Changes for page RS485-LN – RS485 to LoRaWAN Converter User Manual
Last modified by Karry Zhuang on 2025/03/06 16:34
Summary
-
Page properties (1 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 9 removed)
Details
- Page properties
-
- Content
-
... ... @@ -18,30 +18,26 @@ 18 18 19 19 ((( 20 20 ((( 21 -The Dragino RS485-LN is a (% style="color:blue" %)**RS485 to LoRaWAN Converter**(%%). It converts the RS485 signal into LoRaWAN wireless signal which simplify the IoT installation and reduce the installation/maintaining cost.21 +The Dragino RS485-LN is a RS485 to LoRaWAN Converter. It converts the RS485 signal into LoRaWAN wireless signal which simplify the IoT installation and reduce the installation/maintaining cost. 22 22 ))) 23 23 24 24 ((( 25 -RS485-LN allows user to (% style="color:blue" %)**monitor / control RS485 devices**(%%)and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.25 +RS485-LN allows user to monitor / control RS485 devices and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on. 26 26 ))) 27 27 28 28 ((( 29 - (% style="color:blue" %)**For data uplink**(%%), RS485-LN sends user-defined commands to RS485 devices and gets the return from the RS485 devices. RS485-LN will process these returns according to user-define rules to get the final payload and upload to LoRaWAN server.29 +For data uplink, RS485-LN sends user-defined commands to RS485 devices and gets the return from the RS485 devices. RS485-LN will process these returns according to user-define rules to get the final payload and upload to LoRaWAN server. 30 30 ))) 31 31 32 32 ((( 33 -(% style="color:blue" %)**For data downlink**(%%), RS485-LN runs in LoRaWAN Class C. When there downlink commands from LoRaWAN server, RS485-LN will forward the commands from LoRaWAN server to RS485 devices. 34 - 35 -(% style="color:blue" %)**Demo Dashboard for RS485-LN**(%%) connect to two energy meters: [[https:~~/~~/app.datacake.de/dashboard/d/58844a26-378d-4c5a-aaf5-b5b5b153447a>>url:https://app.datacake.de/dashboard/d/58844a26-378d-4c5a-aaf5-b5b5b153447a]] 33 +For data downlink, RS485-LN runs in LoRaWAN Class C. When there downlink commands from LoRaWAN server, RS485-LN will forward the commands from LoRaWAN server to RS485 devices. 36 36 ))) 37 37 ))) 38 38 39 39 [[image:1653267211009-519.png||height="419" width="724"]] 40 40 41 - 42 42 == 1.2 Specifications == 43 43 44 - 45 45 **Hardware System:** 46 46 47 47 * STM32L072CZT6 MCU ... ... @@ -48,6 +48,8 @@ 48 48 * SX1276/78 Wireless Chip 49 49 * Power Consumption (exclude RS485 device): 50 50 ** Idle: 32mA@12v 47 + 48 +* 51 51 ** 20dB Transmit: 65mA@12v 52 52 53 53 **Interface for Model:** ... ... @@ -76,8 +76,6 @@ 76 76 * Automatic RF Sense and CAD with ultra-fast AFC. 77 77 * Packet engine up to 256 bytes with CRC. 78 78 79 - 80 - 81 81 == 1.3 Features == 82 82 83 83 * LoRaWAN Class A & Class C protocol (default Class C) ... ... @@ -89,8 +89,6 @@ 89 89 * Support Modbus protocol 90 90 * Support Interrupt uplink (Since hardware version v1.2) 91 91 92 - 93 - 94 94 == 1.4 Applications == 95 95 96 96 * Smart Buildings & Home Automation ... ... @@ -212,8 +212,18 @@ 212 212 213 213 === 3.3.1 onfigure UART settings for RS485 or TTL communication === 214 214 215 - To useRS485-LNto read data from RS485 sensors,connect the RS485-LNA/B tracestothesensors.And user need tomakesureRS485-LN use the matchUART settingtoaccess thesensors.Therelatedcommandsfor UART settings are:209 +RS485-BL can connect to either RS485 sensors or TTL sensor. User need to specify what type of sensor need to connect. 