead, we know what value the valid value following. We can use AT+SEARCH to search the valid value in the return string. 354 +))) 355 + 356 +((( 357 +**Define wait timeout:** 358 +))) 359 + 360 +((( 361 +Some RS485 device might has longer delay on reply, so user can use AT+CMDDL to set the timeout for getting reply after the RS485 command is sent. For example, AT+CMDDL1=1000 to send the open time to 1000ms 362 +))) 363 + 364 +((( 325 325 After we got the valid value from each RS485 commands, we need to combine them together with the command **AT+DATAUP**. 366 +))) 326 326 368 +**Examples:** 327 327 328 328 Below are examples for the how above AT Commands works. 329 329 372 +**AT+COMMANDx : **This command will be sent to RS485/TTL devices during each sampling, Max command length is 14 bytes. The grammar is: 330 330 331 -**AT+COMMANDx : **This command will be sent to RS485 devices during each sampling, Max command length is 14 bytes. The grammar is: 332 - 333 -(% border="1" style="background-color:#4bacc6; color:white; width:499px" %) 334 -|(% style="width:496px" %)((( 374 +(% border="1" class="table-bordered" %) 375 +|((( 335 335 **AT+COMMANDx=xx xx xx xx xx xx xx xx xx xx xx xx,m** 336 336 337 337 **xx xx xx xx xx xx xx xx xx xx xx xx: The RS485 command to be sent** ... ... @@ -341,13 +341,43 @@ 341 341 342 342 For example, if we have a RS485 sensor. The command to get sensor value is: 01 03 0B B8 00 02 46 0A. Where 01 03 0B B8 00 02 is the Modbus command to read the register 0B B8 where stored the sensor value. The 46 0A is the CRC-16/MODBUS which calculate manually. 343 343 344 -In the RS485-L N, we should use this command AT+COMMAND1=01 03 0B B8 00 02,1 for the same.385 +In the RS485-BL, we should use this command AT+COMMAND1=01 03 0B B8 00 02,1 for the same. 345 345 387 +**AT+SEARCHx**: This command defines how to handle the return from AT+COMMANDx. 346 346 389 +(% border="1" class="table-bordered" %) 390 +|((( 391 +**AT+SEARCHx=aa,xx xx xx xx xx** 392 + 393 +* **aa: 1: prefix match mode; 2: prefix and suffix match mode** 394 +* **xx xx xx xx xx: match string. Max 5 bytes for prefix and 5 bytes for suffix** 395 + 396 + 397 +))) 398 + 399 +Examples: 400 + 401 +1. For a return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49 402 + 403 +If we set AT+SEARCH1=1,1E 56 34. (max 5 bytes for prefix) 404 + 405 +The valid data will be all bytes after 1E 56 34 , so it is 2e 30 58 5f 36 41 30 31 00 49 406 + 407 +[[image:1652954654347-831.png]] 408 + 409 + 410 +1. For a return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49 411 + 412 +If we set AT+SEARCH1=2, 1E 56 34+31 00 49 413 + 414 +Device will search the bytes between 1E 56 34 and 31 00 49. So it is 2e 30 58 5f 36 41 30 415 + 416 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image014.png]] 417 + 418 + 347 347 **AT+DATACUTx : **This command defines how to handle the return from AT+COMMANDx, max return length is 45 bytes. 348 348 349 -(% border="1" style="background-color:#4bacc6; color:white; width:725px" %) 350 -|(% style="width:722px" %)((( 421 +|((( 351 351 **AT+DATACUTx=a,b,c** 352 352 353 353 * **a: length for the return of AT+COMMAND** ... ... @@ -355,101 +355,98 @@ 355 355 * **c: define the position for valid value. ** 356 356 ))) 357 357 358 - **Examples:**429 +Examples: 359 359 360 360 * Grab bytes: 361 361 362 -[[image:image -20220602153621-1.png]]433 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image015.png]] 363 363 364 - 365 365 * Grab a section. 366 366 367 -[[image:image -20220602153621-2.png]]437 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image016.png]] 368 368 369 - 370 370 * Grab different sections. 