<
From version < 32.7 >
edited by Xiaoling
on 2022/06/02 15:25
To version < 22.1 >
edited by Xiaoling
on 2022/05/23 09:10
>
Change comment: Uploaded new attachment "1653268227651-549.png", version {1}

Summary

Details

Page properties
Content
... ... @@ -18,42 +18,40 @@
18 18  
19 19  (((
20 20  (((
21 -The Dragino RS485-LN is a (% style="color:blue" %)**RS485 to LoRaWAN Converter**(%%). It converts the RS485 signal into LoRaWAN wireless signal which simplify the IoT installation and reduce the installation/maintaining cost.
21 +The Dragino RS485-LN is a RS485 to LoRaWAN Converter. It converts the RS485 signal into LoRaWAN wireless signal which simplify the IoT installation and reduce the installation/maintaining cost.
22 22  )))
23 23  
24 24  (((
25 -RS485-LN allows user to (% style="color:blue" %)**monitor / control RS485 devices**(%%) and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
25 +RS485-LN allows user to monitor / control RS485 devices and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
26 26  )))
27 27  
28 28  (((
29 -(% style="color:blue" %)**For data uplink**(%%), RS485-LN sends user-defined commands to RS485 devices and gets the return from the RS485 devices. RS485-LN will process these returns according to user-define rules to get the final payload and upload to LoRaWAN server.
29 +For data uplink, RS485-LN sends user-defined commands to RS485 devices and gets the return from the RS485 devices. RS485-LN will process these returns according to user-define rules to get the final payload and upload to LoRaWAN server.
30 30  )))
31 31  
32 32  (((
33 -(% style="color:blue" %)**For data downlink**(%%), RS485-LN runs in LoRaWAN Class C. When there downlink commands from LoRaWAN server, RS485-LN will forward the commands from LoRaWAN server to RS485 devices.
34 -
35 -(% style="color:blue" %)**Demo Dashboard for RS485-LN**(%%) connect to two energy meters: [[https:~~/~~/app.datacake.de/dashboard/d/58844a26-378d-4c5a-aaf5-b5b5b153447a>>url:https://app.datacake.de/dashboard/d/58844a26-378d-4c5a-aaf5-b5b5b153447a]]
33 +For data downlink, RS485-LN runs in LoRaWAN Class C. When there downlink commands from LoRaWAN server, RS485-LN will forward the commands from LoRaWAN server to RS485 devices.
36 36  )))
37 37  )))
38 38  
39 39  [[image:1653267211009-519.png||height="419" width="724"]]
40 40  
41 -
42 42  == 1.2 Specifications ==
43 43  
44 -
45 45  **Hardware System:**
46 46  
47 47  * STM32L072CZT6 MCU
48 -* SX1276/78 Wireless Chip 
44 +* SX1276/78 Wireless Chip
49 49  * Power Consumption (exclude RS485 device):
50 50  ** Idle: 32mA@12v
47 +
48 +*
51 51  ** 20dB Transmit: 65mA@12v
52 52  
53 53  **Interface for Model:**
54 54  
55 55  * RS485
56 -* Power Input 7~~ 24V DC. 
54 +* Power Input 7~~ 24V DC.
57 57  
58 58  **LoRa Spec:**
59 59  
... ... @@ -76,8 +76,6 @@
76 76  * Automatic RF Sense and CAD with ultra-fast AFC.
77 77  * Packet engine up to 256 bytes with CRC.
78 78  
79 -
80 -
81 81  == 1.3 Features ==
82 82  
83 83  * LoRaWAN Class A & Class C protocol (default Class C)
... ... @@ -89,8 +89,6 @@
89 89  * Support Modbus protocol
90 90  * Support Interrupt uplink (Since hardware version v1.2)
91 91  
92 -
93 -
94 94  == 1.4 Applications ==
95 95  
96 96  * Smart Buildings & Home Automation
... ... @@ -144,29 +144,24 @@
144 144  [[image:1653268155545-638.png||height="334" width="724"]]
145 145  
146 146  (((
147 -The RS485-LN in this example connected to two RS485 devices for demonstration, user can connect to other RS485 devices via the same method. The connection is as below:
141 +The RS485-BL in this example connected to two RS485 devices for demonstration, user can connect to other RS485 devices via the same method.
