Last modified by Xiaoling on 2025/04/23 15:56

From version 32.7
edited by Xiaoling
on 2022/06/02 15:25
Change comment: There is no comment for this version
To version 6.1
edited by Xiaoling
on 2022/05/19 17:41
Change comment: Uploaded new attachment "1652953304999-717.png", version {1}

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -RS485-LN – RS485 to LoRaWAN Converter
1 +RS485-BL – Waterproof RS485 to LoRaWAN Converter
Content
... ... @@ -1,11 +1,13 @@
1 1  (% style="text-align:center" %)
2 -[[image:1653266934636-343.png||height="385" width="385"]]
2 +[[image:1652947681187-144.png||height="385" width="385"]]
3 3  
4 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image001.jpg]]
4 4  
5 5  
6 -**RS485-LN – RS485 to LoRaWAN Converter User Manual**
7 7  
8 +**RS485-BL – Waterproof RS485 to LoRaWAN Converter User Manual**
8 8  
10 +
9 9  **Table of Contents:**
10 10  
11 11  
... ... @@ -14,46 +14,62 @@
14 14  
15 15  = 1.Introduction =
16 16  
17 -== 1.1 What is RS485-LN RS485 to LoRaWAN Converter ==
19 +== 1.1 What is RS485-BL RS485 to LoRaWAN Converter ==
18 18  
19 19  (((
22 +
23 +)))
24 +
20 20  (((
21 -The Dragino RS485-LN is a (% style="color:blue" %)**RS485 to LoRaWAN Converter**(%%). It converts the RS485 signal into LoRaWAN wireless signal which simplify the IoT installation and reduce the installation/maintaining cost.
26 +The Dragino RS485-BL is a **RS485 / UART to LoRaWAN Converter** for Internet of Things solutions. User can connect RS485 or UART sensor to RS485-BL converter, and configure RS485-BL to periodically read sensor data and upload via LoRaWAN network to IoT server.
22 22  )))
23 23  
24 24  (((
25 -RS485-LN allows user to (% style="color:blue" %)**monitor / control RS485 devices**(%%) and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
30 +RS485-BL can interface to RS485 sensor, 3.3v/5v UART sensor or interrupt sensor. RS485-BL provides **a 3.3v output** and** a 5v output** to power external sensors. Both output voltages are controllable to minimize the total system power consumption.
26 26  )))
27 27  
28 28  (((
29 -(% style="color:blue" %)**For data uplink**(%%), RS485-LN sends user-defined commands to RS485 devices and gets the return from the RS485 devices. RS485-LN will process these returns according to user-define rules to get the final payload and upload to LoRaWAN server.
34 +RS485-BL is IP67 **waterproof** and powered by **8500mAh Li-SOCI2 battery**, it is designed for long term use for several years.
30 30  )))
31 31  
32 32  (((
33 -(% style="color:blue" %)**For data downlink**(%%), RS485-LN runs in LoRaWAN Class C. When there downlink commands from LoRaWAN server, RS485-LN will forward the commands from LoRaWAN server to RS485 devices.
38 +RS485-BL runs standard **LoRaWAN 1.0.3 in Class A**. It can reach long transfer range and easy to integrate with LoRaWAN compatible gateway and IoT server.
39 +)))
34 34  
35 -(% style="color:blue" %)**Demo Dashboard for RS485-LN**(%%) connect to two energy meters: [[https:~~/~~/app.datacake.de/dashboard/d/58844a26-378d-4c5a-aaf5-b5b5b153447a>>url:https://app.datacake.de/dashboard/d/58844a26-378d-4c5a-aaf5-b5b5b153447a]]
41 +(((
42 +For data uplink, RS485-BL sends user-defined commands to RS485 devices and gets the return from the RS485 devices. RS485-BL will process these returns data according to user-define rules to get the final payload and upload to LoRaWAN server.
36 36  )))
44 +
45 +(((
46 +For data downlink, RS485-BL runs in LoRaWAN Class A. When there is downlink commands from LoRaWAN server, RS485-BL will forward the commands from LoRaWAN server to RS485 devices.
37 37  )))
38 38  
39 -[[image:1653267211009-519.png||height="419" width="724"]]
49 +(((
50 +Each RS485-BL pre-load with a set of unique keys for LoRaWAN registration, register these keys to LoRaWAN server and it will auto connect after power on.
51 +)))
40 40  
53 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image002.png]]
41 41  
42 42  == 1.2 Specifications ==
43 43  
44 -
45 45  **Hardware System:**
46 46  
47 47  * STM32L072CZT6 MCU
48 -* SX1276/78 Wireless Chip 
60 +* SX1276/78 Wireless Chip
49 49  * Power Consumption (exclude RS485 device):
50 -** Idle: 32mA@12v
51 -** 20dB Transmit: 65mA@12v
62 +** Idle: 6uA@3.3v
52 52  
64 +*
65 +** 20dB Transmit: 130mA@3.3v
66 +
53 53  **Interface for Model:**
54 54  
55 -* RS485
56 -* Power Input 7~~ 24V DC. 
69 +* 1 x RS485 Interface
70 +* 1 x TTL Serial , 3.3v or 5v.
71 +* 1 x I2C Interface, 3.3v or 5v.