216 216 211 +**~1. RS485-MODBUS mode:** 212 + 213 +AT+MOD=1 ~/~/ Support RS485-MODBUS type sensors. User can connect multiply RS485 , Modbus sensors to the A / B pins. 214 + 215 +**2. TTL mode:** 216 + 217 +AT+MOD=2 ~/~/ Support TTL Level sensors, User can connect one TTL Sensor to the TXD/RXD/GND pins. 218 + 219 +RS485-BL default UART settings is **9600, no parity, stop bit 1**. If the sensor has a different settings, user can change the RS485-BL setting to match. 220 + 217 217 (% border="1" style="background-color:#ffffcc; color:green; width:795px" %) 218 218 |((( 219 219 **AT Commands** ... ... @@ -238,7 +238,13 @@ 238 238 |((( 239 239 AT+PARITY 240 240 )))|(% style="width:285px" %)((( 245 +((( 241 241 Set UART parity (for RS485 connection) 247 +))) 248 + 249 +((( 250 +Default Value is: no parity. 251 +))) 242 242 )))|(% style="width:347px" %)((( 243 243 ((( 244 244 AT+PARITY=0 ... ... @@ -256,7 +256,7 @@ 256 256 ))) 257 257 258 258 ((( 259 - 269 +Default Value is: 1bit. 260 260 ))) 261 261 )))|(% style="width:347px" %)((( 262 262 ((( ... ... @@ -275,10 +275,12 @@ 275 275 === 3.3.2 Configure sensors === 276 276 277 277 ((( 288 +Some sensors might need to configure before normal operation. User can configure such sensor via PC or through RS485-BL AT Commands (% style="color:#4f81bd" %)**AT+CFGDEV**. 289 +))) 290 + 278 278 ((( 279 - Some sensors might need to configurebefore normal operation. Usercan configuresuchsensorviaPC andRS485 adapter or through RS485-LN AT Commands(% style="color:#4f81bd" %)**AT+CFGDEV**(%%).Each (% style="color:#4f81bd" %)**AT+CFGDEVRS485command to sensors. This command will only run when user input it and won’t run during each sampling.292 +When user issue an (% style="color:#4f81bd" %)**AT+CFGDEV**(%%) command, Each (% style="color:#4f81bd" %)**AT+CFGDEV**(%%) equals to send a command to the RS485 or TTL sensors. This command will only run when user input it and won’t run during each sampling. 280 280 ))) 281 -))) 282 282 283 283 (% border="1" style="background-color:#ffffcc; color:green; width:806px" %) 284 284 |**AT Commands**|(% style="width:418px" %)**Description**|(% style="width:256px" %)**Example** ... ... @@ -290,6 +290,8 @@ 290 290 mm: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command 291 291 )))|(% style="width:256px" %)AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m 292 292 305 +Detail of AT+CFGDEV command see [[AT+CFGDEV detail>>path:#AT_CFGDEV]]. 306 + 293 293 === 3.3.3 Configure read commands for each sampling === 294 294 295 295 ((( ... ... @@ -371,17 +371,11 @@ 371 371 **m: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command** 372 372 ))) 373 373 374 -((( 375 375 For example, if we have a RS485 sensor. The command to get sensor value is: 01 03 0B B8 00 02 46 0A. Where 01 03 0B B8 00 02 is the Modbus command to read the register 0B B8 where stored the sensor value. The 46 0A is the CRC-16/MODBUS which calculate manually. 376 -))) 377 377 378 -((( 379 379 In the RS485-BL, we should use this command AT+COMMAND1=01 03 0B B8 00 02,1 for the same. 380 -))) 381 381 382 -((( 383 383 **AT+SEARCHx**: This command defines how to handle the return from AT+COMMANDx. 384 -))) 385 385 386 386 (% border="1" class="table-bordered" %) 387 387 |((( ... ... @@ -393,24 +393,26 @@ 393 393 394 394 ))) 395 395 396 - **Examples:**404 +Examples: 397 397 398 - ~1. For a return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49406 +1. For a return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49 399 399 400 400 If we set AT+SEARCH1=1,1E 56 34. (max 5 bytes for prefix) 401 401 402 -The valid data will be all bytes after 1E 56 34 , so it is (% style="background-color:yellow" %)**2e 30 58 5f 36 41 30 31 00 49**410 +The valid data will be all bytes after 1E 56 34 , so it is 2e 30 58 5f 36 41 30 31 00 49 403 403 404 -[[image:165 3269403619-508.png]]412 +[[image:1652954654347-831.png]] 405 405 406 -2. For a