371 371 372 -[[image:image -20220602153621-3.png]]441 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image017.png]] 373 373 374 - 375 -))) 376 376 377 - === 3.3.4 Composetheuplink payload ===444 +Note: 378 378 379 -((( 380 -Through AT+COMMANDx and AT+DATACUTx we got valid value from each RS485 commands, Assume these valid value are RETURN1, RETURN2, .., to RETURNx. The next step is how to compose the LoRa Uplink Payload by these RETURNs. The command is **AT+DATAUP.** 446 +AT+SEARCHx and AT+DATACUTx can be used together, if both commands are set, RS485-BL will first process AT+SEARCHx on the return string and get a temporary string, and then process AT+DATACUTx on this temporary string to get the final payload. In this case, AT+DATACUTx need to set to format AT+DATACUTx=0,xx,xx where the return bytes set to 0. 381 381 382 - 383 -))) 448 +Example: 384 384 385 -((( 386 -(% style="color:#037691" %)**Examples: AT+DATAUP=0** 450 +AT+COMMAND1=11 01 1E D0,0 387 387 388 - 389 -))) 452 +AT+SEARCH1=1,1E 56 34 390 390 391 -((( 392 -Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**A SIGNLE UPLINK**. 393 -))) 454 +AT+DATACUT1=0,2,1~~5 394 394 395 -((( 396 -Final Payload is 397 -))) 456 +Return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49 398 398 399 -((( 400 -(% style="color:#4f81bd" %)**Battery Info+PAYVER + VALID Value from RETURN1 + Valid Value from RETURN2 + … + RETURNx** 401 -))) 458 +String after SEARCH command: 2e 30 58 5f 36 41 30 31 00 49 402 402 403 -((( 404 -Where PAYVER is defined by AT+PAYVER, below is an example screen shot. 405 -))) 460 +Valid payload after DataCUT command: 2e 30 58 5f 36 406 406 407 -[[image: 1653269759169-150.png||height="513" width="716"]]462 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image018.png]] 408 408 409 409 410 -(% style="color:#037691" %)**Examples: AT+DATAUP=1** 411 411 412 412 413 -Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**Multiply UPLINKs**. 467 +1. 468 +11. 469 +111. Compose the uplink payload 414 414 471 +Through AT+COMMANDx and AT+DATACUTx we got valid value from each RS485 commands, Assume these valid value are RETURN1, RETURN2, .., to RETURNx. The next step is how to compose the LoRa Uplink Payload by these RETURNs. The command is **AT+DATAUP.** 472 + 473 + 474 +**Examples: AT+DATAUP=0** 475 + 476 +Compose the uplink payload with value returns in sequence and send with **A SIGNLE UPLINK**. 477 + 415 415 Final Payload is 416 416 417 - (% style="color:#4f81bd" %)**Battery Info+PAYVER +PAYLOADCOUNT +PAYLOAD#+DATA**480 +Battery Info+PAYVER + VALID Value from RETURN1 + Valid Value from RETURN2 + … + RETURNx 418 418 419 -1. PAYVER: Defined by AT+PAYVER 420 -1. PAYLOAD COUNT: Total how many uplinks of this sampling. 421 -1. PAYLOAD#: Number of this uplink. (from 0,1,2,3…,to PAYLOAD COUNT) 422 -1. DATA: Valid value: max 8 bytes for each uplink so each uplink <= 11 bytes. For the last uplink, DATA will might less than 8 bytes 482 +Where PAYVER is defined by AT+PAYVER, below is an example screen shot. 423 423 424 -[[image:image -20220602155039-4.png]]484 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image019.png]] 425 425 426 426 427 -So totally there will be 3 uplinks for this sampling, each uplink include 8 bytes DATA 428 428 429 - DATA1=RETURN1 Valid Value+ the firsttwo of Valid value of RETURN10=**20 20 0a 33 90 4102 aa**488 +**Examples: AT+DATAUP=1** 430 430 431 - DATA2=3^^rd^^~~ 10^^th^^ byteofValid valueofRETURN10=**0581 0a20202020 2d**490 +Compose the uplink payload with value returns in sequence and send with **Multiply UPLINKs**. 