72 +* 1 x one wire interface
73 +* 1 x Interrupt Interface
74 +* 1 x Controllable 5V output, max
57 57  
58 58  **LoRa Spec:**
59 59  
... ... @@ -62,35 +62,28 @@
62 62  ** Band 2 (LF): 410 ~~ 528 Mhz
63 63  * 168 dB maximum link budget.
64 64  * +20 dBm - 100 mW constant RF output vs.
65 -* +14 dBm high efficiency PA.
66 66  * Programmable bit rate up to 300 kbps.
67 67  * High sensitivity: down to -148 dBm.
68 68  * Bullet-proof front end: IIP3 = -12.5 dBm.
69 69  * Excellent blocking immunity.
70 -* Low RX current of 10.3 mA, 200 nA register retention.
71 71  * Fully integrated synthesizer with a resolution of 61 Hz.
72 -* FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation.
88 +* LoRa modulation.
73 73  * Built-in bit synchronizer for clock recovery.
74 74  * Preamble detection.
75 75  * 127 dB Dynamic Range RSSI.
76 -* Automatic RF Sense and CAD with ultra-fast AFC.
77 -* Packet engine up to 256 bytes with CRC.
92 +* Automatic RF Sense and CAD with ultra-fast AFC. ​​​
78 78  
79 -
80 -
81 81  == 1.3 Features ==
82 82  
83 -* LoRaWAN Class A & Class C protocol (default Class C)
96 +* LoRaWAN Class A & Class C protocol (default Class A)
84 84  * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865/RU864
85 85  * AT Commands to change parameters
86 -* Remote configure parameters via LoRa Downlink
99 +* Remote configure parameters via LoRaWAN Downlink
87 87  * Firmware upgradable via program port
88 88  * Support multiply RS485 devices by flexible rules
89 89  * Support Modbus protocol
90 -* Support Interrupt uplink (Since hardware version v1.2)
103 +* Support Interrupt uplink
91 91  
92 -
93 -
94 94  == 1.4 Applications ==
95 95  
96 96  * Smart Buildings & Home Automation
... ... @@ -100,269 +100,262 @@
100 100  * Smart Cities
101 101  * Smart Factory
102 102  
103 -== 1.5 Firmware Change log ==
114 +== 1.5 Firmware Change log ==
104 104  
105 -[[RS485-LN Image files – Download link and Change log>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/]]
116 +[[RS485-BL Image files – Download link and Change log>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/RS485-BL/Firmware/||style="background-color: rgb(255, 255, 255);"]]
106 106  
107 107  == 1.6 Hardware Change log ==
108 108  
109 109  (((
110 -(((
111 -v1.2: Add External Interrupt Pin.
112 -
113 -v1.0: Release
121 +v1.4
114 114  )))
115 -)))
116 116  
117 -= 2. Power ON Device =
118 -
119 119  (((
120 -The RS485-LN can be powered by 7 ~~ 24V DC power source. Connection as below
125 +~1. Change Power IC to TPS22916
126 +)))
121 121  
122 -* Power Source VIN to RS485-LN VIN+
123 -* Power Source GND to RS485-LN VIN-
124 124  
125 125  (((
126 -Once there is power, the RS485-LN will be on.
130 +v1.3
127 127  )))
128 128  
129 -[[image:1653268091319-405.png]]
133 +(((
134 +~1. Change JP3 from KF350-8P to KF350-11P, Add one extra interface for I2C and one extra interface for one-wire
130 130  )))
131 131  
132 -= 3. Operation Mode =
133 133  
134 -== 3.1 How it works? ==
138 +(((
139 +v1.2
140 +)))
135 135  
136 136  (((
137 -The RS485-LN is configured as LoRaWAN OTAA Class C mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the RS485-LN. It will auto join the network via OTAA.
143 +Release version ​​​​​
138 138  )))
139 139  
140 -== 3.2 Example to join LoRaWAN network ==
146 += 2. Pin mapping and Power ON Device =
141 141  
142 -Here shows an example for how to join the TTN V3 Network. Below is the network structure, we use [[LG308>>url:http://www.dragino.com/products/lora-lorawan-gateway/item/140-lg308.html]] as LoRaWAN gateway here. 
148 +The RS485-BL is powered on by 8500mAh battery. To save battery life, RS485-BL is shipped with power off. User can put the jumper to power on RS485-BL.
143 143  
144 -[[image:1653268155545-638.png||height="334" width="724"]]
150 +[[image:1652953055962-143.png||height="387" width="728"]]
145 145  
146 -(((
147 -The RS485-LN in this example connected to two RS485 devices for demonstration, user can connect to other RS485 devices via the same method. The connection is as below:
152 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image003.png]]
148 148  
149 -485A+ and 485B- of the sensor are connected to RS485A and RA485B of RS485-LN respectively.
154 +The Left TXD and RXD are TTL interface for external sensor. TTL level is controlled by 3.3/5v Jumper.
150 150  
151 -[[image:1653268227651-549.png||height="592" width="720"]]
152 152  
153 -(((
154 -The LG308 is already set to connect to [[TTN V3 network >>path:eu1.cloud.thethings.network/]]. So what we need to now is only configure the TTN V3:
155 -)))
156 156  
157 -(((
158 -**Step 1**: Create a device in TTN V3 with the OTAA keys from RS485-LN.
