Last modified by Xiaoling on 2025/04/23 15:56

From version 32.5
edited by Xiaoling
on 2022/06/02 15:25
Change comment: There is no comment for this version
To version 5.1
edited by Xiaoling
on 2022/05/19 17:41
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -RS485-LN – RS485 to LoRaWAN Converter
1 +RS485-BL – Waterproof RS485 to LoRaWAN Converter
Content
... ... @@ -1,11 +1,13 @@
1 1  (% style="text-align:center" %)
2 -[[image:1653266934636-343.png||height="385" width="385"]]
2 +[[image:1652947681187-144.png||height="385" width="385"]]
3 3  
4 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image001.jpg]]
4 4  
5 5  
6 -**RS485-LN – RS485 to LoRaWAN Converter User Manual**
7 7  
8 +**RS485-BL – Waterproof RS485 to LoRaWAN Converter User Manual**
8 8  
10 +
9 9  **Table of Contents:**
10 10  
11 11  
... ... @@ -14,30 +14,41 @@
14 14  
15 15  = 1.Introduction =
16 16  
17 -== 1.1 What is RS485-LN RS485 to LoRaWAN Converter ==
19 +== 1.1 What is RS485-BL RS485 to LoRaWAN Converter ==
18 18  
19 19  (((
22 +
23 +)))
24 +
20 20  (((
21 -The Dragino RS485-LN is a (% style="color:blue" %)**RS485 to LoRaWAN Converter**(%%). It converts the RS485 signal into LoRaWAN wireless signal which simplify the IoT installation and reduce the installation/maintaining cost.
26 +The Dragino RS485-BL is a **RS485 / UART to LoRaWAN Converter** for Internet of Things solutions. User can connect RS485 or UART sensor to RS485-BL converter, and configure RS485-BL to periodically read sensor data and upload via LoRaWAN network to IoT server.
22 22  )))
23 23  
24 24  (((
25 -RS485-LN allows user to (% style="color:blue" %)**monitor / control RS485 devices**(%%) and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
30 +RS485-BL can interface to RS485 sensor, 3.3v/5v UART sensor or interrupt sensor. RS485-BL provides **a 3.3v output** and** a 5v output** to power external sensors. Both output voltages are controllable to minimize the total system power consumption.
26 26  )))
27 27  
28 28  (((
29 -(% style="color:blue" %)**For data uplink**(%%), RS485-LN sends user-defined commands to RS485 devices and gets the return from the RS485 devices. RS485-LN will process these returns according to user-define rules to get the final payload and upload to LoRaWAN server.
34 +RS485-BL is IP67 **waterproof** and powered by **8500mAh Li-SOCI2 battery**, it is designed for long term use for several years.
30 30  )))
31 31  
32 32  (((
33 -(% style="color:blue" %)**For data downlink**(%%), RS485-LN runs in LoRaWAN Class C. When there downlink commands from LoRaWAN server, RS485-LN will forward the commands from LoRaWAN server to RS485 devices.
38 +RS485-BL runs standard **LoRaWAN 1.0.3 in Class A**. It can reach long transfer range and easy to integrate with LoRaWAN compatible gateway and IoT server.
39 +)))
34 34  
35 -(% style="color:blue" %)**Demo Dashboard for RS485-LN**(%%) connect to two energy meters: [[https:~~/~~/app.datacake.de/dashboard/d/58844a26-378d-4c5a-aaf5-b5b5b153447a>>url:https://app.datacake.de/dashboard/d/58844a26-378d-4c5a-aaf5-b5b5b153447a]]
41 +(((
42 +For data uplink, RS485-BL sends user-defined commands to RS485 devices and gets the return from the RS485 devices. RS485-BL will process these returns data according to user-define rules to get the final payload and upload to LoRaWAN server.
36 36  )))
44 +
45 +(((
46 +For data downlink, RS485-BL runs in LoRaWAN Class A. When there is downlink commands from LoRaWAN server, RS485-BL will forward the commands from LoRaWAN server to RS485 devices.