142 +)))
148 148  
149 -485A+ and 485B- of the sensor are connected to RS485A and RA485B of RS485-LN respectively.
150 -
151 -[[image:1653268227651-549.png||height="592" width="720"]]
152 -
153 153  (((
154 -The LG308 is already set to connect to [[TTN V3 network >>path:eu1.cloud.thethings.network/]]. So what we need to now is only configure the TTN V3:
145 +The LG308 is already set to connect to [[TTN V3 network >>url:https://www.thethingsnetwork.org/]]. So what we need to now is only configure the TTN V3:
155 155  )))
156 156  
157 157  (((
158 -**Step 1**: Create a device in TTN V3 with the OTAA keys from RS485-LN.
149 +**Step 1**: Create a device in TTN V3 with the OTAA keys from RS485-BL.
159 159  )))
160 160  
161 161  (((
162 -Each RS485-LN is shipped with a sticker with unique device EUI:
153 +Each RS485-BL is shipped with a sticker with unique device EUI:
163 163  )))
164 -)))
165 165  
166 166  [[image:1652953462722-299.png]]
167 167  
168 168  (((
169 -(((
170 170  User can enter this key in their LoRaWAN Server portal. Below is TTN V3 screen shot:
171 171  )))
172 172  
... ... @@ -173,11 +173,13 @@
173 173  (((
174 174  Add APP EUI in the application.
175 175  )))
176 -)))
177 177  
166 +
167 +
168 +
178 178  [[image:image-20220519174512-1.png]]
179 179  
180 -[[image:image-20220519174512-2.png||height="323" width="720"]]
171 +[[image:image-20220519174512-2.png||height="328" width="731"]]
181 181  
182 182  [[image:image-20220519174512-3.png||height="556" width="724"]]
183 183  
... ... @@ -193,7 +193,7 @@
193 193  
194 194  
195 195  (((
196 -**Step 2**: Power on RS485-LN and it will auto join to the TTN V3 network. After join success, it will start to upload message to TTN V3 and user can see in the panel.
187 +**Step 2**: Power on RS485-BL and it will auto join to the TTN V3 network. After join success, it will start to upload message to TTN V3 and user can see in the panel.
197 197  )))
198 198  
199 199  [[image:1652953568895-172.png||height="232" width="724"]]
... ... @@ -201,19 +201,23 @@
201 201  == 3.3 Configure Commands to read data ==
202 202  
203 203  (((
204 -(((
205 -There are plenty of RS485 devices in the market and each device has different command to read the valid data. To support these devices in flexible, RS485-LN supports flexible command set. User can use [[AT Commands>>path:#AT_COMMAND]] or LoRaWAN Downlink Command to configure what commands RS485-LN should send for each sampling and how to handle the return from RS485 devices.
195 +There are plenty of RS485 and TTL level devices in the market and each device has different command to read the valid data. To support these devices in flexible, RS485-BL supports flexible command set. User can use [[AT Commands or LoRaWAN Downlink>>path:#AT_COMMAND]] Command to configure how RS485-BL should read the sensor and how to handle the return from RS485 or TTL sensors.
206 206  )))
207 207  
208 -(((
209 -(% style="color:red" %)Note: below description and commands are for firmware version >v1.1, if you have firmware version v1.0. Please check the [[user manual v1.0>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/&file=RS485-LN_UserManual_v1.0.1.pdf]] or upgrade the firmware to v1.1
210 -)))
211 -)))
212 -
213 213  === 3.3.1 onfigure UART settings for RS485 or TTL communication ===
214 214  
215 -To use RS485-LN to read data from RS485 sensors, connect the RS485-LN A/B traces to the sensors. And user need to make sure RS485-LN use the match UART setting to access the sensors. The related commands for UART settings are:
200 +RS485-BL can connect to either RS485 sensors or TTL sensor. User need to specify what type of sensor need to connect.
216 216  
202 +**~1. RS485-MODBUS mode:**
203 +
204 +AT+MOD=1 ~/~/ Support RS485-MODBUS type sensors. User can connect multiply RS485 , Modbus sensors to the A / B pins.