159 -)))
158 +3. Operation Mode
159 +3.1 How it works?
160 160  
161 -(((
162 -Each RS485-LN is shipped with a sticker with unique device EUI:
163 -)))
164 -)))
161 +The RS485-BL is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the RS485-BL. It will auto join the network via OTAA.
165 165  
166 -[[image:1652953462722-299.png]]
167 167  
168 -(((
169 -(((
164 +1.
165 +11. Example to join LoRaWAN network
166 +
167 +Here shows an example for how to join the TTN V3 Network. Below is the network structure, we use [[LG308>>url:http://www.dragino.com/products/lora-lorawan-gateway/item/140-lg308.html]] as LoRaWAN gateway here.
168 +
169 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image004.png]]
170 +
171 +
172 +The RS485-BL in this example connected to two RS485 devices for demonstration, user can connect to other RS485 devices via the same method.
173 +
174 +
175 +The LG308 is already set to connect to [[TTN V3 network >>url:https://www.thethingsnetwork.org/]]. So what we need to now is only configure the TTN V3:
176 +
177 +**Step 1**: Create a device in TTN V3 with the OTAA keys from RS485-BL.
178 +
179 +Each RS485-BL is shipped with a sticker with unique device EUI:
180 +
181 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image005.png]]
182 +
183 +
184 +
185 +
170 170  User can enter this key in their LoRaWAN Server portal. Below is TTN V3 screen shot:
171 -)))
172 172  
173 -(((
174 174  Add APP EUI in the application.
175 -)))
176 -)))
177 177  
178 -[[image:image-20220519174512-1.png]]
190 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image006.png]]
179 179  
180 -[[image:image-20220519174512-2.png||height="323" width="720"]]
192 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image007.png]]
181 181  
182 -[[image:image-20220519174512-3.png||height="556" width="724"]]
194 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image008.png]]
183 183  
184 -[[image:image-20220519174512-4.png]]
196 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image009.png]]
185 185  
186 -You can also choose to create the device manually.
187 187  
188 -[[image:1652953542269-423.png||height="710" width="723"]]
189 189  
190 -Add APP KEY and DEV EUI
191 191  
192 -[[image:1652953553383-907.png||height="514" width="724"]]
193 193  
194 194  
195 -(((
196 -**Step 2**: Power on RS485-LN and it will auto join to the TTN V3 network. After join success, it will start to upload message to TTN V3 and user can see in the panel.
197 -)))
198 198  
199 -[[image:1652953568895-172.png||height="232" width="724"]]
200 200  
201 -== 3.3 Configure Commands to read data ==
202 202  
203 -(((
204 -(((
205 -There are plenty of RS485 devices in the market and each device has different command to read the valid data. To support these devices in flexible, RS485-LN supports flexible command set. User can use [[AT Commands>>path:#AT_COMMAND]] or LoRaWAN Downlink Command to configure what commands RS485-LN should send for each sampling and how to handle the return from RS485 devices.
206 -)))
207 207  
208 -(((
209 -(% style="color:red" %)Note: below description and commands are for firmware version >v1.1, if you have firmware version v1.0. Please check the [[user manual v1.0>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/&file=RS485-LN_UserManual_v1.0.1.pdf]] or upgrade the firmware to v1.1
210 -)))
211 -)))
212 212  
213 -=== 3.3.1 onfigure UART settings for RS485 or TTL communication ===
214 214  
215 -To use RS485-LN to read data from RS485 sensors, connect the RS485-LN A/B traces to the sensors. And user need to make sure RS485-LN use the match UART setting to access the sensors. The related commands for UART settings are:
216 216  
217 -(% border="1" style="background-color:#ffffcc; color:green; width:795px" %)
210 +
211 +
212 +
213 +
214 +You can also choose to create the device manually.
215 +
218 218  |(((
219 -**AT Commands**
220 -)))|(% style="width:285px" %)(((
221 -**Description**
222 -)))|(% style="width:347px" %)(((
223 -**Example**
217 +
224 224  )))
225 -|(((
226 -AT+BAUDR
227 -)))|(% style="width:285px" %)(((
228 -Set the baud rate (for RS485 connection). Default Value is: 9600.
229 -)))|(% style="width:347px" %)(((
230 -(((
219 +
220 +
221 +
222 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image010.png]]
223 +
224 +Add APP KEY and DEV EUI
225 +
226 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image011.png]]
227 +
228 +
229 +**Step 2**: Power on RS485-BL and it will auto join to the TTN V3 network. After join success, it will start to upload message to TTN V3 and user can see in the panel.
230 +
231 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image012.png]]
232 +
233 +
234 +
235 +
236 +1.
237 +11. Configure Commands to read data
238 +
239 +There are plenty of RS485 and TTL level devices in the market and each device has different command to read the valid data. To support these devices in flexible, RS485-BL supports flexible command set. User can use [[AT Commands or LoRaWAN Downlink>>path:#AT_COMMAND]] Command to configure how RS485-BL should read the sensor and how to handle the return from RS485 or TTL sensors.
240 +
241 +
242 +1.
243 +11.