return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49 407 407 415 +1. For a return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49 416 + 408 408 If we set AT+SEARCH1=2, 1E 56 34+31 00 49 409 409 410 -Device will search the bytes between 1E 56 34 and 31 00 49. So it is (% style="background-color:yellow" %)**2e 30 58 5f 36 41 30**419 +Device will search the bytes between 1E 56 34 and 31 00 49. So it is 2e 30 58 5f 36 41 30 411 411 412 -[[image: 1653269438444-278.png]]421 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image014.png]] 413 413 423 + 414 414 **AT+DATACUTx : **This command defines how to handle the return from AT+COMMANDx, max return length is 45 bytes. 415 415 416 416 |((( ... ... @@ -425,95 +425,94 @@ 425 425 426 426 * Grab bytes: 427 427 428 -[[image: 1653269551753-223.png||height="311" width="717"]]438 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image015.png]] 429 429 430 430 * Grab a section. 431 431 432 -[[image: 1653269568276-930.png||height="325" width="718"]]442 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image016.png]] 433 433 434 434 * Grab different sections. 435 435 436 -[[image: 1653269593172-426.png||height="303" width="725"]]446 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image017.png]] 437 437 438 -(% style="color:red" %)**Note:** 439 439 449 +Note: 450 + 440 440 AT+SEARCHx and AT+DATACUTx can be used together, if both commands are set, RS485-BL will first process AT+SEARCHx on the return string and get a temporary string, and then process AT+DATACUTx on this temporary string to get the final payload. In this case, AT+DATACUTx need to set to format AT+DATACUTx=0,xx,xx where the return bytes set to 0. 441 441 442 442 Example: 443 443 444 - (% style="color:red" %)AT+COMMAND1=11 01 1E D0,0455 +AT+COMMAND1=11 01 1E D0,0 445 445 446 - (% style="color:red" %)AT+SEARCH1=1,1E 56 34457 +AT+SEARCH1=1,1E 56 34 447 447 448 - (% style="color:red" %)AT+DATACUT1=0,2,1~~5459 +AT+DATACUT1=0,2,1~~5 449 449 450 - (% style="color:red" %)Return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49461 +Return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49 451 451 452 - (% style="color:red" %)String after SEARCH command: 2e 30 58 5f 36 41 30 31 00 49463 +String after SEARCH command: 2e 30 58 5f 36 41 30 31 00 49 453 453 454 - (% style="color:red" %)Valid payload after DataCUT command: 2e 30 58 5f 36465 +Valid payload after DataCUT command: 2e 30 58 5f 36 455 455 456 -[[image: 1653269618463-608.png]]467 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image018.png]] 457 457 458 -=== 3.3.4 Compose the uplink payload === 459 459 460 -((( 470 + 471 + 472 +1. 473 +11. 474 +111. Compose the uplink payload 475 + 461 461 Through AT+COMMANDx and AT+DATACUTx we got valid value from each RS485 commands, Assume these valid value are RETURN1, RETURN2, .., to RETURNx. The next step is how to compose the LoRa Uplink Payload by these RETURNs. The command is **AT+DATAUP.** 462 -))) 463 463 464 -((( 465 -(% style="color:#4f81bd" %)**Examples: AT+DATAUP=0** 466 -))) 467 467 468 -((( 469 -Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**A SIGNLE UPLINK**. 470 -))) 479 +**Examples: AT+DATAUP=0** 471 471 472 -((( 481 +Compose the uplink payload with value returns in sequence and send with **A SIGNLE UPLINK**. 482 + 473 473 Final Payload is 474 -))) 475 475 476 -((( 477 -(% style="color:#4f81bd" %)**Battery Info+PAYVER + VALID Value from RETURN1 + Valid Value from RETURN2 + … + RETURNx** 478 -))) 485 +Battery Info+PAYVER + VALID Value from RETURN1 + Valid Value from RETURN2 + … + RETURNx 479 479 480 -((( 481 481 Where PAYVER is defined by AT+PAYVER, below is an example screen shot. 482 -))) 483 483 484 -[[image: 1653269759169-150.png||height="513" width="716"]]489 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image019.png]] 485 485 486 -(% style="color:#4f81bd" %)**Examples: AT+DATAUP=1** 487 487 488 -Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**Multiply UPLINKs**. 