205 +
206 +**2. TTL mode:**
207 +
208 +AT+MOD=2 ~/~/ Support TTL Level sensors, User can connect one TTL Sensor to the TXD/RXD/GND pins.
209 +
210 +RS485-BL default UART settings is **9600, no parity, stop bit 1**. If the sensor has a different settings, user can change the RS485-BL setting to match.
211 +
217 217  (% border="1" style="background-color:#ffffcc; color:green; width:795px" %)
218 218  |(((
219 219  **AT Commands**
... ... @@ -238,7 +238,13 @@
238 238  |(((
239 239  AT+PARITY
240 240  )))|(% style="width:285px" %)(((
236 +(((
241 241  Set UART parity (for RS485 connection)
238 +)))
239 +
240 +(((
241 +Default Value is: no parity.
242 +)))
242 242  )))|(% style="width:347px" %)(((
243 243  (((
244 244  AT+PARITY=0
... ... @@ -256,7 +256,7 @@
256 256  )))
257 257  
258 258  (((
259 -
260 +Default Value is: 1bit.
260 260  )))
261 261  )))|(% style="width:347px" %)(((
262 262  (((
... ... @@ -275,10 +275,12 @@
275 275  === 3.3.2 Configure sensors ===
276 276  
277 277  (((
279 +Some sensors might need to configure before normal operation. User can configure such sensor via PC or through RS485-BL AT Commands (% style="color:#4f81bd" %)**AT+CFGDEV**.
280 +)))
281 +
278 278  (((
279 -Some sensors might need to configure before normal operation. User can configure such sensor via PC and RS485 adapter or through RS485-LN AT Commands (% style="color:#4f81bd" %)**AT+CFGDEV**(%%). Each (% style="color:#4f81bd" %)**AT+CFGDEV **(%%)equals to send a RS485 command to sensors. This command will only run when user input it and won’t run during each sampling.
283 +When user issue an (% style="color:#4f81bd" %)**AT+CFGDEV**(%%) command, Each (% style="color:#4f81bd" %)**AT+CFGDEV**(%%) equals to send a command to the RS485 or TTL sensors. This command will only run when user input it and won’t run during each sampling.
280 280  )))
281 -)))
282 282  
283 283  (% border="1" style="background-color:#ffffcc; color:green; width:806px" %)
284 284  |**AT Commands**|(% style="width:418px" %)**Description**|(% style="width:256px" %)**Example**
... ... @@ -290,6 +290,8 @@
290 290  mm: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command
291 291  )))|(% style="width:256px" %)AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m
292 292  
296 +Detail of AT+CFGDEV command see [[AT+CFGDEV detail>>path:#AT_CFGDEV]].
297 +
293 293  === 3.3.3 Configure read commands for each sampling ===
294 294  
295 295  (((
... ... @@ -371,17 +371,11 @@
371 371  **m: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command**
372 372  )))
373 373  
374 -(((
375 375  For example, if we have a RS485 sensor. The command to get sensor value is: 01 03 0B B8 00 02 46 0A. Where 01 03 0B B8 00 02 is the Modbus command to read the register 0B B8 where stored the sensor value. The 46 0A is the CRC-16/MODBUS which calculate manually.
376 -)))
377 377  
378 -(((
379 379  In the RS485-BL, we should use this command AT+COMMAND1=01 03 0B B8 00 02,1 for the same.
380 -)))
381 381  
382 -(((
383 383  **AT+SEARCHx**: This command defines how to handle the return from AT+COMMANDx.
