Changes for page RS485-LN – RS485 to LoRaWAN Converter User Manual
Last modified by Xiaoling on 2025/04/23 15:56
Summary
-
Page properties (1 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 12 removed)
Details
- Page properties
-
- Content
-
... ... @@ -18,42 +18,40 @@ 18 18 19 19 ((( 20 20 ((( 21 -The Dragino RS485-LN is a (% style="color:blue" %)**RS485 to LoRaWAN Converter**(%%). It converts the RS485 signal into LoRaWAN wireless signal which simplify the IoT installation and reduce the installation/maintaining cost.21 +The Dragino RS485-LN is a RS485 to LoRaWAN Converter. It converts the RS485 signal into LoRaWAN wireless signal which simplify the IoT installation and reduce the installation/maintaining cost. 22 22 ))) 23 23 24 24 ((( 25 -RS485-LN allows user to (% style="color:blue" %)**monitor / control RS485 devices**(%%)and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.25 +RS485-LN allows user to monitor / control RS485 devices and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on. 26 26 ))) 27 27 28 28 ((( 29 - (% style="color:blue" %)**For data uplink**(%%), RS485-LN sends user-defined commands to RS485 devices and gets the return from the RS485 devices. RS485-LN will process these returns according to user-define rules to get the final payload and upload to LoRaWAN server.29 +For data uplink, RS485-LN sends user-defined commands to RS485 devices and gets the return from the RS485 devices. RS485-LN will process these returns according to user-define rules to get the final payload and upload to LoRaWAN server. 30 30 ))) 31 31 32 32 ((( 33 -(% style="color:blue" %)**For data downlink**(%%), RS485-LN runs in LoRaWAN Class C. When there downlink commands from LoRaWAN server, RS485-LN will forward the commands from LoRaWAN server to RS485 devices. 34 - 35 -(% style="color:blue" %)**Demo Dashboard for RS485-LN**(%%) connect to two energy meters: [[https:~~/~~/app.datacake.de/dashboard/d/58844a26-378d-4c5a-aaf5-b5b5b153447a>>url:https://app.datacake.de/dashboard/d/58844a26-378d-4c5a-aaf5-b5b5b153447a]] 33 +For data downlink, RS485-LN runs in LoRaWAN Class C. When there downlink commands from LoRaWAN server, RS485-LN will forward the commands from LoRaWAN server to RS485 devices. 36 36 ))) 37 37 ))) 38 38 39 39 [[image:1653267211009-519.png||height="419" width="724"]] 40 40 41 - 42 42 == 1.2 Specifications == 43 43 44 - 45 45 **Hardware System:** 46 46 47 47 * STM32L072CZT6 MCU 48 -* SX1276/78 Wireless Chip 44 +* SX1276/78 Wireless Chip 49 49 * Power Consumption (exclude RS485 device): 50 50 ** Idle: 32mA@12v 47 + 48 +* 51 51 ** 20dB Transmit: 65mA@12v 52 52 53 53 **Interface for Model:** 54 54 55 55 * RS485 56 -* Power Input 7~~ 24V DC. 54 +* Power Input 7~~ 24V DC. 57 57 58 58 **LoRa Spec:** 59 59 ... ... @@ -76,8 +76,6 @@ 76 76 * Automatic RF Sense and CAD with ultra-fast AFC. 77 77 * Packet engine up to 256 bytes with CRC. 78 78 79 - 80 - 81 81 == 1.3 Features == 82 82 83 83 * LoRaWAN Class A & Class C protocol (default Class C) ... ... @@ -89,8 +89,6 @@ 89 89 * Support Modbus protocol 90 90 * Support Interrupt uplink (Since hardware version v1.2) 91 91 92 - 93 - 94 94 == 1.4 Applications == 95 95 96 96 * Smart Buildings & Home Automation ... ... @@ -100,13 +100,10 @@ 100 100 * Smart Cities 101 101 * Smart Factory 102 102 103 - 104 - 105 105 == 1.5 Firmware Change log == 106 106 107 107 [[RS485-LN Image files – Download link and Change log>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/]] 108 108 109 - 110 110 == 1.6 Hardware Change log == 111 111 112 112 ((( ... ... @@ -114,8 +114,6 @@ 114 114 v1.2: Add External Interrupt Pin. 115 115 116 116 v1.0: Release 117 - 118 - 119 119 ))) 120 120 ))) 121 121 ... ... @@ -132,8 +132,6 @@ 132 132 ))) 133 133 134 134 [[image:1653268091319-405.png]] 135 - 136 - 137 137 ))) 138 138 139 139 = 3. Operation Mode = ... ... @@ -142,8 +142,6 @@ 142 142 143 143 ((( 144 144 The RS485-LN is configured as LoRaWAN OTAA Class C mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the RS485-LN. It will auto join the network via OTAA. 145 - 146 - 147 147 ))) 148 148 149 149 == 3.2 Example to join LoRaWAN network == ... ... @@ -152,35 +152,25 @@ 152 152 153 153 [[image:1653268155545-638.png||height="334" width="724"]] 154 154 155 - 156 156 ((( 157 -((( 158 -The RS485-LN in this example connected to two RS485 devices for demonstration, user can connect to other RS485 devices via the same method. The connection is as below: 141 +The RS485-BL in this example connected to two RS485 devices for demonstration, user can connect to other RS485 devices via the same method. 159 159 ))) 160 160 161 161 ((( 162 - 485A+and485B-ofthe sensor areconnected toRS485A andRA485BofRS485-LNrespectively.145 +The LG308 is already set to connect to [[TTN V3 network >>url:https://www.thethingsnetwork.org/]]. So what we need to now is only configure the TTN V3: 163 163 ))) 164 164 165 -[[image:1653268227651-549.png||height="592" width="720"]] 166 - 167 167 ((( 168 - TheLG308is already settoconnectto[[TTN V3network >>path:eu1.cloud.thethings.network/]].Sowhat weneed to now isonly configurethe TTN V3:149 +**Step 1**: Create a device in TTN V3 with the OTAA keys from RS485-BL. 169 169 ))) 170 170 171 171 ((( 172 - **Step1**:Createadevicein TTN V3withtheOTAA keysfrom RS485-LN.153 +Each RS485-BL is shipped with a sticker with unique device EUI: 173 173 ))) 174 174 175 -((( 176 -Each RS485-LN is shipped with a sticker with unique device EUI: 177 -))) 178 -))) 179 - 180 180 [[image:1652953462722-299.png]] 181 181 182 182 ((( 183 -((( 184 184 User can enter this key in their LoRaWAN Server portal. Below is TTN V3 screen shot: 185 185 ))) 186 186 ... ... @@ -187,11 +187,13 @@ 187 187 ((( 188 188 Add APP EUI in the application. 189 189 ))) 190 -))) 191 191 166 + 167 + 168 + 192 192 [[image:image-20220519174512-1.png]] 193 193 194 -[[image:image-20220519174512-2.png||height="32 3" width="720"]]171 +[[image:image-20220519174512-2.png||height="328" width="731"]] 195 195 196 196 [[image:image-20220519174512-3.png||height="556" width="724"]] 197 197 ... ... @@ -207,43 +207,44 @@ 207 207 208 208 209 209 ((( 210 -**Step 2**: Power on RS485-L Nand it will auto join to the TTN V3 network. After join success, it will start to upload message to TTN V3 and user can see in the panel.187 +**Step 2**: Power on RS485-BL and it will auto join to the TTN V3 network. After join success, it will start to upload message to TTN V3 and user can see in the panel. 211 211 ))) 212 212 213 213 [[image:1652953568895-172.png||height="232" width="724"]] 214 214 215 - 216 216 == 3.3 Configure Commands to read data == 217 217 218 218 ((( 219 -((( 220 -There are plenty of RS485 devices in the market and each device has different command to read the valid data. To support these devices in flexible, RS485-LN supports flexible command set. User can use [[AT Commands>>path:#AT_COMMAND]] or LoRaWAN Downlink Command to configure what commands RS485-LN should send for each sampling and how to handle the return from RS485 devices. 