Changes for page RS485-LN – RS485 to LoRaWAN Converter User Manual
Last modified by Karry Zhuang on 2025/03/06 16:34
Summary
-
Page properties (1 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 9 removed)
Details
- Page properties
-
- Content
-
... ... @@ -18,42 +18,40 @@ 18 18 19 19 ((( 20 20 ((( 21 -The Dragino RS485-LN is a (% style="color:blue" %)**RS485 to LoRaWAN Converter**(%%). It converts the RS485 signal into LoRaWAN wireless signal which simplify the IoT installation and reduce the installation/maintaining cost.21 +The Dragino RS485-LN is a RS485 to LoRaWAN Converter. It converts the RS485 signal into LoRaWAN wireless signal which simplify the IoT installation and reduce the installation/maintaining cost. 22 22 ))) 23 23 24 24 ((( 25 -RS485-LN allows user to (% style="color:blue" %)**monitor / control RS485 devices**(%%)and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.25 +RS485-LN allows user to monitor / control RS485 devices and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on. 26 26 ))) 27 27 28 28 ((( 29 - (% style="color:blue" %)**For data uplink**(%%), RS485-LN sends user-defined commands to RS485 devices and gets the return from the RS485 devices. RS485-LN will process these returns according to user-define rules to get the final payload and upload to LoRaWAN server.29 +For data uplink, RS485-LN sends user-defined commands to RS485 devices and gets the return from the RS485 devices. RS485-LN will process these returns according to user-define rules to get the final payload and upload to LoRaWAN server. 30 30 ))) 31 31 32 32 ((( 33 -(% style="color:blue" %)**For data downlink**(%%), RS485-LN runs in LoRaWAN Class C. When there downlink commands from LoRaWAN server, RS485-LN will forward the commands from LoRaWAN server to RS485 devices. 34 - 35 -(% style="color:blue" %)**Demo Dashboard for RS485-LN**(%%) connect to two energy meters: [[https:~~/~~/app.datacake.de/dashboard/d/58844a26-378d-4c5a-aaf5-b5b5b153447a>>url:https://app.datacake.de/dashboard/d/58844a26-378d-4c5a-aaf5-b5b5b153447a]] 33 +For data downlink, RS485-LN runs in LoRaWAN Class C. When there downlink commands from LoRaWAN server, RS485-LN will forward the commands from LoRaWAN server to RS485 devices. 36 36 ))) 37 37 ))) 38 38 39 39 [[image:1653267211009-519.png||height="419" width="724"]] 40 40 41 - 42 42 == 1.2 Specifications == 43 43 44 - 45 45 **Hardware System:** 46 46 47 47 * STM32L072CZT6 MCU 48 -* SX1276/78 Wireless Chip 44 +* SX1276/78 Wireless Chip 49 49 * Power Consumption (exclude RS485 device): 50 50 ** Idle: 32mA@12v 47 + 48 +* 51 51 ** 20dB Transmit: 65mA@12v 52 52 53 53 **Interface for Model:** 54 54 55 55 * RS485 56 -* Power Input 7~~ 24V DC. 54 +* Power Input 7~~ 24V DC. 57 57 58 58 **LoRa Spec:** 59 59 ... ... @@ -76,8 +76,6 @@ 76 76 * Automatic RF Sense and CAD with ultra-fast AFC. 77 77 * Packet engine up to 256 bytes with CRC. 78 78 79 - 80 - 81 81 == 1.3 Features == 82 82 83 83 * LoRaWAN Class A & Class C protocol (default Class C) ... ... @@ -89,8 +89,6 @@ 89 89 * Support Modbus protocol 90 90 * Support Interrupt uplink (Since hardware version v1.2) 91 91 92 - 93 - 94 94 == 1.4 Applications == 95 95 96 96 * Smart Buildings & Home Automation ... ... @@ -144,29 +144,24 @@ 144 144 [[image:1653268155545-638.png||height="334" width="724"]] 145 145 146 146 ((( 147 -The RS485-LN in this example connected to two RS485 devices for demonstration, user can connect to other RS485 devices via the same method. The connection is as below: 141 +The RS485-BL in this example connected to two RS485 devices for demonstration, user can connect to other RS485 devices via the same method. 142 +))) 148 148 149 -485A+ and 485B- of the sensor are connected to RS485A and RA485B of RS485-LN respectively. 