<
From version < 32.7 >
edited by Xiaoling
on 2022/06/02 15:25
To version < 17.3 >
edited by Xiaoling
on 2022/05/23 08:48
>
Change comment: Update document after refactoring.

Summary

Details

Page properties
Content
... ... @@ -1,11 +1,12 @@
1 1  (% style="text-align:center" %)
2 -[[image:1653266934636-343.png||height="385" width="385"]]
2 +[[image:1652947681187-144.png||height="385" width="385"]]
3 3  
4 4  
5 5  
6 -**RS485-LN – RS485 to LoRaWAN Converter User Manual**
7 7  
7 +**RS485-BL – Waterproof RS485 to LoRaWAN Converter User Manual**
8 8  
9 +
9 9  **Table of Contents:**
10 10  
11 11  
... ... @@ -14,46 +14,62 @@
14 14  
15 15  = 1.Introduction =
16 16  
17 -== 1.1 What is RS485-LN RS485 to LoRaWAN Converter ==
18 +== 1.1 What is RS485-BL RS485 to LoRaWAN Converter ==
18 18  
19 19  (((
21 +
22 +)))
23 +
20 20  (((
21 -The Dragino RS485-LN is a (% style="color:blue" %)**RS485 to LoRaWAN Converter**(%%). It converts the RS485 signal into LoRaWAN wireless signal which simplify the IoT installation and reduce the installation/maintaining cost.
25 +The Dragino RS485-BL is a **RS485 / UART to LoRaWAN Converter** for Internet of Things solutions. User can connect RS485 or UART sensor to RS485-BL converter, and configure RS485-BL to periodically read sensor data and upload via LoRaWAN network to IoT server.
22 22  )))
23 23  
24 24  (((
25 -RS485-LN allows user to (% style="color:blue" %)**monitor / control RS485 devices**(%%) and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
29 +RS485-BL can interface to RS485 sensor, 3.3v/5v UART sensor or interrupt sensor. RS485-BL provides **a 3.3v output** and** a 5v output** to power external sensors. Both output voltages are controllable to minimize the total system power consumption.
26 26  )))
27 27  
28 28  (((
29 -(% style="color:blue" %)**For data uplink**(%%), RS485-LN sends user-defined commands to RS485 devices and gets the return from the RS485 devices. RS485-LN will process these returns according to user-define rules to get the final payload and upload to LoRaWAN server.
33 +RS485-BL is IP67 **waterproof** and powered by **8500mAh Li-SOCI2 battery**, it is designed for long term use for several years.
30 30  )))
31 31  
32 32  (((
33 -(% style="color:blue" %)**For data downlink**(%%), RS485-LN runs in LoRaWAN Class C. When there downlink commands from LoRaWAN server, RS485-LN will forward the commands from LoRaWAN server to RS485 devices.
37 +RS485-BL runs standard **LoRaWAN 1.0.3 in Class A**. It can reach long transfer range and easy to integrate with LoRaWAN compatible gateway and IoT server.
38 +)))
34 34  
35 -(% style="color:blue" %)**Demo Dashboard for RS485-LN**(%%) connect to two energy meters: [[https:~~/~~/app.datacake.de/dashboard/d/58844a26-378d-4c5a-aaf5-b5b5b153447a>>url:https://app.datacake.de/dashboard/d/58844a26-378d-4c5a-aaf5-b5b5b153447a]]
40 +(((
41 +For data uplink, RS485-BL sends user-defined commands to RS485 devices and gets the return from the RS485 devices. RS485-BL will process these returns data according to user-define rules to get the final payload and upload to LoRaWAN server.
36 36  )))
43 +
44 +(((
45 +For data downlink, RS485-BL runs in LoRaWAN Class A. When there is downlink commands from LoRaWAN server, RS485-BL will forward the commands from LoRaWAN server to RS485 devices.