195 +There are plenty of RS485 and TTL level devices in the market and each device has different command to read the valid data. To support these devices in flexible, RS485-BL supports flexible command set. User can use [[AT Commands or LoRaWAN Downlink>>path:#AT_COMMAND]] Command to configure how RS485-BL should read the sensor and how to handle the return from RS485 or TTL sensors. 221 221 ))) 222 222 223 -((( 224 -(% style="color:red" %)Note: below description and commands are for firmware version >v1.1, if you have firmware version v1.0. Please check the [[user manual v1.0>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/&file=RS485-LN_UserManual_v1.0.1.pdf]] or upgrade the firmware to v1.1 198 +=== 3.3.1 onfigure UART settings for RS485 or TTL communication === 225 225 226 - 227 -))) 228 -))) 200 +RS485-BL can connect to either RS485 sensors or TTL sensor. User need to specify what type of sensor need to connect. 229 229 230 - === 3.3.1onfigure UART settings for RS485or TTL communication ===202 +**~1. RS485-MODBUS mode:** 231 231 232 -T ouseRS485-LN toead datafromRS485sensors, connect the RS485-LN A/B tracesto thesensors.And user needtomakesureRS485-LNusethe match UART setting toaccessthesensors.TherelatedcommandsforUARTsettingsare:204 +AT+MOD=1 ~/~/ Support RS485-MODBUS type sensors. User can connect multiply RS485 , Modbus sensors to the A / B pins. 233 233 234 -(% border="1" style="background-color:#ffffcc; color:green; width:782px" %) 235 -|(% style="width:128px" %)((( 206 +**2. TTL mode:** 207 + 208 +AT+MOD=2 ~/~/ Support TTL Level sensors, User can connect one TTL Sensor to the TXD/RXD/GND pins. 209 + 210 +RS485-BL default UART settings is **9600, no parity, stop bit 1**. If the sensor has a different settings, user can change the RS485-BL setting to match. 211 + 212 +(% border="1" style="background-color:#ffffcc; color:green; width:795px" %) 213 +|((( 236 236 **AT Commands** 237 -)))|(% style="width: 305px" %)(((215 +)))|(% style="width:285px" %)((( 238 238 **Description** 239 -)))|(% style="width:34 6px" %)(((217 +)))|(% style="width:347px" %)((( 240 240 **Example** 241 241 ))) 242 -|( % style="width:128px" %)(((220 +|((( 243 243 AT+BAUDR 244 -)))|(% style="width: 305px" %)(((222 +)))|(% style="width:285px" %)((( 245 245 Set the baud rate (for RS485 connection). Default Value is: 9600. 246 -)))|(% style="width:34 6px" %)(((224 +)))|(% style="width:347px" %)((( 247 247 ((( 248 248 AT+BAUDR=9600 249 249 ))) ... ... @@ -252,12 +252,18 @@ 252 252 Options: (1200,2400,4800,14400,19200,115200) 253 253 ))) 254 254 ))) 255 -|( % style="width:128px" %)(((233 +|((( 256 256 AT+PARITY 257 -)))|(% style="width:305px" %)((( 235 +)))|(% style="width:285px" %)((( 236 +((( 258 258 Set UART parity (for RS485 connection) 259 -)))|(% style="width:346px" %)((( 238 +))) 239 + 260 260 ((( 241 +Default Value is: no parity. 242 +))) 243 +)))|(% style="width:347px" %)((( 244 +((( 261 261 AT+PARITY=0 262 262 ))) 263 263 ... ... @@ -265,17 +265,17 @@ 265 265 Option: 0: no parity, 1: odd parity, 2: even parity 266 266 ))) 267 267 ))) 268 -|( % style="width:128px" %)(((252 +|((( 269 269 AT+STOPBIT 270 -)))|(% style="width: 305px" %)(((254 +)))|(% style="width:285px" %)((( 271 271 ((( 272 272 Set serial stopbit (for RS485 connection) 273 273 ))) 274 274 275 275 ((( 276 - 260 +Default Value is: 1bit. 277 277 ))) 278 -)))|(% style="width:34 6px" %)(((262 +)))|(% style="width:347px" %)((( 279 279 ((( 280 280 AT+STOPBIT=0 for 1bit 281 281 ))) ... ... @@ -289,15 +289,15 @@ 289 289 ))) 290 290 ))) 291 291 292 - 293 - 294 294 === 3.3.2 Configure sensors === 295 295 296 296 ((( 279 +Some sensors might need to configure before normal operation. User can configure such sensor via PC or through RS485-BL AT Commands (% style="color:#4f81bd" %)**AT+CFGDEV**. 