244 +111. Configure UART settings for RS485 or TTL communication
245 +
246 +RS485-BL can connect to either RS485 sensors or TTL sensor. User need to specify what type of sensor need to connect.
247 +
248 +1. RS485-MODBUS mode:
249 +
250 +AT+MOD=1 ~/~/ Support RS485-MODBUS type sensors. User can connect multiply RS485 , Modbus sensors to the A / B pins.
251 +
252 +
253 +1. TTL mode:
254 +
255 +AT+MOD=2 ~/~/ Support TTL Level sensors, User can connect one TTL Sensor to the TXD/RXD/GND pins.
256 +
257 +
258 +RS485-BL default UART settings is **9600, no parity, stop bit 1**. If the sensor has a different settings, user can change the RS485-BL setting to match.
259 +
260 +
261 +|**AT Commands**|**Description**|**Example**
262 +|AT+BAUDR|Set the baud rate (for RS485 connection). Default Value is: 9600.|(((
231 231  AT+BAUDR=9600
232 -)))
233 233  
234 -(((
235 235  Options: (1200,2400,4800,14400,19200,115200)
236 236  )))
237 -)))
238 -|(((
239 -AT+PARITY
240 -)))|(% style="width:285px" %)(((
267 +|AT+PARITY|(((
241 241  Set UART parity (for RS485 connection)
242 -)))|(% style="width:347px" %)(((
243 -(((
269 +
270 +Default Value is: no parity.
271 +)))|(((
244 244  AT+PARITY=0
245 -)))
246 246  
247 -(((
248 248  Option: 0: no parity, 1: odd parity, 2: even parity
249 249  )))
250 -)))
251 -|(((
252 -AT+STOPBIT
253 -)))|(% style="width:285px" %)(((
254 -(((
276 +|AT+STOPBIT|(((
255 255  Set serial stopbit (for RS485 connection)
256 -)))
257 257  
258 -(((
259 -
260 -)))
261 -)))|(% style="width:347px" %)(((
262 -(((
279 +Default Value is: 1bit.
280 +)))|(((
263 263  AT+STOPBIT=0 for 1bit
264 -)))
265 265  
266 -(((
267 267  AT+STOPBIT=1 for 1.5 bit
268 -)))
269 269  
270 -(((
271 271  AT+STOPBIT=2 for 2 bits
272 272  )))
273 -)))
274 274  
275 -=== 3.3.2 Configure sensors ===
276 276  
277 -(((
278 -(((
279 -Some sensors might need to configure before normal operation. User can configure such sensor via PC and RS485 adapter or through RS485-LN AT Commands (% style="color:#4f81bd" %)**AT+CFGDEV**(%%). Each (% style="color:#4f81bd" %)**AT+CFGDEV **(%%)equals to send a RS485 command to sensors. This command will only run when user input it and won’t run during each sampling.
280 -)))
281 -)))
282 282  
283 -(% border="1" style="background-color:#ffffcc; color:green; width:806px" %)
284 -|**AT Commands**|(% style="width:418px" %)**Description**|(% style="width:256px" %)**Example**
285 -|AT+CFGDEV|(% style="width:418px" %)(((
290 +
291 +
292 +1.
293 +11.
294 +111. Configure sensors
295 +
296 +Some sensors might need to configure before normal operation. User can configure such sensor via PC or through RS485-BL AT Commands AT+CFGDEV.
297 +
298 +
299 +When user issue an AT+CFGDEV command, Each AT+CFGDEV equals to send a command to the RS485 or TTL sensors. This command will only run when user input it and won’t run during each sampling.
300 +
301 +|**AT Commands**|**Description**|**Example**
302 +|AT+CFGDEV|(((
286 286  This command is used to configure the RS485/TTL devices; they won’t be used during sampling.
287 287  
288 -AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,
305 +AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m
289 289  
290 -mm: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command
291 -)))|(% style="width:256px" %)AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m
307 +m: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command
308 +)))|AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m
292 292  
293 -=== 3.3.3 Configure read commands for each sampling ===
310 +Detail of AT+CFGDEV command see [[AT+CFGDEV detail>>path:#AT_CFGDEV]].
294 294  
295 -(((
312 +
313 +
314 +
315 +
316 +1.
317 +11.
318 +111. Configure read commands for each sampling
319 +
296 296  RS485-BL is a battery powered device; it will sleep most of time. And wake up on each period and read RS485 / TTL sensor data and uplink.
297 -)))
298 298  
299 -(((
322 +
300 300  During each sampling, we need to confirm what commands we need to send to the sensors to read data. After the RS485/TTL sensors send back the value, it normally includes some bytes and we only need a few from them for a shorten payload.
301 -)))
302 302  
303 -(((
325 +
304 304  To save the LoRaWAN network bandwidth, we might need to read data from different sensors and combine their valid value into a short payload.
305 -)))
306 306  
307 -(((
328 +
308 308  This section describes how to achieve above goals.
309 -)))
310 310  
311 -(((
331 +
312 312  During each sampling, the RS485-BL can support 15 commands to read sensors. And combine the return to one or several uplink payloads.