489 489 493 +**Examples: AT+DATAUP=1** 494 + 495 +Compose the uplink payload with value returns in sequence and send with **Multiply UPLINKs**. 496 + 490 490 Final Payload is 491 491 492 - (% style="color:#4f81bd" %)**Battery Info+PAYVER + PAYLOAD COUNT + PAYLOAD# + DATA**499 +Battery Info+PAYVER + PAYLOAD COUNT + PAYLOAD# + DATA 493 493 494 494 1. Battery Info (2 bytes): Battery voltage 495 495 1. PAYVER (1 byte): Defined by AT+PAYVER 496 496 1. PAYLOAD COUNT (1 byte): Total how many uplinks of this sampling. 497 497 1. PAYLOAD# (1 byte): Number of this uplink. (from 0,1,2,3…,to PAYLOAD COUNT) 498 -1. DATA: Valid value: max 6 bytes(US915 version here, Notice*!) for each uplink so each uplink <= 11 bytes. For the last uplink, DATA will might less than 6 bytes 505 +1. DATA: Valid value: max 6 bytes(US915 version here, [[Notice*!>>path:#max_byte]]) for each uplink so each uplink <= 11 bytes. For the last uplink, DATA will might less than 6 bytes 499 499 500 -[[image: 1653269916228-732.png||height="433" width="711"]]507 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]] 501 501 502 502 503 503 So totally there will be 3 uplinks for this sampling, each uplink includes 6 bytes DATA 504 504 505 -DATA1=RETURN1 Valid Value = (% style="background-color:green; color:white" %)20 20 0a 33 90 41512 +DATA1=RETURN1 Valid Value = 20 20 0a 33 90 41 506 506 507 -DATA2=1^^st^^ ~~ 6^^th^^ byte of Valid value of RETURN10= (%style="background-color:green; color:white" %)02 aa 05 81 0a 20514 +DATA2=1^^st^^ ~~ 6^^th^^ byte of Valid value of RETURN10= 02 aa 05 81 0a 20 508 508 509 -DATA3=7^^th^^ ~~ 11^^th^^ bytes of Valid value of RETURN10 = (%style="background-color:green; color:white" %)20 20 20 2d 30516 +DATA3=7^^th^^ ~~ 11^^th^^ bytes of Valid value of RETURN10 = 20 20 20 2d 30 510 510 518 + 519 + 511 511 Below are the uplink payloads: 512 512 513 -[[image: 1653270130359-810.png]]522 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image021.png]] 514 514 515 515 516 - (% style="color:red" %)**Notice: the Max bytes is according to the max support bytes in different Frequency Bands for lowest SF. As below:**525 +Notice: the Max bytes is according to the max support bytes in different Frequency Bands for lowest SF. As below: 517 517 518 518 ~* For AU915/AS923 bands, if UplinkDwell time=0, max 51 bytes for each uplink ( so 51 -5 = 46 max valid date) 519 519 ... ... @@ -523,8 +523,12 @@ 523 523 524 524 ~* For all other bands: max 51 bytes for each uplink ( so 51 -5 = 46 max valid date). 525 525 526 -=== 3.3.5 Uplink on demand === 527 527 536 + 537 +1. 538 +11. 539 +111. Uplink on demand 540 + 528 528 Except uplink periodically, RS485-BL is able to uplink on demand. The server sends downlink command to RS485-BL and RS485 will uplink data base on the command. 529 529 530 530 Downlink control command: ... ... @@ -535,8 +535,8 @@ 535 535 536 536 537 537 538 -1. 539 -11. 551 +1. 552 +11. 540 540 111. Uplink on Interrupt 541 541 542 542 Put the interrupt sensor between 3.3v_out and GPIO ext.[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image022.png]] ... ... @@ -550,7 +550,7 @@ 550 550 AT+INTMOD=3 Interrupt trigger by rising edge. 551 551 552 552 553 -1. 566 +1. 554 554 11. Uplink Payload 555 555 556 556 |**Size(bytes)**|**2**|**1**|**Length depends on the return from the commands** ... ... @@ -612,15 +612,15 @@ 612 612 613 613 * **Sensor Related Commands**: These commands are special designed for RS485-BL. User can see these commands below: 614 614 615 -1. 616 -11. 628 +1. 629 +11. 