37 37  )))
38 38  
39 -[[image:1653267211009-519.png||height="419" width="724"]]
48 +(((
49 +Each RS485-BL pre-load with a set of unique keys for LoRaWAN registration, register these keys to LoRaWAN server and it will auto connect after power on.
50 +)))
40 40  
52 +[[image:1652953304999-717.png||height="424" width="733"]]
41 41  
42 42  == 1.2 Specifications ==
43 43  
44 -
45 45  **Hardware System:**
46 46  
47 47  * STM32L072CZT6 MCU
48 48  * SX1276/78 Wireless Chip 
49 49  * Power Consumption (exclude RS485 device):
50 -** Idle: 32mA@12v
51 -** 20dB Transmit: 65mA@12v
61 +** Idle: 6uA@3.3v
52 52  
63 +*
64 +** 20dB Transmit: 130mA@3.3v
65 +
53 53  **Interface for Model:**
54 54  
55 -* RS485
56 -* Power Input 7~~ 24V DC. 
68 +* 1 x RS485 Interface
69 +* 1 x TTL Serial , 3.3v or 5v.
70 +* 1 x I2C Interface, 3.3v or 5v.
71 +* 1 x one wire interface
72 +* 1 x Interrupt Interface
73 +* 1 x Controllable 5V output, max
57 57  
58 58  **LoRa Spec:**
59 59  
... ... @@ -62,35 +62,28 @@
62 62  ** Band 2 (LF): 410 ~~ 528 Mhz
63 63  * 168 dB maximum link budget.
64 64  * +20 dBm - 100 mW constant RF output vs.
65 -* +14 dBm high efficiency PA.
66 66  * Programmable bit rate up to 300 kbps.
67 67  * High sensitivity: down to -148 dBm.
68 68  * Bullet-proof front end: IIP3 = -12.5 dBm.
69 69  * Excellent blocking immunity.
70 -* Low RX current of 10.3 mA, 200 nA register retention.
71 71  * Fully integrated synthesizer with a resolution of 61 Hz.
72 -* FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation.
87 +* LoRa modulation.
73 73  * Built-in bit synchronizer for clock recovery.
74 74  * Preamble detection.
75 75  * 127 dB Dynamic Range RSSI.
76 -* Automatic RF Sense and CAD with ultra-fast AFC.
77 -* Packet engine up to 256 bytes with CRC.
91 +* Automatic RF Sense and CAD with ultra-fast AFC. ​​​
78 78  
79 -
80 -
81 81  == 1.3 Features ==
82 82  
83 -* LoRaWAN Class A & Class C protocol (default Class C)
95 +* LoRaWAN Class A & Class C protocol (default Class A)
84 84  * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865/RU864
85 85  * AT Commands to change parameters
86 -* Remote configure parameters via LoRa Downlink
98 +* Remote configure parameters via LoRaWAN Downlink
87 87  * Firmware upgradable via program port
88 88  * Support multiply RS485 devices by flexible rules
89 89  * Support Modbus protocol
90 -* Support Interrupt uplink (Since hardware version v1.2)
102 +* Support Interrupt uplink
91 91  
92 -
93 -
94 94  == 1.4 Applications ==
95 95  
96 96  * Smart Buildings & Home Automation
... ... @@ -102,39 +102,53 @@
102 102  
103 103  == 1.5 Firmware Change log ==
104 104  
105 -[[RS485-LN Image files – Download link and Change log>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/]]
115 +[[RS485-BL Image files – Download link and Change log>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/RS485-BL/Firmware/||style="background-color: rgb(255, 255, 255);"]]
106 106  
107 107  == 1.6 Hardware Change log ==
108 108  
109 109  (((
120 +v1.4
121 +)))
122 +
110 110  (((
111 -v1.2: Add External Interrupt Pin.