280 +))) 281 + 297 297 ((( 298 - Some sensors might need to configurebefore normal operation. Usercan configuresuchsensorviaPC andRS485 adapter or through RS485-LN AT Commands(% style="color:#4f81bd" %)**AT+CFGDEV**(%%).Each (% style="color:#4f81bd" %)**AT+CFGDEVRS485command to sensors. This command will only run when user input it and won’t run during each sampling.283 +When user issue an (% style="color:#4f81bd" %)**AT+CFGDEV**(%%) command, Each (% style="color:#4f81bd" %)**AT+CFGDEV**(%%) equals to send a command to the RS485 or TTL sensors. This command will only run when user input it and won’t run during each sampling. 299 299 ))) 300 -))) 301 301 302 302 (% border="1" style="background-color:#ffffcc; color:green; width:806px" %) 303 303 |**AT Commands**|(% style="width:418px" %)**Description**|(% style="width:256px" %)**Example** ... ... @@ -309,41 +309,82 @@ 309 309 mm: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command 310 310 )))|(% style="width:256px" %)AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m 311 311 296 +Detail of AT+CFGDEV command see [[AT+CFGDEV detail>>path:#AT_CFGDEV]]. 312 312 313 - 314 314 === 3.3.3 Configure read commands for each sampling === 315 315 316 316 ((( 317 -During each sampling, we need confirm what commands we need to send to the RS485 sensors to read data. After the RS485 sensors send back the value, it normally include some bytes and we only need a few from them for a shorten payload. 301 +RS485-BL is a battery powered device; it will sleep most of time. And wake up on each period and read RS485 / TTL sensor data and uplink. 302 +))) 318 318 304 +((( 305 +During each sampling, we need to confirm what commands we need to send to the sensors to read data. After the RS485/TTL sensors send back the value, it normally includes some bytes and we only need a few from them for a shorten payload. 306 +))) 307 + 308 +((( 319 319 To save the LoRaWAN network bandwidth, we might need to read data from different sensors and combine their valid value into a short payload. 310 +))) 320 320 312 +((( 321 321 This section describes how to achieve above goals. 314 +))) 322 322 323 -During each sampling, the RS485-LN can support 15 commands to read sensors. And combine the return to one or several uplink payloads. 316 +((( 317 +During each sampling, the RS485-BL can support 15 commands to read sensors. And combine the return to one or several uplink payloads. 318 +))) 324 324 320 +((( 321 +**Command from RS485-BL to Sensor:** 322 +))) 325 325 326 -**Each RS485 commands include two parts:** 324 +((( 325 +RS485-BL can send out pre-set max 15 strings via **AT+COMMAD1**, **ATCOMMAND2**,…, to **AT+COMMANDF** . All commands are of same grammar. 326 +))) 327 327 328 -~1. What commands RS485-LN will send to the RS485 sensors. There are total 15 commands from **AT+COMMAD1**, **ATCOMMAND2**,…, to **AT+COMMANDF**. All commands are of same grammar. 328 +((( 329 +**Handle return from sensors to RS485-BL**: 330 +))) 329 329 330 -2. How to get wanted value the from RS485 sensors returns from by 1). There are total 15 AT Commands to handle the return, commands are **AT+DATACUT1**,**AT+DATACUT2**,…, **AT+DATACUTF** corresponding to the commands from 1). All commands are of same grammar. 