432 432 433 - DATA3=the rest of ValidvalueofRETURN10= **30**492 +Final Payload is 434 434 494 +Battery Info+PAYVER + PAYLOAD COUNT + PAYLOAD# + DATA 435 435 436 -(% style="color:red" %)Notice: In firmware v1.3, the Max bytes has been changed according to the max bytes in different Frequency Bands for lowest SF. As below: 496 +1. Battery Info (2 bytes): Battery voltage 497 +1. PAYVER (1 byte): Defined by AT+PAYVER 498 +1. PAYLOAD COUNT (1 byte): Total how many uplinks of this sampling. 499 +1. PAYLOAD# (1 byte): Number of this uplink. (from 0,1,2,3…,to PAYLOAD COUNT) 500 +1. DATA: Valid value: max 6 bytes(US915 version here, [[Notice*!>>path:#max_byte]]) for each uplink so each uplink <= 11 bytes. For the last uplink, DATA will might less than 6 bytes 437 437 438 - ~* For AU915/AS923 bands, if UplinkDwell time=0, max 51 bytesfor eachuplink.502 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]] 439 439 440 - * For AU915/AS923 bands, if UplinkDwell time=0, max 11 bytes for each uplink. 441 441 442 - * ForUS915 band,max11bytes.505 +So totally there will be 3 uplinks for this sampling, each uplink includes 6 bytes DATA 443 443 444 - ~* Forall other bands:max51bytesforeachuplink.507 +DATA1=RETURN1 Valid Value = 20 20 0a 33 90 41 445 445 509 +DATA2=1^^st^^ ~~ 6^^th^^ byte of Valid value of RETURN10= 02 aa 05 81 0a 20 446 446 511 +DATA3=7^^th^^ ~~ 11^^th^^ bytes of Valid value of RETURN10 = 20 20 20 2d 30 512 + 513 + 514 + 447 447 Below are the uplink payloads: 448 448 449 -[[image: 1653270130359-810.png]]517 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image021.png]] 450 450 451 451 452 - (% style="color:red" %)**Notice: the Max bytes is according to the max support bytes in different Frequency Bands for lowest SF. As below:**520 +Notice: the Max bytes is according to the max support bytes in different Frequency Bands for lowest SF. As below: 453 453 454 454 ~* For AU915/AS923 bands, if UplinkDwell time=0, max 51 bytes for each uplink ( so 51 -5 = 46 max valid date) 455 455 ... ... @@ -459,8 +459,12 @@ 459 459 460 460 ~* For all other bands: max 51 bytes for each uplink ( so 51 -5 = 46 max valid date). 461 461 462 -=== 3.3.5 Uplink on demand === 463 463 531 + 532 +1. 533 +11. 534 +111. Uplink on demand 535 + 464 464 Except uplink periodically, RS485-BL is able to uplink on demand. The server sends downlink command to RS485-BL and RS485 will uplink data base on the command. 465 465 466 466 Downlink control command: ... ... @@ -471,8 +471,8 @@ 471 471 472 472 473 473 474 -1. 475 -11. 546 +1. 547 +11. 476 476 111. Uplink on Interrupt 477 477 478 478 Put the interrupt sensor between 3.3v_out and GPIO ext.[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image022.png]] ... ... @@ -486,7 +486,7 @@ 486 486 AT+INTMOD=3 Interrupt trigger by rising edge. 487 487 488 488 489 -1. 561 +1. 490 490 11. Uplink Payload 491 491 492 492 |**Size(bytes)**|**2**|**1**|**Length depends on the return from the commands** ... ... @@ -548,15 +548,15 @@ 548 548 549 549 * **Sensor Related Commands**: These commands are special designed for RS485-BL. User can see these commands below: 550 550 551 -1. 552 -11. 623 +1. 624 +11. 553 553 111. Common Commands: 554 554 555 555 They should be available for each of Dragino Sensors, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: [[http:~~/~~/wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands>>url:http://wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands]] 556 556 557 557 558 -1. 559 -11. 630 +1. 631 +11. 560 560 111. Sensor related commands: 561 561 562 562 ==== Choose Device Type (RS485 or TTL) ==== ... ... @@ -862,13 +862,13 @@ 862 862 863 863 864 864 865 -1. 