150 - 151 -[[image:1653268227651-549.png||height="592" width="720"]] 152 - 153 153 ((( 154 -The LG308 is already set to connect to [[TTN V3 network >> path:eu1.cloud.thethings.network/]]. So what we need to now is only configure the TTN V3:145 +The LG308 is already set to connect to [[TTN V3 network >>url:https://www.thethingsnetwork.org/]]. So what we need to now is only configure the TTN V3: 155 155 ))) 156 156 157 157 ((( 158 -**Step 1**: Create a device in TTN V3 with the OTAA keys from RS485-L N.149 +**Step 1**: Create a device in TTN V3 with the OTAA keys from RS485-BL. 159 159 ))) 160 160 161 161 ((( 162 -Each RS485-L Nis shipped with a sticker with unique device EUI:153 +Each RS485-BL is shipped with a sticker with unique device EUI: 163 163 ))) 164 -))) 165 165 166 166 [[image:1652953462722-299.png]] 167 167 168 168 ((( 169 -((( 170 170 User can enter this key in their LoRaWAN Server portal. Below is TTN V3 screen shot: 171 171 ))) 172 172 ... ... @@ -173,11 +173,13 @@ 173 173 ((( 174 174 Add APP EUI in the application. 175 175 ))) 176 -))) 177 177 166 + 167 + 168 + 178 178 [[image:image-20220519174512-1.png]] 179 179 180 -[[image:image-20220519174512-2.png||height="32 3" width="720"]]171 +[[image:image-20220519174512-2.png||height="328" width="731"]] 181 181 182 182 [[image:image-20220519174512-3.png||height="556" width="724"]] 183 183 ... ... @@ -193,7 +193,7 @@ 193 193 194 194 195 195 ((( 196 -**Step 2**: Power on RS485-L Nand it will auto join to the TTN V3 network. After join success, it will start to upload message to TTN V3 and user can see in the panel.187 +**Step 2**: Power on RS485-BL and it will auto join to the TTN V3 network. After join success, it will start to upload message to TTN V3 and user can see in the panel. 197 197 ))) 198 198 199 199 [[image:1652953568895-172.png||height="232" width="724"]] ... ... @@ -201,19 +201,23 @@ 201 201 == 3.3 Configure Commands to read data == 202 202 203 203 ((( 204 -((( 205 -There are plenty of RS485 devices in the market and each device has different command to read the valid data. To support these devices in flexible, RS485-LN supports flexible command set. User can use [[AT Commands>>path:#AT_COMMAND]] or LoRaWAN Downlink Command to configure what commands RS485-LN should send for each sampling and how to handle the return from RS485 devices. 195 +There are plenty of RS485 and TTL level devices in the market and each device has different command to read the valid data. To support these devices in flexible, RS485-BL supports flexible command set. User can use [[AT Commands or LoRaWAN Downlink>>path:#AT_COMMAND]] Command to configure how RS485-BL should read the sensor and how to handle the return from RS485 or TTL sensors. 206 206 ))) 207 207 208 -((( 209 -(% style="color:red" %)Note: below description and commands are for firmware version >v1.1, if you have firmware version v1.0. Please check the [[user manual v1.0>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/&file=RS485-LN_UserManual_v1.0.1.pdf]] or upgrade the firmware to v1.1 210 -))) 211 -))) 212 - 213 213 === 3.3.1 onfigure UART settings for RS485 or TTL communication === 214 214 215 - To useRS485-LNto read data from RS485 sensors,connect the RS485-LNA/B tracestothesensors.And user need tomakesureRS485-LN use the matchUART settingtoaccess thesensors.Therelatedcommandsfor UART settings are:200 +RS485-BL can connect to either RS485 sensors or TTL sensor. User need to specify what type of sensor need to connect. 216 216 202 +**~1. RS485-MODBUS mode:** 203 + 204 +AT+MOD=1 ~/~/ Support RS485-MODBUS type sensors. User can connect multiply RS485 , Modbus sensors to the A / B pins. 205 + 206 +**2. TTL mode:** 207 + 208 +AT+MOD=2 ~/~/ Support TTL Level sensors, User can connect one TTL Sensor to the TXD/RXD/GND pins. 209 + 210 +RS485-BL default UART settings is **9600, no parity, stop bit 1**. If the sensor has a different settings, user can change the RS485-BL setting to match. 