124 +~1. Change Power IC to TPS22916
125 +)))
112 112  
113 -v1.0: Release
127 +
128 +(((
129 +v1.3
114 114  )))
131 +
132 +(((
133 +~1. Change JP3 from KF350-8P to KF350-11P, Add one extra interface for I2C and one extra interface for one-wire
115 115  )))
116 116  
117 -= 2. Power ON Device =
118 118  
119 119  (((
120 -The RS485-LN can be powered by 7 ~~ 24V DC power source. Connection as below
138 +v1.2
139 +)))
121 121  
122 -* Power Source VIN to RS485-LN VIN+
123 -* Power Source GND to RS485-LN VIN-
124 -
125 125  (((
126 -Once there is power, the RS485-LN will be on.
142 +Release version ​​​​​
127 127  )))
128 128  
129 -[[image:1653268091319-405.png]]
145 += 2. Pin mapping and Power ON Device =
146 +
147 +(((
148 +The RS485-BL is powered on by 8500mAh battery. To save battery life, RS485-BL is shipped with power off. User can put the jumper to power on RS485-BL.
130 130  )))
131 131  
151 +[[image:1652953055962-143.png||height="387" width="728"]]
152 +
153 +
154 +The Left TXD and RXD are TTL interface for external sensor. TTL level is controlled by 3.3/5v Jumper.
155 +
132 132  = 3. Operation Mode =
133 133  
134 134  == 3.1 How it works? ==
135 135  
136 136  (((
137 -The RS485-LN is configured as LoRaWAN OTAA Class C mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the RS485-LN. It will auto join the network via OTAA.
161 +The RS485-BL is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the RS485-BL. It will auto join the network via OTAA.
138 138  )))
139 139  
140 140  == 3.2 Example to join LoRaWAN network ==
... ... @@ -141,32 +141,27 @@
141 141  
142 142  Here shows an example for how to join the TTN V3 Network. Below is the network structure, we use [[LG308>>url:http://www.dragino.com/products/lora-lorawan-gateway/item/140-lg308.html]] as LoRaWAN gateway here. 
143 143  
144 -[[image:1653268155545-638.png||height="334" width="724"]]
168 +[[image:1652953414711-647.png||height="337" width="723"]]
145 145  
146 146  (((
147 -The RS485-LN in this example connected to two RS485 devices for demonstration, user can connect to other RS485 devices via the same method. The connection is as below:
171 +The RS485-BL in this example connected to two RS485 devices for demonstration, user can connect to other RS485 devices via the same method.
172 +)))
148 148  
149 -485A+ and 485B- of the sensor are connected to RS485A and RA485B of RS485-LN respectively.
150 -
151 -[[image:1653268227651-549.png||height="592" width="720"]]
152 -
153 153  (((
154 -The LG308 is already set to connect to [[TTN V3 network >>path:eu1.cloud.thethings.network/]]. So what we need to now is only configure the TTN V3:
175 +The LG308 is already set to connect to [[TTN V3 network >>url:https://www.thethingsnetwork.org/]]. So what we need to now is only configure the TTN V3:
155 155  )))
156 156  
157 157  (((
158 -**Step 1**: Create a device in TTN V3 with the OTAA keys from RS485-LN.
179 +**Step 1**: Create a device in TTN V3 with the OTAA keys from RS485-BL.
159 159  )))
160 160  
161 161  (((
162 -Each RS485-LN is shipped with a sticker with unique device EUI:
183 +Each RS485-BL is shipped with a sticker with unique device EUI:
163 163  )))
164 -)))
165 165  
166 166  [[image:1652953462722-299.png]]
167 167  
168 168  (((
169 -(((
170 170  User can enter this key in their LoRaWAN Server portal. Below is TTN V3 screen shot:
171 171  )))
172 172  
... ... @@ -173,11 +173,13 @@
173 173  (((
174 174  Add APP EUI in the application.