37 37  )))
38 38  
39 -[[image:1653267211009-519.png||height="419" width="724"]]
49 +(((
50 +Each RS485-BL pre-load with a set of unique keys for LoRaWAN registration, register these keys to LoRaWAN server and it will auto connect after power on.
51 +)))
40 40  
53 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image002.png]]
41 41  
42 42  == 1.2 Specifications ==
43 43  
... ... @@ -44,15 +44,21 @@
44 44  **Hardware System:**
45 45  
46 46  * STM32L072CZT6 MCU
47 -* SX1276/78 Wireless Chip 
60 +* SX1276/78 Wireless Chip
48 48  * Power Consumption (exclude RS485 device):
49 -** Idle: 32mA@12v
50 -** 20dB Transmit: 65mA@12v
62 +** Idle: 6uA@3.3v
51 51  
64 +*
65 +** 20dB Transmit: 130mA@3.3v
66 +
52 52  **Interface for Model:**
53 53  
54 -* RS485
55 -* Power Input 7~~ 24V DC. 
69 +* 1 x RS485 Interface
70 +* 1 x TTL Serial , 3.3v or 5v.
71 +* 1 x I2C Interface, 3.3v or 5v.
72 +* 1 x one wire interface
73 +* 1 x Interrupt Interface
74 +* 1 x Controllable 5V output, max
56 56  
57 57  **LoRa Spec:**
58 58  
... ... @@ -61,30 +61,27 @@
61 61  ** Band 2 (LF): 410 ~~ 528 Mhz
62 62  * 168 dB maximum link budget.
63 63  * +20 dBm - 100 mW constant RF output vs.
64 -* +14 dBm high efficiency PA.
65 65  * Programmable bit rate up to 300 kbps.
66 66  * High sensitivity: down to -148 dBm.
67 67  * Bullet-proof front end: IIP3 = -12.5 dBm.
68 68  * Excellent blocking immunity.
69 -* Low RX current of 10.3 mA, 200 nA register retention.
70 70  * Fully integrated synthesizer with a resolution of 61 Hz.
71 -* FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation.
88 +* LoRa modulation.
72 72  * Built-in bit synchronizer for clock recovery.
73 73  * Preamble detection.
74 74  * 127 dB Dynamic Range RSSI.
75 -* Automatic RF Sense and CAD with ultra-fast AFC.
76 -* Packet engine up to 256 bytes with CRC.
92 +* Automatic RF Sense and CAD with ultra-fast AFC. ​​​
77 77  
78 78  == 1.3 Features ==
79 79  
80 -* LoRaWAN Class A & Class C protocol (default Class C)
96 +* LoRaWAN Class A & Class C protocol (default Class A)
81 81  * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865/RU864
82 82  * AT Commands to change parameters
83 -* Remote configure parameters via LoRa Downlink
99 +* Remote configure parameters via LoRaWAN Downlink
84 84  * Firmware upgradable via program port
85 85  * Support multiply RS485 devices by flexible rules
86 86  * Support Modbus protocol
87 -* Support Interrupt uplink (Since hardware version v1.2)
103 +* Support Interrupt uplink
88 88  
89 89  == 1.4 Applications ==
90 90  
... ... @@ -95,269 +95,262 @@
95 95  * Smart Cities
96 96  * Smart Factory
97 97  
98 -== 1.5 Firmware Change log ==
114 +== 1.5 Firmware Change log ==
99 99  
100 -[[RS485-LN Image files – Download link and Change log>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/]]
116 +[[RS485-BL Image files – Download link and Change log>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/RS485-BL/Firmware/||style="background-color: rgb(255, 255, 255);"]]
101 101  
102 102  == 1.6 Hardware Change log ==
103 103  
104 104  (((
105 -(((
106 -v1.2: Add External Interrupt Pin.
107 -
108 -v1.0: Release
121 +v1.4
109 109  )))
110 -)))
111 111  
112 -= 2. Power ON Device =
113 -
114 114  (((
115 -The RS485-LN can be powered by 7 ~~ 24V DC power source. Connection as below
125 +~1. Change Power IC to TPS22916
126 +)))
116 116  
117 -* Power Source VIN to RS485-LN VIN+
118 -* Power Source GND to RS485-LN VIN-
119 119  
120 120  (((
121 -Once there is power, the RS485-LN will be on.