211 + 217 217 (% border="1" style="background-color:#ffffcc; color:green; width:795px" %) 218 218 |((( 219 219 **AT Commands** ... ... @@ -238,7 +238,13 @@ 238 238 |((( 239 239 AT+PARITY 240 240 )))|(% style="width:285px" %)((( 236 +((( 241 241 Set UART parity (for RS485 connection) 238 +))) 239 + 240 +((( 241 +Default Value is: no parity. 242 +))) 242 242 )))|(% style="width:347px" %)((( 243 243 ((( 244 244 AT+PARITY=0 ... ... @@ -256,7 +256,7 @@ 256 256 ))) 257 257 258 258 ((( 259 - 260 +Default Value is: 1bit. 260 260 ))) 261 261 )))|(% style="width:347px" %)((( 262 262 ((( ... ... @@ -275,10 +275,12 @@ 275 275 === 3.3.2 Configure sensors === 276 276 277 277 ((( 279 +Some sensors might need to configure before normal operation. User can configure such sensor via PC or through RS485-BL AT Commands (% style="color:#4f81bd" %)**AT+CFGDEV**. 280 +))) 281 + 278 278 ((( 279 - Some sensors might need to configurebefore normal operation. Usercan configuresuchsensorviaPC andRS485 adapter or through RS485-LN AT Commands(% style="color:#4f81bd" %)**AT+CFGDEV**(%%).Each (% style="color:#4f81bd" %)**AT+CFGDEVRS485command to sensors. This command will only run when user input it and won’t run during each sampling.283 +When user issue an (% style="color:#4f81bd" %)**AT+CFGDEV**(%%) command, Each (% style="color:#4f81bd" %)**AT+CFGDEV**(%%) equals to send a command to the RS485 or TTL sensors. This command will only run when user input it and won’t run during each sampling. 280 280 ))) 281 -))) 282 282 283 283 (% border="1" style="background-color:#ffffcc; color:green; width:806px" %) 284 284 |**AT Commands**|(% style="width:418px" %)**Description**|(% style="width:256px" %)**Example** ... ... @@ -290,6 +290,8 @@ 290 290 mm: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command 291 291 )))|(% style="width:256px" %)AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m 292 292 296 +Detail of AT+CFGDEV command see [[AT+CFGDEV detail>>path:#AT_CFGDEV]]. 297 + 293 293 === 3.3.3 Configure read commands for each sampling === 294 294 295 295 ((( ... ... @@ -371,17 +371,11 @@ 371 371 **m: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command** 372 372 ))) 373 373 374 -((( 375 375 For example, if we have a RS485 sensor. The command to get sensor value is: 01 03 0B B8 00 02 46 0A. Where 01 03 0B B8 00 02 is the Modbus command to read the register 0B B8 where stored the sensor value. The 46 0A is the CRC-16/MODBUS which calculate manually. 376 -))) 377 377 378 -((( 379 379 In the RS485-BL, we should use this command AT+COMMAND1=01 03 0B B8 00 02,1 for the same. 380 -))) 381 381 382 -((( 383 383 **AT+SEARCHx**: This command defines how to handle the return from AT+COMMANDx. 384 -))) 385 385 386 386 (% border="1" class="table-bordered" %) 387 387 |((( ... ... @@ -393,24 +393,26 @@ 393 393 394 394 ))) 395 395 396 - **Examples:**395 +Examples: 397 397 398 - ~1. For a return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49397 +1. For a return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49 399 399 400 400 If we set AT+SEARCH1=1,1E 56 34. (max 5 bytes for prefix) 401 401 402 -The valid data will be all bytes after 1E 56 34 , so it is (% style="background-color:yellow" %)**2e 30 58 5f 36 41 30 31 00 49**401 +The valid data will be all bytes after 1E 56 34 , so it is 2e 30 58 5f 36 41 30 31 00 49 403 403 404 -[[image:165 3269403619-508.png]]403 +[[image:1652954654347-831.png]] 405 405 406 -2. For a return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49 407 407 406 +1. For a return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49 