313 -)))
314 314  
315 -(((
334 +
316 316  **Command from RS485-BL to Sensor:**
317 -)))
318 318  
319 -(((
320 320  RS485-BL can send out pre-set max 15 strings via **AT+COMMAD1**, **ATCOMMAND2**,…, to **AT+COMMANDF** . All commands are of same grammar.
321 -)))
322 322  
323 -(((
339 +
324 324  **Handle return from sensors to RS485-BL**:
325 -)))
326 326  
327 -(((
328 328  After RS485-BL send out a string to sensor, RS485-BL will wait for the return from RS485 or TTL sensor. And user can specify how to handle the return, by **AT+DATACUT or AT+SEARCH commands**
329 -)))
330 330  
331 -* (((
332 -**AT+DATACUT**
333 -)))
334 334  
335 -(((
345 +* **AT+DATACUT**
346 +
336 336  When the return value from sensor have fix length and we know which position the valid value we should get, we can use AT+DATACUT command.
337 -)))
338 338  
339 -* (((
340 -**AT+SEARCH**
341 -)))
342 342  
343 -(((
350 +* **AT+SEARCH**
351 +
344 344  When the return value from sensor is dynamic length and we are not sure which bytes the valid data is, instead, we know what value the valid value following. We can use AT+SEARCH to search the valid value in the return string.
345 -)))
346 346  
347 -(((
354 +
348 348  **Define wait timeout:**
349 -)))
350 350  
351 -(((
352 352  Some RS485 device might has longer delay on reply, so user can use AT+CMDDL to set the timeout for getting reply after the RS485 command is sent. For example, AT+CMDDL1=1000 to send the open time to 1000ms
353 -)))
354 354  
355 -(((
359 +
356 356  After we got the valid value from each RS485 commands, we need to combine them together with the command **AT+DATAUP**.
357 -)))
358 358  
362 +
359 359  **Examples:**
360 360  
361 361  Below are examples for the how above AT Commands works.
362 362  
367 +
363 363  **AT+COMMANDx : **This command will be sent to RS485/TTL devices during each sampling, Max command length is 14 bytes. The grammar is:
364 364  
365 -(% border="1" class="table-bordered" %)
366 366  |(((
367 367  **AT+COMMANDx=xx xx xx xx xx xx xx xx xx xx xx xx,m**
368 368  
... ... @@ -371,19 +371,13 @@
371 371  **m: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command**
372 372  )))
373 373  
374 -(((
375 375  For example, if we have a RS485 sensor. The command to get sensor value is: 01 03 0B B8 00 02 46 0A. Where 01 03 0B B8 00 02 is the Modbus command to read the register 0B B8 where stored the sensor value. The 46 0A is the CRC-16/MODBUS which calculate manually.
376 -)))
377 377  
378 -(((
379 379  In the RS485-BL, we should use this command AT+COMMAND1=01 03 0B B8 00 02,1 for the same.
380 -)))
381 381  
382 -(((
382 +
383 383  **AT+SEARCHx**: This command defines how to handle the return from AT+COMMANDx.
384 -)))
385 385  
386 -(% border="1" class="table-bordered" %)
387 387  |(((
388 388  **AT+SEARCHx=aa,xx xx xx xx xx**
389 389  
... ... @@ -393,24 +393,26 @@
393 393  
394 394  )))
395 395  
396 -**Examples:**
394 +Examples:
397 397  
398 -~1. For a return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
396 +1. For a return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
399 399  
400 400  If we set AT+SEARCH1=1,1E 56 34.      (max 5 bytes for prefix)
401 401  
402 -The valid data will be all bytes after 1E 56 34 , so it is (% style="background-color:yellow" %)** 2e 30 58 5f 36 41 30 31 00 49**
400 +The valid data will be all bytes after 1E 56 34 , so it is 2e 30 58 5f 36 41 30 31 00 49
403 403  
404 -[[image:1653269403619-508.png]]
402 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image013.png]]
405 405  
406 -2. For a return string from AT+COMMAND1:  16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
407 407  
405 +1. For a return string from AT+COMMAND1:  16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
406 +
408 408  If we set AT+SEARCH1=2, 1E 56 34+31 00 49
409 409  
410 -Device will search the bytes between 1E 56 34 and 31 00 49. So it is (% style="background-color:yellow" %)** 2e 30 58 5f 36 41 30**
409 +Device will search the bytes between 1E 56 34 and 31 00 49. So it is 2e 30 58 5f 36 41 30
411 411  
412 -[[image:1653269438444-278.png]]
411 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image014.png]]
413 413  
413 +
414 414  **AT+DATACUTx : **This command defines how to handle the return from AT+COMMANDx, max return length is 45 bytes.
415 415  
416 416  |(((
... ... @@ -418,7 +418,7 @@
418 418  
419 419  * **a: length for the return of AT+COMMAND**
420 420  * **b:1: grab valid value by byte, max 6 bytes. 2: grab valid value by bytes section, max 3 sections.**
421 -* **c: define the position for valid value.  **
421 +* **c: define the position for valid value. **
422 422  )))
423 423  
424 424  Examples:
... ... @@ -425,95 +425,94 @@
425 425  
426 426  * Grab bytes:
427 427  
428 -[[image:1653269551753-223.png||height="311" width="717"]]
428 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image015.png]]
429 429  
430 430  * Grab a section.