130 +v1.3
122 122  )))
123 123  
124 -[[image:1653268091319-405.png]]
133 +(((
134 +~1. Change JP3 from KF350-8P to KF350-11P, Add one extra interface for I2C and one extra interface for one-wire
125 125  )))
126 126  
127 -= 3. Operation Mode =
128 128  
129 -== 3.1 How it works? ==
138 +(((
139 +v1.2
140 +)))
130 130  
131 131  (((
132 -The RS485-LN is configured as LoRaWAN OTAA Class C mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the RS485-LN. It will auto join the network via OTAA.
143 +Release version ​​​​​
133 133  )))
134 134  
135 -== 3.2 Example to join LoRaWAN network ==
146 += 2. Pin mapping and Power ON Device =
136 136  
137 -Here shows an example for how to join the TTN V3 Network. Below is the network structure, we use [[LG308>>url:http://www.dragino.com/products/lora-lorawan-gateway/item/140-lg308.html]] as LoRaWAN gateway here. 
148 +The RS485-BL is powered on by 8500mAh battery. To save battery life, RS485-BL is shipped with power off. User can put the jumper to power on RS485-BL.
138 138  
139 -[[image:1653268155545-638.png||height="334" width="724"]]
150 +[[image:1652953055962-143.png||height="387" width="728"]]
140 140  
141 -(((
142 -The RS485-LN in this example connected to two RS485 devices for demonstration, user can connect to other RS485 devices via the same method. The connection is as below:
152 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image003.png]]
143 143  
144 -485A+ and 485B- of the sensor are connected to RS485A and RA485B of RS485-LN respectively.
154 +The Left TXD and RXD are TTL interface for external sensor. TTL level is controlled by 3.3/5v Jumper.
145 145  
146 -[[image:1653268227651-549.png||height="592" width="720"]]
147 147  
148 -(((
149 -The LG308 is already set to connect to [[TTN V3 network >>path:eu1.cloud.thethings.network/]]. So what we need to now is only configure the TTN V3:
150 -)))
151 151  
152 -(((
153 -**Step 1**: Create a device in TTN V3 with the OTAA keys from RS485-LN.
154 -)))
158 +3. Operation Mode
159 +3.1 How it works?
155 155  
156 -(((
157 -Each RS485-LN is shipped with a sticker with unique device EUI:
158 -)))
159 -)))
161 +The RS485-BL is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the RS485-BL. It will auto join the network via OTAA.
160 160  
161 -[[image:1652953462722-299.png]]
162 162  
163 -(((
164 -(((
164 +1.
165 +11. Example to join LoRaWAN network
166 +
167 +Here shows an example for how to join the TTN V3 Network. Below is the network structure, we use [[LG308>>url:http://www.dragino.com/products/lora-lorawan-gateway/item/140-lg308.html]] as LoRaWAN gateway here.
168 +
169 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image004.png]]
170 +
171 +
172 +The RS485-BL in this example connected to two RS485 devices for demonstration, user can connect to other RS485 devices via the same method.
173 +
174 +
175 +The LG308 is already set to connect to [[TTN V3 network >>url:https://www.thethingsnetwork.org/]]. So what we need to now is only configure the TTN V3:
176 +
177 +**Step 1**: Create a device in TTN V3 with the OTAA keys from RS485-BL.
178 +
179 +Each RS485-BL is shipped with a sticker with unique device EUI:
180 +
181 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image005.png]]
182 +
183 +
184 +
185 +
165 165  User can enter this key in their LoRaWAN Server portal. Below is TTN V3 screen shot:
166 -)))
167 167  
168 -(((
169 169  Add APP EUI in the application.
170 -)))
171 -)))
172 172  
173 -[[image:image-20220519174512-1.png]]
190 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image006.png]]
174 174  
175 -[[image:image-20220519174512-2.png||height="323" width="720"]]
192 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image007.png]]
176 176  
177 -[[image:image-20220519174512-3.png||height="556" width="724"]]
194 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image008.png]]
178 178  
179 -[[image:image-20220519174512-4.png]]
196 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image009.png]]
180 180  
181 -You can also choose to create the device manually.