332 +((( 333 +After RS485-BL send out a string to sensor, RS485-BL will wait for the return from RS485 or TTL sensor. And user can specify how to handle the return, by **AT+DATACUT or AT+SEARCH commands** 334 +))) 331 331 332 -3. Some RS485 device might has longer delay on reply, so user can use AT+CMDDL to set the timeout for getting reply after the RS485 command is sent. For example 336 +* ((( 337 +**AT+DATACUT** 338 +))) 333 333 334 -**AT+CMDDL1=1000** to send the open time to 1000ms 340 +((( 341 +When the return value from sensor have fix length and we know which position the valid value we should get, we can use AT+DATACUT command. 342 +))) 335 335 344 +* ((( 345 +**AT+SEARCH** 346 +))) 336 336 348 +((( 349 +When the return value from sensor is dynamic length and we are not sure which bytes the valid data is, instead, we know what value the valid value following. We can use AT+SEARCH to search the valid value in the return string. 350 +))) 351 + 352 +((( 353 +**Define wait timeout:** 354 +))) 355 + 356 +((( 357 +Some RS485 device might has longer delay on reply, so user can use AT+CMDDL to set the timeout for getting reply after the RS485 command is sent. For example, AT+CMDDL1=1000 to send the open time to 1000ms 358 +))) 359 + 360 +((( 337 337 After we got the valid value from each RS485 commands, we need to combine them together with the command **AT+DATAUP**. 362 +))) 338 338 364 +**Examples:** 339 339 340 340 Below are examples for the how above AT Commands works. 341 341 368 +**AT+COMMANDx : **This command will be sent to RS485/TTL devices during each sampling, Max command length is 14 bytes. The grammar is: 342 342 343 -**AT+COMMANDx : **This command will be sent to RS485 devices during each sampling, Max command length is 14 bytes. The grammar is: 344 - 345 -(% border="1" style="background-color:#4bacc6; color:white; width:499px" %) 346 -|(% style="width:496px" %)((( 370 +(% border="1" class="table-bordered" %) 371 +|((( 347 347 **AT+COMMANDx=xx xx xx xx xx xx xx xx xx xx xx xx,m** 348 348 349 349 **xx xx xx xx xx xx xx xx xx xx xx xx: The RS485 command to be sent** ... ... @@ -353,97 +353,142 @@ 353 353 354 354 For example, if we have a RS485 sensor. The command to get sensor value is: 01 03 0B B8 00 02 46 0A. Where 01 03 0B B8 00 02 is the Modbus command to read the register 0B B8 where stored the sensor value. The 46 0A is the CRC-16/MODBUS which calculate manually. 355 355 356 -In the RS485-L N, we should use this command AT+COMMAND1=01 03 0B B8 00 02,1 for the same.381 +In the RS485-BL, we should use this command AT+COMMAND1=01 03 0B B8 00 02,1 for the same. 357 357 383 +**AT+SEARCHx**: This command defines how to handle the return from AT+COMMANDx. 358 358 385 +(% border="1" class="table-bordered" %) 386 +|((( 387 +**AT+SEARCHx=aa,xx xx xx xx xx** 388 + 389 +* **aa: 1: prefix match mode; 2: prefix and suffix match mode** 390 +* **xx xx xx xx xx: match string. Max 5 bytes for prefix and 5 bytes for suffix** 391 + 392 + 393 +))) 394 + 395 +Examples: 396 + 397 +1. For a return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49 398 + 399 +If we set AT+SEARCH1=1,1E 56 34. (max 5 bytes for prefix) 400 + 401 +The valid data will be all bytes after 1E 56 34 , so it is 2e 30 58 5f 36 41 30 31 00 49 402 + 403 +[[image:1652954654347-831.png]] 404 + 405 + 406 +1. For a return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49 407 + 408 +If we set AT+SEARCH1=2, 1E 56 34+31 00 49 409 + 410 +Device will search the bytes between 1E 56 34 and 31 00 49. So it is 2e 30 58 5f 36 41 30 411 + 412 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image014.png]] 413 + 414 + 359 359 **AT+DATACUTx : **This command defines how to handle the return from AT+COMMANDx, max return length is 45 bytes. 