431 431  
432 -[[image:1653269568276-930.png||height="325" width="718"]]
432 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image016.png]]
433 433  
434 434  * Grab different sections.
435 435  
436 -[[image:1653269593172-426.png||height="303" width="725"]]
436 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image017.png]]
437 437  
438 -(% style="color:red" %)**Note:**
439 439  
439 +Note:
440 +
440 440  AT+SEARCHx and AT+DATACUTx can be used together, if both commands are set, RS485-BL will first process AT+SEARCHx on the return string and get a temporary string, and then process AT+DATACUTx on this temporary string to get the final payload. In this case, AT+DATACUTx need to set to format AT+DATACUTx=0,xx,xx where the return bytes set to 0.
441 441  
442 442  Example:
443 443  
444 -(% style="color:red" %)AT+COMMAND1=11 01 1E D0,0
445 +AT+COMMAND1=11 01 1E D0,0
445 445  
446 -(% style="color:red" %)AT+SEARCH1=1,1E 56 34
447 +AT+SEARCH1=1,1E 56 34
447 447  
448 -(% style="color:red" %)AT+DATACUT1=0,2,1~~5
449 +AT+DATACUT1=0,2,1~~5
449 449  
450 -(% style="color:red" %)Return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
451 +Return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
451 451  
452 -(% style="color:red" %)String after SEARCH command: 2e 30 58 5f 36 41 30 31 00 49
453 +String after SEARCH command: 2e 30 58 5f 36 41 30 31 00 49
453 453  
454 -(% style="color:red" %)Valid payload after DataCUT command: 2e 30 58 5f 36
455 +Valid payload after DataCUT command: 2e 30 58 5f 36
455 455  
456 -[[image:1653269618463-608.png]]
457 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image018.png]]
457 457  
458 -=== 3.3.4 Compose the uplink payload ===
459 459  
460 -(((
460 +
461 +
462 +1.
463 +11.
464 +111. Compose the uplink payload
465 +
461 461  Through AT+COMMANDx and AT+DATACUTx we got valid value from each RS485 commands, Assume these valid value are RETURN1, RETURN2, .., to RETURNx. The next step is how to compose the LoRa Uplink Payload by these RETURNs. The command is **AT+DATAUP.**
462 -)))
463 463  
464 -(((
465 -(% style="color:#4f81bd" %)**Examples: AT+DATAUP=0**
466 -)))
467 467  
468 -(((
469 -Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**A SIGNLE UPLINK**.
470 -)))
469 +**Examples: AT+DATAUP=0**
471 471  
472 -(((
471 +Compose the uplink payload with value returns in sequence and send with **A SIGNLE UPLINK**.
472 +
473 473  Final Payload is
474 -)))
475 475  
476 -(((
477 -(% style="color:#4f81bd" %)**Battery Info+PAYVER + VALID Value from RETURN1 + Valid Value from RETURN2 + … + RETURNx**
478 -)))
475 +Battery Info+PAYVER + VALID Value from RETURN1 + Valid Value from RETURN2 + … + RETURNx
479 479  
480 -(((
481 481  Where PAYVER is defined by AT+PAYVER, below is an example screen shot.
482 -)))
483 483  
484 -[[image:1653269759169-150.png||height="513" width="716"]]
479 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image019.png]]
485 485  
486 -(% style="color:#4f81bd" %)**Examples: AT+DATAUP=1**
487 487  
488 -Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**Multiply UPLINKs**.
489 489  
483 +**Examples: AT+DATAUP=1**
484 +
485 +Compose the uplink payload with value returns in sequence and send with **Multiply UPLINKs**.
486 +
490 490  Final Payload is
491 491  
492 -(% style="color:#4f81bd" %)**Battery Info+PAYVER + PAYLOAD COUNT + PAYLOAD# + DATA**
489 +Battery Info+PAYVER + PAYLOAD COUNT + PAYLOAD# + DATA
493 493  
494 494  1. Battery Info (2 bytes): Battery voltage
495 495  1. PAYVER (1 byte): Defined by AT+PAYVER
496 496  1. PAYLOAD COUNT (1 byte): Total how many uplinks of this sampling.