182 182  
183 -[[image:1652953542269-423.png||height="710" width="723"]]
184 184  
185 -Add APP KEY and DEV EUI
186 186  
187 -[[image:1652953553383-907.png||height="514" width="724"]]
188 188  
189 189  
190 -(((
191 -**Step 2**: Power on RS485-LN and it will auto join to the TTN V3 network. After join success, it will start to upload message to TTN V3 and user can see in the panel.
192 -)))
193 193  
194 -[[image:1652953568895-172.png||height="232" width="724"]]
195 195  
196 -== 3.3 Configure Commands to read data ==
197 197  
198 -(((
199 -(((
200 -There are plenty of RS485 devices in the market and each device has different command to read the valid data. To support these devices in flexible, RS485-LN supports flexible command set. User can use [[AT Commands>>path:#AT_COMMAND]] or LoRaWAN Downlink Command to configure what commands RS485-LN should send for each sampling and how to handle the return from RS485 devices.
201 -)))
202 202  
203 -(((
204 -(% style="color:red" %)Note: below description and commands are for firmware version >v1.1, if you have firmware version v1.0. Please check the [[user manual v1.0>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/&file=RS485-LN_UserManual_v1.0.1.pdf]] or upgrade the firmware to v1.1
205 -)))
206 -)))
207 207  
208 -=== 3.3.1 onfigure UART settings for RS485 or TTL communication ===
209 209  
210 -To use RS485-LN to read data from RS485 sensors, connect the RS485-LN A/B traces to the sensors. And user need to make sure RS485-LN use the match UART setting to access the sensors. The related commands for UART settings are:
211 211  
212 -(% border="1" style="background-color:#ffffcc; color:green; width:795px" %)
210 +
211 +
212 +
213 +
214 +You can also choose to create the device manually.
215 +
213 213  |(((
214 -**AT Commands**
215 -)))|(% style="width:285px" %)(((
216 -**Description**
217 -)))|(% style="width:347px" %)(((
218 -**Example**
217 +
219 219  )))
220 -|(((
221 -AT+BAUDR
222 -)))|(% style="width:285px" %)(((
223 -Set the baud rate (for RS485 connection). Default Value is: 9600.
224 -)))|(% style="width:347px" %)(((
225 -(((
219 +
220 +
221 +
222 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image010.png]]
223 +
224 +Add APP KEY and DEV EUI
225 +
226 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image011.png]]
227 +
228 +
229 +**Step 2**: Power on RS485-BL and it will auto join to the TTN V3 network. After join success, it will start to upload message to TTN V3 and user can see in the panel.
230 +
231 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image012.png]]
232 +
233 +
234 +
235 +
236 +1.
237 +11. Configure Commands to read data
238 +
239 +There are plenty of RS485 and TTL level devices in the market and each device has different command to read the valid data. To support these devices in flexible, RS485-BL supports flexible command set. User can use [[AT Commands or LoRaWAN Downlink>>path:#AT_COMMAND]] Command to configure how RS485-BL should read the sensor and how to handle the return from RS485 or TTL sensors.
240 +
241 +
242 +1.
243 +11.
244 +111. Configure UART settings for RS485 or TTL communication
245 +
246 +RS485-BL can connect to either RS485 sensors or TTL sensor. User need to specify what type of sensor need to connect.
247 +
248 +1. RS485-MODBUS mode:
249 +
250 +AT+MOD=1 ~/~/ Support RS485-MODBUS type sensors. User can connect multiply RS485 , Modbus sensors to the A / B pins.
251 +
252 +
253 +1. TTL mode:
254 +
255 +AT+MOD=2 ~/~/ Support TTL Level sensors, User can connect one TTL Sensor to the TXD/RXD/GND pins.
256 +
257 +
258 +RS485-BL default UART settings is **9600, no parity, stop bit 1**. If the sensor has a different settings, user can change the RS485-BL setting to match.