360 360 361 -(% border="1" style="background-color:#4bacc6; color:white; width:725px" %) 362 -|(% style="width:722px" %)((( 417 +|((( 363 363 **AT+DATACUTx=a,b,c** 364 364 365 365 * **a: length for the return of AT+COMMAND** 366 366 * **b:1: grab valid value by byte, max 6 bytes. 2: grab valid value by bytes section, max 3 sections.** 367 -* **c: define the position for valid value. 422 +* **c: define the position for valid value. ** 368 368 ))) 369 369 425 +Examples: 370 370 371 -**Examples:** 372 - 373 373 * Grab bytes: 374 374 375 -[[image:image -20220602153621-1.png]]429 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image015.png]] 376 376 377 - 378 378 * Grab a section. 379 379 380 -[[image:image -20220602153621-2.png]]433 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image016.png]] 381 381 382 - 383 383 * Grab different sections. 384 384 385 -[[image:image-20220602153621-3.png]] 386 -))) 437 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image017.png]] 387 387 388 -=== 3.3.4 Compose the uplink payload === 389 389 390 -((( 440 +Note: 441 + 442 +AT+SEARCHx and AT+DATACUTx can be used together, if both commands are set, RS485-BL will first process AT+SEARCHx on the return string and get a temporary string, and then process AT+DATACUTx on this temporary string to get the final payload. In this case, AT+DATACUTx need to set to format AT+DATACUTx=0,xx,xx where the return bytes set to 0. 443 + 444 +Example: 445 + 446 +AT+COMMAND1=11 01 1E D0,0 447 + 448 +AT+SEARCH1=1,1E 56 34 449 + 450 +AT+DATACUT1=0,2,1~~5 451 + 452 +Return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49 453 + 454 +String after SEARCH command: 2e 30 58 5f 36 41 30 31 00 49 455 + 456 +Valid payload after DataCUT command: 2e 30 58 5f 36 457 + 458 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image018.png]] 459 + 460 + 461 + 462 + 463 +1. 464 +11. 465 +111. Compose the uplink payload 466 + 391 391 Through AT+COMMANDx and AT+DATACUTx we got valid value from each RS485 commands, Assume these valid value are RETURN1, RETURN2, .., to RETURNx. The next step is how to compose the LoRa Uplink Payload by these RETURNs. The command is **AT+DATAUP.** 392 -))) 393 393 394 -((( 395 -(% style="color:#4f81bd" %)**Examples: AT+DATAUP=0** 396 -))) 397 397 398 -((( 399 -Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**A SIGNLE UPLINK**. 400 -))) 470 +**Examples: AT+DATAUP=0** 401 401 402 -((( 472 +Compose the uplink payload with value returns in sequence and send with **A SIGNLE UPLINK**. 473 + 403 403 Final Payload is 404 -))) 405 405 406 -((( 407 -(% style="color:#4f81bd" %)**Battery Info+PAYVER + VALID Value from RETURN1 + Valid Value from RETURN2 + … + RETURNx** 408 -))) 476 +Battery Info+PAYVER + VALID Value from RETURN1 + Valid Value from RETURN2 + … + RETURNx 409 409 410 -((( 411 411 Where PAYVER is defined by AT+PAYVER, below is an example screen shot. 412 -))) 413 413 414 -[[image: 1653269759169-150.png||height="513" width="716"]]480 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image019.png]] 415 415 416 -(% style="color:#4f81bd" %)**Examples: AT+DATAUP=1** 417 417 418 -Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**Multiply UPLINKs**. 419 419 484 +**Examples: AT+DATAUP=1** 485 + 486 +Compose the uplink payload with value returns in sequence and send with **Multiply UPLINKs**. 487 + 420 420 Final Payload is 421 421 422 - (% style="color:#4f81bd" %)**Battery Info+PAYVER + PAYLOAD COUNT + PAYLOAD# + DATA**490 +Battery Info+PAYVER + PAYLOAD COUNT + PAYLOAD# + DATA 423 423 424 424 1. Battery Info (2 bytes): Battery voltage 425 425 1. PAYVER (1 byte): Defined by AT+PAYVER 426 426 1. PAYLOAD COUNT (1 byte): Total how many uplinks of this sampling. 