497 497  1. PAYLOAD# (1 byte): Number of this uplink. (from 0,1,2,3…,to PAYLOAD COUNT)
498 -1. DATA: Valid value: max 6 bytes(US915 version here, Notice*!) for each uplink so each uplink <= 11 bytes. For the last uplink, DATA will might less than 6 bytes
495 +1. DATA: Valid value: max 6 bytes(US915 version here, [[Notice*!>>path:#max_byte]]) for each uplink so each uplink <= 11 bytes. For the last uplink, DATA will might less than 6 bytes
499 499  
500 -[[image:1653269916228-732.png||height="433" width="711"]]
497 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
501 501  
502 502  
503 503  So totally there will be 3 uplinks for this sampling, each uplink includes 6 bytes DATA
504 504  
505 -DATA1=RETURN1 Valid Value = (% style="background-color:green; color:white" %)20 20 0a 33 90 41
502 +DATA1=RETURN1 Valid Value = 20 20 0a 33 90 41
506 506  
507 -DATA2=1^^st^^ ~~ 6^^th^^ byte of Valid value of RETURN10=(% style="background-color:green; color:white" %) 02 aa 05 81 0a 20
504 +DATA2=1^^st^^ ~~ 6^^th^^ byte of Valid value of RETURN10= 02 aa 05 81 0a 20
508 508  
509 -DATA3=7^^th^^ ~~ 11^^th^^ bytes of Valid value of RETURN10 = (% style="background-color:green; color:white" %)20 20 20 2d 30
506 +DATA3=7^^th^^ ~~ 11^^th^^ bytes of Valid value of RETURN10 = 20 20 20 2d 30
510 510  
508 +
509 +
511 511  Below are the uplink payloads:
512 512  
513 -[[image:1653270130359-810.png]]
512 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image021.png]]
514 514  
515 515  
516 -(% style="color:red" %)**Notice: the Max bytes is according to the max support bytes in different Frequency Bands for lowest SF. As below:**
515 +Notice: the Max bytes is according to the max support bytes in different Frequency Bands for lowest SF. As below:
517 517  
518 518   ~* For AU915/AS923 bands, if UplinkDwell time=0, max 51 bytes for each uplink ( so 51 -5 = 46 max valid date)
519 519  
... ... @@ -523,8 +523,12 @@
523 523  
524 524   ~* For all other bands: max 51 bytes for each uplink  ( so 51 -5 = 46 max valid date).
525 525  
526 -=== 3.3.5 Uplink on demand ===
527 527  
526 +
527 +1.
528 +11.
529 +111. Uplink on demand
530 +
528 528  Except uplink periodically, RS485-BL is able to uplink on demand. The server sends downlink command to RS485-BL and RS485 will uplink data base on the command.
529 529  
530 530  Downlink control command:
... ... @@ -553,6 +553,7 @@
553 553  1.
554 554  11. Uplink Payload
555 555  
559 +
556 556  |**Size(bytes)**|**2**|**1**|**Length depends on the return from the commands**
557 557  |Value|(((
558 558  Battery(mV)
... ... @@ -601,7 +601,7 @@
601 601  
602 602  [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image023.png]]
603 603  
604 -1.
608 +1.
605 605  11. Configure RS485-BL via AT or Downlink
606 606  
607 607  User can configure RS485-BL via [[AT Commands >>path:#_​Using_the_AT]]or LoRaWAN Downlink Commands
... ... @@ -612,10 +612,12 @@
612 612  
613 613  * **Sensor Related Commands**: These commands are special designed for RS485-BL.  User can see these commands below:
614 614  
619 +
615 615  1.
616 616  11.
617 617  111. Common Commands:
618 618  
624 +
619 619  They should be available for each of Dragino Sensors, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: [[http:~~/~~/wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands>>url:http://wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands]]
620 620  
621 621  
... ... @@ -623,6 +623,7 @@
623 623  11.
624 624  111. Sensor related commands:
625 625  
632 +
626 626  ==== Choose Device Type (RS485 or TTL) ====
627 627  
628 628  RS485-BL can connect to either RS485 sensors or TTL sensor. User need to specify what type of sensor need to connect.
... ... @@ -663,6 +663,7 @@
663 663  * XX XX XX XX: RS485 command total NN bytes
664 664  * YY: How many bytes will be uplink from the return of this RS485 command, if YY=0, RS485-BL will execute the downlink command without uplink; if YY>0, RS485-BL will uplink total YY bytes from the output of this RS485 command
665 665  
673 +
666 666  **Example 1:**
667 667  
668 668  To connect a Modbus Alarm with below commands.
... ... @@ -771,6 +771,7 @@
771 771  
772 772  * AT+MBFUN=0: Disable Modbus fast reading.
773 773  
782 +
774 774  Example:
775 775  
776 776  * AT+MBFUN=1 and AT+DATACUT1/AT+DATACUT2 are not configure (0,0,0).
... ... @@ -855,7 +855,7 @@
855 855  
856 856  Etc. AT+CMDEAR=1,10 means erase AT+COMMAND1/AT+DATACUT1 to AT+COMMAND10/AT+DATACUT10
857 857  
858 -Example screen shot after clear all RS485 commands. 
867 +Example screen shot after clear all RS485 commands.
859 859  
860 860  
861 861  
... ... @@ -899,6 +899,7 @@
899 899  * A7 01 00 60   same as AT+BAUDR=9600
900 900  * A7 01 04 80  same as AT+BAUDR=115200
901 901  
911 +
902 902  A7 02 aa: Same as  AT+PARITY=aa  (aa value: 00 , 01 or 02)
903 903  
904 904  A7 03 aa: Same as  AT+STOPBIT=aa  (aa value: 00 , 01 or 02)
... ... @@ -929,15 +929,17 @@
929 929  1.
930 930  11. Buttons
931 931  
942 +
932 932  |**Button**|**Feature**
933 933  |**RST**|Reboot RS485-BL
934 934  
946 +
935 935  1.
936 936  11. +3V3 Output
937 937  
938 938  RS485-BL has a Controllable +3V3 output, user can use this output to power external sensor.
939 939  
940 -The +3V3 output will be valid for every sampling. RS485-BL will enable +3V3 output before all sampling and disable the +3V3 after all sampling. 