175 175  )))
176 -)))
177 177  
196 +
197 +
198 +
178 178  [[image:image-20220519174512-1.png]]
179 179  
180 -[[image:image-20220519174512-2.png||height="323" width="720"]]
201 +[[image:image-20220519174512-2.png||height="328" width="731"]]
181 181  
182 182  [[image:image-20220519174512-3.png||height="556" width="724"]]
183 183  
... ... @@ -193,7 +193,7 @@
193 193  
194 194  
195 195  (((
196 -**Step 2**: Power on RS485-LN and it will auto join to the TTN V3 network. After join success, it will start to upload message to TTN V3 and user can see in the panel.
217 +**Step 2**: Power on RS485-BL and it will auto join to the TTN V3 network. After join success, it will start to upload message to TTN V3 and user can see in the panel.
197 197  )))
198 198  
199 199  [[image:1652953568895-172.png||height="232" width="724"]]
... ... @@ -201,19 +201,23 @@
201 201  == 3.3 Configure Commands to read data ==
202 202  
203 203  (((
204 -(((
205 -There are plenty of RS485 devices in the market and each device has different command to read the valid data. To support these devices in flexible, RS485-LN supports flexible command set. User can use [[AT Commands>>path:#AT_COMMAND]] or LoRaWAN Downlink Command to configure what commands RS485-LN should send for each sampling and how to handle the return from RS485 devices.
225 +There are plenty of RS485 and TTL level devices in the market and each device has different command to read the valid data. To support these devices in flexible, RS485-BL supports flexible command set. User can use [[AT Commands or LoRaWAN Downlink>>path:#AT_COMMAND]] Command to configure how RS485-BL should read the sensor and how to handle the return from RS485 or TTL sensors.
206 206  )))
207 207  
208 -(((
209 -(% style="color:red" %)Note: below description and commands are for firmware version >v1.1, if you have firmware version v1.0. Please check the [[user manual v1.0>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/&file=RS485-LN_UserManual_v1.0.1.pdf]] or upgrade the firmware to v1.1
210 -)))
211 -)))
212 -
213 213  === 3.3.1 onfigure UART settings for RS485 or TTL communication ===
214 214  
215 -To use RS485-LN to read data from RS485 sensors, connect the RS485-LN A/B traces to the sensors. And user need to make sure RS485-LN use the match UART setting to access the sensors. The related commands for UART settings are:
230 +RS485-BL can connect to either RS485 sensors or TTL sensor. User need to specify what type of sensor need to connect.
216 216  
232 +**~1. RS485-MODBUS mode:**
233 +
234 +AT+MOD=1 ~/~/ Support RS485-MODBUS type sensors. User can connect multiply RS485 , Modbus sensors to the A / B pins.
235 +
236 +**2. TTL mode:**
237 +
238 +AT+MOD=2 ~/~/ Support TTL Level sensors, User can connect one TTL Sensor to the TXD/RXD/GND pins.
239 +
240 +RS485-BL default UART settings is **9600, no parity, stop bit 1**. If the sensor has a different settings, user can change the RS485-BL setting to match.
241 +
217 217  (% border="1" style="background-color:#ffffcc; color:green; width:795px" %)
218 218  |(((
219 219  **AT Commands**
... ... @@ -238,7 +238,13 @@
238 238  |(((
239 239  AT+PARITY
240 240  )))|(% style="width:285px" %)(((
266 +(((
241 241  Set UART parity (for RS485 connection)
268 +)))
269 +
270 +(((
271 +Default Value is: no parity.
272 +)))
242 242  )))|(% style="width:347px" %)(((
243 243  (((
244 244  AT+PARITY=0
... ... @@ -256,7 +256,7 @@
256 256  )))
257 257  
258 258  (((
259 -
290 +Default Value is: 1bit.
260 260  )))
261 261  )))|(% style="width:347px" %)(((
262 262  (((
... ... @@ -275,10 +275,12 @@
275 275  === 3.3.2 Configure sensors ===
276 276  
277 277  (((
309 +Some sensors might need to configure before normal operation. User can configure such sensor via PC or through RS485-BL AT Commands (% style="color:#4f81bd" %)**AT+CFGDEV**.