407 + 408 408 If we set AT+SEARCH1=2, 1E 56 34+31 00 49 409 409 410 -Device will search the bytes between 1E 56 34 and 31 00 49. So it is (% style="background-color:yellow" %)**2e 30 58 5f 36 41 30**410 +Device will search the bytes between 1E 56 34 and 31 00 49. So it is 2e 30 58 5f 36 41 30 411 411 412 -[[image: 1653269438444-278.png]]412 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image014.png]] 413 413 414 + 414 414 **AT+DATACUTx : **This command defines how to handle the return from AT+COMMANDx, max return length is 45 bytes. 415 415 416 416 |((( ... ... @@ -425,95 +425,94 @@ 425 425 426 426 * Grab bytes: 427 427 428 -[[image: 1653269551753-223.png||height="311" width="717"]]429 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image015.png]] 429 429 430 430 * Grab a section. 431 431 432 -[[image: 1653269568276-930.png||height="325" width="718"]]433 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image016.png]] 433 433 434 434 * Grab different sections. 435 435 436 -[[image: 1653269593172-426.png||height="303" width="725"]]437 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image017.png]] 437 437 438 -(% style="color:red" %)**Note:** 439 439 440 +Note: 441 + 440 440 AT+SEARCHx and AT+DATACUTx can be used together, if both commands are set, RS485-BL will first process AT+SEARCHx on the return string and get a temporary string, and then process AT+DATACUTx on this temporary string to get the final payload. In this case, AT+DATACUTx need to set to format AT+DATACUTx=0,xx,xx where the return bytes set to 0. 441 441 442 442 Example: 443 443 444 - (% style="color:red" %)AT+COMMAND1=11 01 1E D0,0446 +AT+COMMAND1=11 01 1E D0,0 445 445 446 - (% style="color:red" %)AT+SEARCH1=1,1E 56 34448 +AT+SEARCH1=1,1E 56 34 447 447 448 - (% style="color:red" %)AT+DATACUT1=0,2,1~~5450 +AT+DATACUT1=0,2,1~~5 449 449 450 - (% style="color:red" %)Return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49452 +Return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49 451 451 452 - (% style="color:red" %)String after SEARCH command: 2e 30 58 5f 36 41 30 31 00 49454 +String after SEARCH command: 2e 30 58 5f 36 41 30 31 00 49 453 453 454 - (% style="color:red" %)Valid payload after DataCUT command: 2e 30 58 5f 36456 +Valid payload after DataCUT command: 2e 30 58 5f 36 455 455 456 -[[image: 1653269618463-608.png]]458 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image018.png]] 457 457 458 -=== 3.3.4 Compose the uplink payload === 459 459 460 -((( 461 + 462 + 463 +1. 464 +11. 465 +111. Compose the uplink payload 466 + 461 461 Through AT+COMMANDx and AT+DATACUTx we got valid value from each RS485 commands, Assume these valid value are RETURN1, RETURN2, .., to RETURNx. The next step is how to compose the LoRa Uplink Payload by these RETURNs. The command is **AT+DATAUP.** 462 -))) 463 463 464 -((( 465 -(% style="color:#4f81bd" %)**Examples: AT+DATAUP=0** 466 -))) 467 467 468 -((( 469 -Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**A SIGNLE UPLINK**. 470 -))) 470 +**Examples: AT+DATAUP=0** 471 471 472 -((( 472 +Compose the uplink payload with value returns in sequence and send with **A SIGNLE UPLINK**. 473 + 473 473 Final Payload is 474 -))) 475 475 476 -((( 477 -(% style="color:#4f81bd" %)**Battery Info+PAYVER + VALID Value from RETURN1 + Valid Value from RETURN2 + … + RETURNx** 478 -))) 476 +Battery Info+PAYVER + VALID Value from RETURN1 + Valid Value from RETURN2 + … + RETURNx 479 479 480 -((( 481 481 Where PAYVER is defined by AT+PAYVER, below is an example screen shot. 482 -))) 483 483 484 -[[image: 1653269759169-150.png||height="513" width="716"]]480 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image019.png]] 485 485 486 -(% style="color:#4f81bd" %)**Examples: AT+DATAUP=1** 487 487 488 -Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**Multiply UPLINKs**. 