952 +The +3V3 output will be valid for every sampling. RS485-BL will enable +3V3 output before all sampling and disable the +3V3 after all sampling.
941 941  
942 942  
943 943  The +3V3 output time can be controlled by AT Command.
... ... @@ -955,7 +955,7 @@
955 955  
956 956  RS485-BL has a Controllable +5V output, user can use this output to power external sensor.
957 957  
958 -The +5V output will be valid for every sampling. RS485-BL will enable +5V output before all sampling and disable the +5v after all sampling. 
970 +The +5V output will be valid for every sampling. RS485-BL will enable +5V output before all sampling and disable the +5v after all sampling.
959 959  
960 960  
961 961  The 5V output time can be controlled by AT Command.
... ... @@ -976,6 +976,7 @@
976 976  |**LEDs**|**Feature**
977 977  |**LED1**|Blink when device transmit a packet.
978 978  
991 +
979 979  1.
980 980  11. Switch Jumper
981 981  
... ... @@ -997,6 +997,7 @@
997 997  
998 998  1. Case Study
999 999  
1013 +
1000 1000  User can check this URL for some case studies.
1001 1001  
1002 1002  [[http:~~/~~/wiki.dragino.com/index.php?title=APP_RS485_COMMUNICATE_WITH_SENSORS>>url:http://wiki.dragino.com/index.php?title=APP_RS485_COMMUNICATE_WITH_SENSORS]]
... ... @@ -1084,6 +1084,7 @@
1084 1084  * For bug fix
1085 1085  * Change LoRaWAN bands.
1086 1086  
1101 +
1087 1087  Below shows the hardware connection for how to upload an image to RS485-BL:
1088 1088  
1089 1089  [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image030.png]]
... ... @@ -1127,6 +1127,7 @@
1127 1127  1.
1128 1128  11. How many RS485-Slave can RS485-BL connects?
1129 1129  
1145 +
1130 1130  The RS485-BL can support max 32 RS485 devices. Each uplink command of RS485-BL can support max 16 different RS485 command. So RS485-BL can support max 16 RS485 devices pre-program in the device for uplink. For other devices no pre-program, user can use the [[downlink message (type code 0xA8) to poll their info>>path:#downlink_A8]].
1131 1131  
1132 1132  
... ... @@ -1137,7 +1137,7 @@
1137 1137  
1138 1138  Please see this link for debug:
1139 1139  
1140 -[[http:~~/~~/wiki.dragino.com/index.php?title=Main_Page#LoRaWAN_Communication_Debug>>url:http://wiki.dragino.com/index.php?title=Main_Page#LoRaWAN_Communication_Debug]] 
1156 +[[http:~~/~~/wiki.dragino.com/index.php?title=Main_Page#LoRaWAN_Communication_Debug>>url:http://wiki.dragino.com/index.php?title=Main_Page#LoRaWAN_Communication_Debug]]
1141 1141  
1142 1142  
1143 1143  
... ... @@ -1152,6 +1152,7 @@
1152 1152  
1153 1153  1. Order Info
1154 1154  
1171 +
1155 1155  **Part Number: RS485-BL-XXX**
1156 1156  
1157 1157  **XXX:**
... ... @@ -1167,6 +1167,7 @@
1167 1167  * **RU864**: frequency bands RU864
1168 1168  * **KZ865: **frequency bands KZ865
1169 1169  
1187 +
1170 1170  1. Packing Info
1171 1171  
1172 1172  **Package Includes**:
... ... @@ -1175,6 +1175,7 @@
1175 1175  * Stick Antenna for LoRa RF part x 1
1176 1176  * Program cable x 1
1177 1177  
1196 +
1178 1178  **Dimension and weight**:
1179 1179  
1180 1180  * Device Size: 13.5 x 7 x 3 cm
... ... @@ -1182,6 +1182,7 @@
1182 1182  * Package Size / pcs : 14.5 x 8 x 5 cm
1183 1183  * Weight / pcs : 170g
1184 1184  
1204 +
1185 1185  1. Support
1186 1186  
1187 1187  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1652953414711-647.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -119.3 KB
Content
1652953462722-299.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -202.7 KB
Content
1652953542269-423.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -118.5 KB
Content
1652953553383-907.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -94.0 KB
Content
1652953568895-172.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -109.3 KB
Content
1652954654347-831.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -138.7 KB
Content
1653266934636-343.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -176.5 KB
Content
1653267211009-519.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -138.7 KB
Content
1653268091319-405.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -399.3 KB
Content
1653268155545-638.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -113.7 KB
Content
1653268227651-549.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -1.3 MB
Content
1653269403619-508.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -27.8 KB
Content
1653269438444-278.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -26.6 KB
Content
1653269551753-223.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -138.7 KB
Content
1653269568276-930.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -131.4 KB
Content
1653269593172-426.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -142.6 KB
Content
1653269618463-608.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -27.7 KB
Content
1653269759169-150.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -294.0 KB
Content
1653269916228-732.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -143.3 KB
Content
1653270130359-810.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -197.8 KB
Content
image-20220519174512-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -32.2 KB
Content
image-20220519174512-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -42.7 KB
Content
image-20220519174512-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -36.3 KB
Content
image-20220519174512-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -19.1 KB
Content