310 +)))
311 +
278 278  (((
279 -Some sensors might need to configure before normal operation. User can configure such sensor via PC and RS485 adapter or through RS485-LN AT Commands (% style="color:#4f81bd" %)**AT+CFGDEV**(%%). Each (% style="color:#4f81bd" %)**AT+CFGDEV **(%%)equals to send a RS485 command to sensors. This command will only run when user input it and won’t run during each sampling.
313 +When user issue an (% style="color:#4f81bd" %)**AT+CFGDEV**(%%) command, Each (% style="color:#4f81bd" %)**AT+CFGDEV**(%%) equals to send a command to the RS485 or TTL sensors. This command will only run when user input it and won’t run during each sampling.
280 280  )))
281 -)))
282 282  
283 283  (% border="1" style="background-color:#ffffcc; color:green; width:806px" %)
284 284  |**AT Commands**|(% style="width:418px" %)**Description**|(% style="width:256px" %)**Example**
... ... @@ -290,6 +290,8 @@
290 290  mm: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command
291 291  )))|(% style="width:256px" %)AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m
292 292  
326 +Detail of AT+CFGDEV command see [[AT+CFGDEV detail>>path:#AT_CFGDEV]].
327 +
293 293  === 3.3.3 Configure read commands for each sampling ===
294 294  
295 295  (((
... ... @@ -371,17 +371,11 @@
371 371  **m: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command**
372 372  )))
373 373  
374 -(((
375 375  For example, if we have a RS485 sensor. The command to get sensor value is: 01 03 0B B8 00 02 46 0A. Where 01 03 0B B8 00 02 is the Modbus command to read the register 0B B8 where stored the sensor value. The 46 0A is the CRC-16/MODBUS which calculate manually.
376 -)))
377 377  
378 -(((
379 379  In the RS485-BL, we should use this command AT+COMMAND1=01 03 0B B8 00 02,1 for the same.
380 -)))
381 381  
382 -(((
383 383  **AT+SEARCHx**: This command defines how to handle the return from AT+COMMANDx.
384 -)))
385 385  
386 386  (% border="1" class="table-bordered" %)
387 387  |(((
... ... @@ -393,24 +393,26 @@
393 393  
394 394  )))
395 395  
396 -**Examples:**
425 +Examples:
397 397  
398 -~1. For a return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
427 +1. For a return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
399 399  
400 400  If we set AT+SEARCH1=1,1E 56 34.      (max 5 bytes for prefix)
401 401  
402 -The valid data will be all bytes after 1E 56 34 , so it is (% style="background-color:yellow" %)** 2e 30 58 5f 36 41 30 31 00 49**
431 +The valid data will be all bytes after 1E 56 34 , so it is 2e 30 58 5f 36 41 30 31 00 49
403 403  
404 -[[image:1653269403619-508.png]]
433 +[[image:1652954654347-831.png]]
405 405  
406 -2. For a return string from AT+COMMAND1:  16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
407 407  
436 +1. For a return string from AT+COMMAND1:  16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
437 +
408 408  If we set AT+SEARCH1=2, 1E 56 34+31 00 49
409 409  
410 -Device will search the bytes between 1E 56 34 and 31 00 49. So it is (% style="background-color:yellow" %)** 2e 30 58 5f 36 41 30**
440 +Device will search the bytes between 1E 56 34 and 31 00 49. So it is 2e 30 58 5f 36 41 30
411 411  
412 -[[image:1653269438444-278.png]]
442 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image014.png]]
413 413  
444 +
414 414  **AT+DATACUTx : **This command defines how to handle the return from AT+COMMANDx, max return length is 45 bytes.
415 415  
416 416  |(((
... ... @@ -425,95 +425,94 @@
425 425  
426 426  * Grab bytes:
427 427  
428 -[[image:1653269551753-223.png||height="311" width="717"]]
459 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image015.png]]
429 429  
430 430  * Grab a section.
431 431  
432 -[[image:1653269568276-930.png||height="325" width="718"]]
463 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image016.png]]
433 433  
434 434  * Grab different sections.