489 489 484 +**Examples: AT+DATAUP=1** 485 + 486 +Compose the uplink payload with value returns in sequence and send with **Multiply UPLINKs**. 487 + 490 490 Final Payload is 491 491 492 - (% style="color:#4f81bd" %)**Battery Info+PAYVER + PAYLOAD COUNT + PAYLOAD# + DATA**490 +Battery Info+PAYVER + PAYLOAD COUNT + PAYLOAD# + DATA 493 493 494 494 1. Battery Info (2 bytes): Battery voltage 495 495 1. PAYVER (1 byte): Defined by AT+PAYVER 496 496 1. PAYLOAD COUNT (1 byte): Total how many uplinks of this sampling. 497 497 1. PAYLOAD# (1 byte): Number of this uplink. (from 0,1,2,3…,to PAYLOAD COUNT) 498 -1. DATA: Valid value: max 6 bytes(US915 version here, Notice*!) for each uplink so each uplink <= 11 bytes. For the last uplink, DATA will might less than 6 bytes 496 +1. DATA: Valid value: max 6 bytes(US915 version here, [[Notice*!>>path:#max_byte]]) for each uplink so each uplink <= 11 bytes. For the last uplink, DATA will might less than 6 bytes 499 499 500 -[[image: 1653269916228-732.png||height="433" width="711"]]498 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]] 501 501 502 502 503 503 So totally there will be 3 uplinks for this sampling, each uplink includes 6 bytes DATA 504 504 505 -DATA1=RETURN1 Valid Value = (% style="background-color:green; color:white" %)20 20 0a 33 90 41503 +DATA1=RETURN1 Valid Value = 20 20 0a 33 90 41 506 506 507 -DATA2=1^^st^^ ~~ 6^^th^^ byte of Valid value of RETURN10= (%style="background-color:green; color:white" %)02 aa 05 81 0a 20505 +DATA2=1^^st^^ ~~ 6^^th^^ byte of Valid value of RETURN10= 02 aa 05 81 0a 20 508 508 509 -DATA3=7^^th^^ ~~ 11^^th^^ bytes of Valid value of RETURN10 = (%style="background-color:green; color:white" %)20 20 20 2d 30507 +DATA3=7^^th^^ ~~ 11^^th^^ bytes of Valid value of RETURN10 = 20 20 20 2d 30 510 510 509 + 510 + 511 511 Below are the uplink payloads: 512 512 513 -[[image: 1653270130359-810.png]]513 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image021.png]] 514 514 515 515 516 - (% style="color:red" %)**Notice: the Max bytes is according to the max support bytes in different Frequency Bands for lowest SF. As below:**516 +Notice: the Max bytes is according to the max support bytes in different Frequency Bands for lowest SF. As below: 517 517 518 518 ~* For AU915/AS923 bands, if UplinkDwell time=0, max 51 bytes for each uplink ( so 51 -5 = 46 max valid date) 519 519 ... ... @@ -523,8 +523,12 @@ 523 523 524 524 ~* For all other bands: max 51 bytes for each uplink ( so 51 -5 = 46 max valid date). 525 525 526 -=== 3.3.5 Uplink on demand === 527 527 527 + 528 +1. 529 +11. 530 +111. Uplink on demand 531 + 528 528 Except uplink periodically, RS485-BL is able to uplink on demand. The server sends downlink command to RS485-BL and RS485 will uplink data base on the command. 529 529 530 530 Downlink control command:
- 1653269403619-508.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -27.8 KB - Content
- 1653269438444-278.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -26.6 KB - Content
- 1653269551753-223.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -138.7 KB - Content
- 1653269568276-930.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -131.4 KB - Content
- 1653269593172-426.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -142.6 KB - Content
- 1653269618463-608.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -27.7 KB - Content
- 1653269759169-150.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -294.0 KB - Content
- 1653269916228-732.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -143.3 KB - Content
- 1653270130359-810.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -197.8 KB - Content