384 -)))
385 385  
386 386  (% border="1" class="table-bordered" %)
387 387  |(((
... ... @@ -393,24 +393,26 @@
393 393  
394 394  )))
395 395  
396 -**Examples:**
395 +Examples:
397 397  
398 -~1. For a return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
397 +1. For a return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
399 399  
400 400  If we set AT+SEARCH1=1,1E 56 34.      (max 5 bytes for prefix)
401 401  
402 -The valid data will be all bytes after 1E 56 34 , so it is (% style="background-color:yellow" %)** 2e 30 58 5f 36 41 30 31 00 49**
401 +The valid data will be all bytes after 1E 56 34 , so it is 2e 30 58 5f 36 41 30 31 00 49
403 403  
404 -[[image:1653269403619-508.png]]
403 +[[image:1652954654347-831.png]]
405 405  
406 -2. For a return string from AT+COMMAND1:  16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
407 407  
406 +1. For a return string from AT+COMMAND1:  16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
407 +
408 408  If we set AT+SEARCH1=2, 1E 56 34+31 00 49
409 409  
410 -Device will search the bytes between 1E 56 34 and 31 00 49. So it is (% style="background-color:yellow" %)** 2e 30 58 5f 36 41 30**
410 +Device will search the bytes between 1E 56 34 and 31 00 49. So it is 2e 30 58 5f 36 41 30
411 411  
412 -[[image:1653269438444-278.png]]
412 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image014.png]]
413 413  
414 +
414 414  **AT+DATACUTx : **This command defines how to handle the return from AT+COMMANDx, max return length is 45 bytes.
415 415  
416 416  |(((
... ... @@ -425,95 +425,94 @@
425 425  
426 426  * Grab bytes:
427 427  
428 -[[image:1653269551753-223.png||height="311" width="717"]]
429 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image015.png]]
429 429  
430 430  * Grab a section.
431 431  
432 -[[image:1653269568276-930.png||height="325" width="718"]]
433 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image016.png]]
433 433  
434 434  * Grab different sections.
435 435  
436 -[[image:1653269593172-426.png||height="303" width="725"]]
437 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image017.png]]
437 437  
438 -(% style="color:red" %)**Note:**
439 439  
440 +Note:
441 +
440 440  AT+SEARCHx and AT+DATACUTx can be used together, if both commands are set, RS485-BL will first process AT+SEARCHx on the return string and get a temporary string, and then process AT+DATACUTx on this temporary string to get the final payload. In this case, AT+DATACUTx need to set to format AT+DATACUTx=0,xx,xx where the return bytes set to 0.
441 441  
442 442  Example:
443 443  
444 -(% style="color:red" %)AT+COMMAND1=11 01 1E D0,0
446 +AT+COMMAND1=11 01 1E D0,0
445 445  
446 -(% style="color:red" %)AT+SEARCH1=1,1E 56 34
448 +AT+SEARCH1=1,1E 56 34
447 447  
448 -(% style="color:red" %)AT+DATACUT1=0,2,1~~5
450 +AT+DATACUT1=0,2,1~~5
449 449  
450 -(% style="color:red" %)Return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
452 +Return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
451 451  
452 -(% style="color:red" %)String after SEARCH command: 2e 30 58 5f 36 41 30 31 00 49
454 +String after SEARCH command: 2e 30 58 5f 36 41 30 31 00 49
453 453  
454 -(% style="color:red" %)Valid payload after DataCUT command: 2e 30 58 5f 36
456 +Valid payload after DataCUT command: 2e 30 58 5f 36
455 455  
456 -[[image:1653269618463-608.png]]
458 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image018.png]]
457 457  
458 -=== 3.3.4 Compose the uplink payload ===
459 459  
460 -(((
461 +
462 +
463 +1.
464 +11.
465 +111. Compose the uplink payload
466 +
461 461  Through AT+COMMANDx and AT+DATACUTx we got valid value from each RS485 commands, Assume these valid value are RETURN1, RETURN2, .., to RETURNx. The next step is how to compose the LoRa Uplink Payload by these RETURNs. The command is **AT+DATAUP.**
462 -)))
463 463  
464 -(((
465 -(% style="color:#4f81bd" %)**Examples: AT+DATAUP=0**
466 -)))
467 467  
468 -(((
469 -Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**A SIGNLE UPLINK**.
470 -)))
470 +**Examples: AT+DATAUP=0**
471 471  
472 -(((
472 +Compose the uplink payload with value returns in sequence and send with **A SIGNLE UPLINK**.
473 +
473 473  Final Payload is
474 -)))
475 475  
476 -(((
477 -(% style="color:#4f81bd" %)**Battery Info+PAYVER + VALID Value from RETURN1 + Valid Value from RETURN2 + … + RETURNx**
478 -)))
476 +Battery Info+PAYVER + VALID Value from RETURN1 + Valid Value from RETURN2 + … + RETURNx
479 479  
480 -(((
481 481  Where PAYVER is defined by AT+PAYVER, below is an example screen shot.