435 435  
436 -[[image:1653269593172-426.png||height="303" width="725"]]
467 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image017.png]]
437 437  
438 -(% style="color:red" %)**Note:**
439 439  
470 +Note:
471 +
440 440  AT+SEARCHx and AT+DATACUTx can be used together, if both commands are set, RS485-BL will first process AT+SEARCHx on the return string and get a temporary string, and then process AT+DATACUTx on this temporary string to get the final payload. In this case, AT+DATACUTx need to set to format AT+DATACUTx=0,xx,xx where the return bytes set to 0.
441 441  
442 442  Example:
443 443  
444 -(% style="color:red" %)AT+COMMAND1=11 01 1E D0,0
476 +AT+COMMAND1=11 01 1E D0,0
445 445  
446 -(% style="color:red" %)AT+SEARCH1=1,1E 56 34
478 +AT+SEARCH1=1,1E 56 34
447 447  
448 -(% style="color:red" %)AT+DATACUT1=0,2,1~~5
480 +AT+DATACUT1=0,2,1~~5
449 449  
450 -(% style="color:red" %)Return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
482 +Return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
451 451  
452 -(% style="color:red" %)String after SEARCH command: 2e 30 58 5f 36 41 30 31 00 49
484 +String after SEARCH command: 2e 30 58 5f 36 41 30 31 00 49
453 453  
454 -(% style="color:red" %)Valid payload after DataCUT command: 2e 30 58 5f 36
486 +Valid payload after DataCUT command: 2e 30 58 5f 36
455 455  
456 -[[image:1653269618463-608.png]]
488 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image018.png]]
457 457  
458 -=== 3.3.4 Compose the uplink payload ===
459 459  
460 -(((
491 +
492 +
493 +1.
494 +11.
495 +111. Compose the uplink payload
496 +
461 461  Through AT+COMMANDx and AT+DATACUTx we got valid value from each RS485 commands, Assume these valid value are RETURN1, RETURN2, .., to RETURNx. The next step is how to compose the LoRa Uplink Payload by these RETURNs. The command is **AT+DATAUP.**
462 -)))
463 463  
464 -(((
465 -(% style="color:#4f81bd" %)**Examples: AT+DATAUP=0**
466 -)))
467 467  
468 -(((
469 -Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**A SIGNLE UPLINK**.
470 -)))
500 +**Examples: AT+DATAUP=0**
471 471  
472 -(((
502 +Compose the uplink payload with value returns in sequence and send with **A SIGNLE UPLINK**.
503 +
473 473  Final Payload is
474 -)))
475 475  
476 -(((
477 -(% style="color:#4f81bd" %)**Battery Info+PAYVER + VALID Value from RETURN1 + Valid Value from RETURN2 + … + RETURNx**
478 -)))
506 +Battery Info+PAYVER + VALID Value from RETURN1 + Valid Value from RETURN2 + … + RETURNx
479 479  
480 -(((
481 481  Where PAYVER is defined by AT+PAYVER, below is an example screen shot.
482 -)))
483 483  
484 -[[image:1653269759169-150.png||height="513" width="716"]]
510 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image019.png]]
485 485  
486 -(% style="color:#4f81bd" %)**Examples: AT+DATAUP=1**
487 487  
488 -Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**Multiply UPLINKs**.
489 489  
514 +**Examples: AT+DATAUP=1**
515 +
516 +Compose the uplink payload with value returns in sequence and send with **Multiply UPLINKs**.
517 +
490 490  Final Payload is
491 491  
492 -(% style="color:#4f81bd" %)**Battery Info+PAYVER + PAYLOAD COUNT + PAYLOAD# + DATA**
520 +Battery Info+PAYVER + PAYLOAD COUNT + PAYLOAD# + DATA
493 493  
494 494  1. Battery Info (2 bytes): Battery voltage
495 495  1. PAYVER (1 byte): Defined by AT+PAYVER
496 496  1. PAYLOAD COUNT (1 byte): Total how many uplinks of this sampling.