937 +1. 866 866 11. Buttons 867 867 868 868 |**Button**|**Feature** 869 869 |**RST**|Reboot RS485-BL 870 870 871 -1. 943 +1. 872 872 11. +3V3 Output 873 873 874 874 RS485-BL has a Controllable +3V3 output, user can use this output to power external sensor. ... ... @@ -886,7 +886,7 @@ 886 886 By default, the AT+3V3T=0. This is a special case, means the +3V3 output is always on at any time 887 887 888 888 889 -1. 961 +1. 890 890 11. +5V Output 891 891 892 892 RS485-BL has a Controllable +5V output, user can use this output to power external sensor. ... ... @@ -906,13 +906,13 @@ 906 906 907 907 908 908 909 -1. 981 +1. 910 910 11. LEDs 911 911 912 912 |**LEDs**|**Feature** 913 913 |**LED1**|Blink when device transmit a packet. 914 914 915 -1. 987 +1. 916 916 11. Switch Jumper 917 917 918 918 |**Switch Jumper**|**Feature** ... ... @@ -958,7 +958,7 @@ 958 958 959 959 960 960 961 -1. 1033 +1. 962 962 11. Common AT Command Sequence 963 963 111. Multi-channel ABP mode (Use with SX1301/LG308) 964 964 ... ... @@ -977,8 +977,8 @@ 977 977 978 978 ATZ 979 979 980 -1. 981 -11. 1052 +1. 1053 +11. 982 982 111. Single-channel ABP mode (Use with LG01/LG02) 983 983 984 984 AT+FDR Reset Parameters to Factory Default, Keys Reserve ... ... @@ -1053,7 +1053,7 @@ 1053 1053 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image035.png]] [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image036.png]] 1054 1054 1055 1055 1056 -1. 1128 +1. 1057 1057 11. How to change the LoRa Frequency Bands/Region? 1058 1058 1059 1059 User can follow the introduction for [[how to upgrade image>>path:#upgrade_image]]. When download the images, choose the required image file for download. ... ... @@ -1060,7 +1060,7 @@ 1060 1060 1061 1061 1062 1062 1063 -1. 1135 +1. 1064 1064 11. How many RS485-Slave can RS485-BL connects? 1065 1065 1066 1066 The RS485-BL can support max 32 RS485 devices. Each uplink command of RS485-BL can support max 16 different RS485 command. So RS485-BL can support max 16 RS485 devices pre-program in the device for uplink. For other devices no pre-program, user can use the [[downlink message (type code 0xA8) to poll their info>>path:#downlink_A8]]. ... ... @@ -1077,7 +1077,7 @@ 1077 1077 1078 1078 1079 1079 1080 -1. 1152 +1. 1081 1081 11. Why I can’t join TTN V3 in US915 /AU915 bands? 1082 1082 1083 1083 It might about the channels mapping. Please see for detail.
- 1653269403619-508.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -27.8 KB - Content
- 1653269438444-278.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -26.6 KB - Content
- 1653269551753-223.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -138.7 KB - Content
- 1653269568276-930.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -131.4 KB - Content
- 1653269593172-426.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -142.6 KB - Content
- 1653269618463-608.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -27.7 KB - Content
- 1653269759169-150.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -294.0 KB - Content
- 1653269916228-732.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -143.3 KB - Content
- 1653270130359-810.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -197.8 KB - Content
- image-20220602153621-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -23.4 KB - Content
- image-20220602153621-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -22.2 KB - Content
- image-20220602153621-3.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -22.3 KB - Content
- image-20220602155039-4.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -24.6 KB - Content