617 617 111. Common Commands: 618 618 619 619 They should be available for each of Dragino Sensors, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: [[http:~~/~~/wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands>>url:http://wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands]] 620 620 621 621 622 -1. 623 -11. 635 +1. 636 +11. 624 624 111. Sensor related commands: 625 625 626 626 ==== Choose Device Type (RS485 or TTL) ==== ... ... @@ -926,13 +926,13 @@ 926 926 927 927 928 928 929 -1. 942 +1. 930 930 11. Buttons 931 931 932 932 |**Button**|**Feature** 933 933 |**RST**|Reboot RS485-BL 934 934 935 -1. 948 +1. 936 936 11. +3V3 Output 937 937 938 938 RS485-BL has a Controllable +3V3 output, user can use this output to power external sensor. ... ... @@ -950,7 +950,7 @@ 950 950 By default, the AT+3V3T=0. This is a special case, means the +3V3 output is always on at any time 951 951 952 952 953 -1. 966 +1. 954 954 11. +5V Output 955 955 956 956 RS485-BL has a Controllable +5V output, user can use this output to power external sensor. ... ... @@ -970,13 +970,13 @@ 970 970 971 971 972 972 973 -1. 986 +1. 974 974 11. LEDs 975 975 976 976 |**LEDs**|**Feature** 977 977 |**LED1**|Blink when device transmit a packet. 978 978 979 -1. 992 +1. 980 980 11. Switch Jumper 981 981 982 982 |**Switch Jumper**|**Feature** ... ... @@ -1022,7 +1022,7 @@ 1022 1022 1023 1023 1024 1024 1025 -1. 1038 +1. 1026 1026 11. Common AT Command Sequence 1027 1027 111. Multi-channel ABP mode (Use with SX1301/LG308) 1028 1028 ... ... @@ -1041,8 +1041,8 @@ 1041 1041 1042 1042 ATZ 1043 1043 1044 -1. 1045 -11. 1057 +1. 1058 +11. 1046 1046 111. Single-channel ABP mode (Use with LG01/LG02) 1047 1047 1048 1048 AT+FDR Reset Parameters to Factory Default, Keys Reserve ... ... @@ -1117,7 +1117,7 @@ 1117 1117 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image035.png]] [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image036.png]] 1118 1118 1119 1119 1120 -1. 1133 +1. 1121 1121 11. How to change the LoRa Frequency Bands/Region? 1122 1122 1123 1123 User can follow the introduction for [[how to upgrade image>>path:#upgrade_image]]. When download the images, choose the required image file for download. ... ... @@ -1124,7 +1124,7 @@ 1124 1124 1125 1125 1126 1126 1127 -1. 1140 +1. 1128 1128 11. How many RS485-Slave can RS485-BL connects? 1129 1129 1130 1130 The RS485-BL can support max 32 RS485 devices. Each uplink command of RS485-BL can support max 16 different RS485 command. So RS485-BL can support max 16 RS485 devices pre-program in the device for uplink. For other devices no pre-program, user can use the [[downlink message (type code 0xA8) to poll their info>>path:#downlink_A8]]. ... ... @@ -1141,7 +1141,7 @@ 1141 1141 1142 1142 1143 1143 1144 -1. 1157 +1. 1145 1145 11. Why I can’t join TTN V3 in US915 /AU915 bands? 1146 1146 1147 1147 It might about the channels mapping. Please see for detail.
- 1653269403619-508.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -27.8 KB - Content
- 1653269438444-278.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -26.6 KB - Content
- 1653269551753-223.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -138.7 KB - Content
- 1653269568276-930.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -131.4 KB - Content
- 1653269593172-426.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -142.6 KB - Content
- 1653269618463-608.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -27.7 KB - Content
- 1653269759169-150.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -294.0 KB - Content
- 1653269916228-732.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -143.3 KB - Content
- 1653270130359-810.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -197.8 KB - Content