482 -)))
483 483  
484 -[[image:1653269759169-150.png||height="513" width="716"]]
480 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image019.png]]
485 485  
486 -(% style="color:#4f81bd" %)**Examples: AT+DATAUP=1**
487 487  
488 -Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**Multiply UPLINKs**.
489 489  
484 +**Examples: AT+DATAUP=1**
485 +
486 +Compose the uplink payload with value returns in sequence and send with **Multiply UPLINKs**.
487 +
490 490  Final Payload is
491 491  
492 -(% style="color:#4f81bd" %)**Battery Info+PAYVER + PAYLOAD COUNT + PAYLOAD# + DATA**
490 +Battery Info+PAYVER + PAYLOAD COUNT + PAYLOAD# + DATA
493 493  
494 494  1. Battery Info (2 bytes): Battery voltage
495 495  1. PAYVER (1 byte): Defined by AT+PAYVER
496 496  1. PAYLOAD COUNT (1 byte): Total how many uplinks of this sampling.
497 497  1. PAYLOAD# (1 byte): Number of this uplink. (from 0,1,2,3…,to PAYLOAD COUNT)
498 -1. DATA: Valid value: max 6 bytes(US915 version here, Notice*!) for each uplink so each uplink <= 11 bytes. For the last uplink, DATA will might less than 6 bytes
496 +1. DATA: Valid value: max 6 bytes(US915 version here, [[Notice*!>>path:#max_byte]]) for each uplink so each uplink <= 11 bytes. For the last uplink, DATA will might less than 6 bytes
499 499  
500 -[[image:1653269916228-732.png||height="433" width="711"]]
498 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
501 501  
502 502  
503 503  So totally there will be 3 uplinks for this sampling, each uplink includes 6 bytes DATA
504 504  
505 -DATA1=RETURN1 Valid Value = (% style="background-color:green; color:white" %)20 20 0a 33 90 41
503 +DATA1=RETURN1 Valid Value = 20 20 0a 33 90 41
506 506  
507 -DATA2=1^^st^^ ~~ 6^^th^^ byte of Valid value of RETURN10=(% style="background-color:green; color:white" %) 02 aa 05 81 0a 20
505 +DATA2=1^^st^^ ~~ 6^^th^^ byte of Valid value of RETURN10= 02 aa 05 81 0a 20
508 508  
509 -DATA3=7^^th^^ ~~ 11^^th^^ bytes of Valid value of RETURN10 = (% style="background-color:green; color:white" %)20 20 20 2d 30
507 +DATA3=7^^th^^ ~~ 11^^th^^ bytes of Valid value of RETURN10 = 20 20 20 2d 30
510 510  
509 +
510 +
511 511  Below are the uplink payloads:
512 512  
513 -[[image:1653270130359-810.png]]
513 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image021.png]]
514 514  
515 515  
516 -(% style="color:red" %)**Notice: the Max bytes is according to the max support bytes in different Frequency Bands for lowest SF. As below:**
516 +Notice: the Max bytes is according to the max support bytes in different Frequency Bands for lowest SF. As below:
517 517  
518 518   ~* For AU915/AS923 bands, if UplinkDwell time=0, max 51 bytes for each uplink ( so 51 -5 = 46 max valid date)
519 519  
... ... @@ -523,8 +523,12 @@
523 523  
524 524   ~* For all other bands: max 51 bytes for each uplink  ( so 51 -5 = 46 max valid date).
525 525  
526 -=== 3.3.5 Uplink on demand ===
527 527  
527 +
528 +1.
529 +11.
530 +111. Uplink on demand
531 +
528 528  Except uplink periodically, RS485-BL is able to uplink on demand. The server sends downlink command to RS485-BL and RS485 will uplink data base on the command.
529 529  
530 530  Downlink control command:
1653269403619-508.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -27.8 KB
Content
1653269438444-278.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -26.6 KB
Content
1653269551753-223.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -138.7 KB
Content
1653269568276-930.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -131.4 KB
Content
1653269593172-426.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -142.6 KB
Content
1653269618463-608.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -27.7 KB
Content
1653269759169-150.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -294.0 KB
Content
1653269916228-732.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -143.3 KB
Content
1653270130359-810.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -197.8 KB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0