427 427 1. PAYLOAD# (1 byte): Number of this uplink. (from 0,1,2,3…,to PAYLOAD COUNT) 428 -1. DATA: Valid value: max 6 bytes(US915 version here, Notice*!) for each uplink so each uplink <= 11 bytes. For the last uplink, DATA will might less than 6 bytes 496 +1. DATA: Valid value: max 6 bytes(US915 version here, [[Notice*!>>path:#max_byte]]) for each uplink so each uplink <= 11 bytes. For the last uplink, DATA will might less than 6 bytes 429 429 430 -[[image: 1653269916228-732.png||height="433" width="711"]]498 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]] 431 431 432 432 433 433 So totally there will be 3 uplinks for this sampling, each uplink includes 6 bytes DATA 434 434 435 -DATA1=RETURN1 Valid Value = (% style="background-color:green; color:white" %)20 20 0a 33 90 41503 +DATA1=RETURN1 Valid Value = 20 20 0a 33 90 41 436 436 437 -DATA2=1^^st^^ ~~ 6^^th^^ byte of Valid value of RETURN10= (%style="background-color:green; color:white" %)02 aa 05 81 0a 20505 +DATA2=1^^st^^ ~~ 6^^th^^ byte of Valid value of RETURN10= 02 aa 05 81 0a 20 438 438 439 -DATA3=7^^th^^ ~~ 11^^th^^ bytes of Valid value of RETURN10 = (%style="background-color:green; color:white" %)20 20 20 2d 30507 +DATA3=7^^th^^ ~~ 11^^th^^ bytes of Valid value of RETURN10 = 20 20 20 2d 30 440 440 509 + 510 + 441 441 Below are the uplink payloads: 442 442 443 -[[image: 1653270130359-810.png]]513 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image021.png]] 444 444 445 445 446 - (% style="color:red" %)**Notice: the Max bytes is according to the max support bytes in different Frequency Bands for lowest SF. As below:**516 +Notice: the Max bytes is according to the max support bytes in different Frequency Bands for lowest SF. As below: 447 447 448 448 ~* For AU915/AS923 bands, if UplinkDwell time=0, max 51 bytes for each uplink ( so 51 -5 = 46 max valid date) 449 449 ... ... @@ -453,8 +453,12 @@ 453 453 454 454 ~* For all other bands: max 51 bytes for each uplink ( so 51 -5 = 46 max valid date). 455 455 456 -=== 3.3.5 Uplink on demand === 457 457 527 + 528 +1. 529 +11. 530 +111. Uplink on demand 531 + 458 458 Except uplink periodically, RS485-BL is able to uplink on demand. The server sends downlink command to RS485-BL and RS485 will uplink data base on the command. 459 459 460 460 Downlink control command:
- 1653269403619-508.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -27.8 KB - Content
- 1653269438444-278.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -26.6 KB - Content
- 1653269551753-223.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -138.7 KB - Content
- 1653269568276-930.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -131.4 KB - Content
- 1653269593172-426.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -142.6 KB - Content
- 1653269618463-608.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -27.7 KB - Content
- 1653269759169-150.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -294.0 KB - Content
- 1653269916228-732.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -143.3 KB - Content
- 1653270130359-810.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -197.8 KB - Content
- image-20220602153621-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -23.4 KB - Content
- image-20220602153621-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -22.2 KB - Content
- image-20220602153621-3.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -22.3 KB - Content