497 497  1. PAYLOAD# (1 byte): Number of this uplink. (from 0,1,2,3…,to PAYLOAD COUNT)
498 -1. DATA: Valid value: max 6 bytes(US915 version here, Notice*!) for each uplink so each uplink <= 11 bytes. For the last uplink, DATA will might less than 6 bytes
526 +1. DATA: Valid value: max 6 bytes(US915 version here, [[Notice*!>>path:#max_byte]]) for each uplink so each uplink <= 11 bytes. For the last uplink, DATA will might less than 6 bytes
499 499  
500 -[[image:1653269916228-732.png||height="433" width="711"]]
528 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
501 501  
502 502  
503 503  So totally there will be 3 uplinks for this sampling, each uplink includes 6 bytes DATA
504 504  
505 -DATA1=RETURN1 Valid Value = (% style="background-color:green; color:white" %)20 20 0a 33 90 41
533 +DATA1=RETURN1 Valid Value = 20 20 0a 33 90 41
506 506  
507 -DATA2=1^^st^^ ~~ 6^^th^^ byte of Valid value of RETURN10=(% style="background-color:green; color:white" %) 02 aa 05 81 0a 20
535 +DATA2=1^^st^^ ~~ 6^^th^^ byte of Valid value of RETURN10= 02 aa 05 81 0a 20
508 508  
509 -DATA3=7^^th^^ ~~ 11^^th^^ bytes of Valid value of RETURN10 = (% style="background-color:green; color:white" %)20 20 20 2d 30
537 +DATA3=7^^th^^ ~~ 11^^th^^ bytes of Valid value of RETURN10 = 20 20 20 2d 30
510 510  
539 +
540 +
511 511  Below are the uplink payloads:
512 512  
513 -[[image:1653270130359-810.png]]
543 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image021.png]]
514 514  
515 515  
516 -(% style="color:red" %)**Notice: the Max bytes is according to the max support bytes in different Frequency Bands for lowest SF. As below:**
546 +Notice: the Max bytes is according to the max support bytes in different Frequency Bands for lowest SF. As below:
517 517  
518 518   ~* For AU915/AS923 bands, if UplinkDwell time=0, max 51 bytes for each uplink ( so 51 -5 = 46 max valid date)
519 519  
... ... @@ -523,8 +523,12 @@
523 523  
524 524   ~* For all other bands: max 51 bytes for each uplink  ( so 51 -5 = 46 max valid date).
525 525  
526 -=== 3.3.5 Uplink on demand ===
527 527  
557 +
558 +1.
559 +11.
560 +111. Uplink on demand
561 +
528 528  Except uplink periodically, RS485-BL is able to uplink on demand. The server sends downlink command to RS485-BL and RS485 will uplink data base on the command.
529 529  
530 530  Downlink control command:
... ... @@ -535,8 +535,8 @@
535 535  
536 536  
537 537  
538 -1.
539 -11.
572 +1.
573 +11.
540 540  111. Uplink on Interrupt
541 541  
542 542  Put the interrupt sensor between 3.3v_out and GPIO ext.[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image022.png]]
... ... @@ -550,7 +550,7 @@
550 550  AT+INTMOD=3  Interrupt trigger by rising edge.
551 551  
552 552  
553 -1.
587 +1.
554 554  11. Uplink Payload
555 555  
556 556  |**Size(bytes)**|**2**|**1**|**Length depends on the return from the commands**
... ... @@ -612,15 +612,15 @@
612 612  
613 613  * **Sensor Related Commands**: These commands are special designed for RS485-BL.  User can see these commands below:
614 614  
615 -1.
616 -11.
649 +1.
650 +11.
617 617  111. Common Commands:
618 618  
619 619  They should be available for each of Dragino Sensors, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: [[http:~~/~~/wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands>>url:http://wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands]]
620 620  
621 621  
622 -1.
623 -11.
656 +1.
657 +11.
624 624  111. Sensor related commands:
625 625  
626 626  ==== Choose Device Type (RS485 or TTL) ====
... ... @@ -926,13 +926,13 @@
926 926  
927 927  
928 928  
929 -1.
963 +1.
930 930  11. Buttons
931 931  
932 932  |**Button**|**Feature**
933 933  |**RST**|Reboot RS485-BL
934 934  
935 -1.
969 +1.
936 936  11. +3V3 Output
937 937  
938 938  RS485-BL has a Controllable +3V3 output, user can use this output to power external sensor.
... ... @@ -950,7 +950,7 @@
950 950  By default, the AT+3V3T=0. This is a special case, means the +3V3 output is always on at any time
951 951  
952 952  
953 -1.
987 +1.
954 954  11. +5V Output
955 955  
956 956  RS485-BL has a Controllable +5V output, user can use this output to power external sensor.
... ... @@ -970,13 +970,13 @@
970 970  
971 971  
972 972  
973 -1.
1007 +1.
974 974  11. LEDs
975 975  
976 976  |**LEDs**|**Feature**
977 977  |**LED1**|Blink when device transmit a packet.
978 978  
979 -1.
1013 +1.
980 980  11. Switch Jumper
981 981  
982 982  |**Switch Jumper**|**Feature**
... ... @@ -1022,7 +1022,7 @@
1022 1022  
1023 1023  
1024 1024  
1025 -1.
1059 +1.
1026 1026  11. Common AT Command Sequence
1027 1027  111. Multi-channel ABP mode (Use with SX1301/LG308)
1028 1028  
... ... @@ -1041,8 +1041,8 @@
1041 1041  
1042 1042  ATZ
1043 1043  
1044 -1.
1045 -11.
1078 +1.
1079 +11.
1046 1046  111. Single-channel ABP mode (Use with LG01/LG02)
1047 1047  
1048 1048  AT+FDR   Reset Parameters to Factory Default, Keys Reserve
... ... @@ -1117,7 +1117,7 @@
1117 1117  [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image035.png]] [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image036.png]]
1118 1118  
1119 1119  
1120 -1.
1154 +1.
1121 1121  11. How to change the LoRa Frequency Bands/Region?
1122 1122  
1123 1123  User can follow the introduction for [[how to upgrade image>>path:#upgrade_image]]. When download the images, choose the required image file for download.
... ... @@ -1124,7 +1124,7 @@
1124 1124  
1125 1125  
1126 1126  
1127 -1.
1161 +1.
1128 1128  11. How many RS485-Slave can RS485-BL connects?
1129 1129  
1130 1130  The RS485-BL can support max 32 RS485 devices. Each uplink command of RS485-BL can support max 16 different RS485 command. So RS485-BL can support max 16 RS485 devices pre-program in the device for uplink. For other devices no pre-program, user can use the [[downlink message (type code 0xA8) to poll their info>>path:#downlink_A8]].
... ... @@ -1141,7 +1141,7 @@
1141 1141  
1142 1142  
1143 1143  
1144 -1.
1178 +1.
1145 1145  11. Why I can’t join TTN V3 in US915 /AU915 bands?
1146 1146  
1147 1147  It might about the channels mapping. Please see for detail.
1653266934636-343.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -176.5 KB
Content
1653267211009-519.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -138.7 KB
Content
1653268091319-405.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -399.3 KB
Content
1653268155545-638.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -113.7 KB
Content
1653268227651-549.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -1.3 MB
Content
1653269403619-508.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -27.8 KB
Content
1653269438444-278.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -26.6 KB
Content
1653269551753-223.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -138.7 KB
Content
1653269568276-930.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -131.4 KB
Content
1653269593172-426.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -142.6 KB
Content
1653269618463-608.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -27.7 KB
Content
1653269759169-150.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -294.0 KB
Content
1653269916228-732.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -143.3 KB
Content
1653270130359-810.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -197.8 KB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0