259 +
260 +
261 +|**AT Commands**|**Description**|**Example**
262 +|AT+BAUDR|Set the baud rate (for RS485 connection). Default Value is: 9600.|(((
226 226  AT+BAUDR=9600
227 -)))
228 228  
229 -(((
230 230  Options: (1200,2400,4800,14400,19200,115200)
231 231  )))
232 -)))
233 -|(((
234 -AT+PARITY
235 -)))|(% style="width:285px" %)(((
267 +|AT+PARITY|(((
236 236  Set UART parity (for RS485 connection)
237 -)))|(% style="width:347px" %)(((
238 -(((
269 +
270 +Default Value is: no parity.
271 +)))|(((
239 239  AT+PARITY=0
240 -)))
241 241  
242 -(((
243 243  Option: 0: no parity, 1: odd parity, 2: even parity
244 244  )))
245 -)))
246 -|(((
247 -AT+STOPBIT
248 -)))|(% style="width:285px" %)(((
249 -(((
276 +|AT+STOPBIT|(((
250 250  Set serial stopbit (for RS485 connection)
251 -)))
252 252  
253 -(((
254 -
255 -)))
256 -)))|(% style="width:347px" %)(((
257 -(((
279 +Default Value is: 1bit.
280 +)))|(((
258 258  AT+STOPBIT=0 for 1bit
259 -)))
260 260  
261 -(((
262 262  AT+STOPBIT=1 for 1.5 bit
263 -)))
264 264  
265 -(((
266 266  AT+STOPBIT=2 for 2 bits
267 267  )))
268 -)))
269 269  
270 -=== 3.3.2 Configure sensors ===
271 271  
272 -(((
273 -(((
274 -Some sensors might need to configure before normal operation. User can configure such sensor via PC and RS485 adapter or through RS485-LN AT Commands (% style="color:#4f81bd" %)**AT+CFGDEV**(%%). Each (% style="color:#4f81bd" %)**AT+CFGDEV **(%%)equals to send a RS485 command to sensors. This command will only run when user input it and won’t run during each sampling.
275 -)))
276 -)))
277 277  
278 -(% border="1" style="background-color:#ffffcc; color:green; width:806px" %)
279 -|**AT Commands**|(% style="width:418px" %)**Description**|(% style="width:256px" %)**Example**
280 -|AT+CFGDEV|(% style="width:418px" %)(((
290 +
291 +
292 +1.
293 +11.
294 +111. Configure sensors
295 +
296 +Some sensors might need to configure before normal operation. User can configure such sensor via PC or through RS485-BL AT Commands AT+CFGDEV.
297 +
298 +
299 +When user issue an AT+CFGDEV command, Each AT+CFGDEV equals to send a command to the RS485 or TTL sensors. This command will only run when user input it and won’t run during each sampling.
300 +
301 +|**AT Commands**|**Description**|**Example**
302 +|AT+CFGDEV|(((
281 281  This command is used to configure the RS485/TTL devices; they won’t be used during sampling.
282 282  
283 -AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,
305 +AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m
284 284  
285 -mm: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command
286 -)))|(% style="width:256px" %)AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m
307 +m: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command
308 +)))|AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m
287 287  
288 -=== 3.3.3 Configure read commands for each sampling ===
310 +Detail of AT+CFGDEV command see [[AT+CFGDEV detail>>path:#AT_CFGDEV]].
289 289  
290 -(((
312 +
313 +
314 +
315 +
316 +1.
317 +11.
318 +111. Configure read commands for each sampling
319 +
291 291  RS485-BL is a battery powered device; it will sleep most of time. And wake up on each period and read RS485 / TTL sensor data and uplink.
292 -)))
293 293  
294 -(((
322 +
295 295  During each sampling, we need to confirm what commands we need to send to the sensors to read data. After the RS485/TTL sensors send back the value, it normally includes some bytes and we only need a few from them for a shorten payload.
296 -)))
297 297  
298 -(((
325 +
299 299  To save the LoRaWAN network bandwidth, we might need to read data from different sensors and combine their valid value into a short payload.
300 -)))
301 301  
302 -(((
328 +
303 303  This section describes how to achieve above goals.
304 -)))
305 305  
306 -(((
331 +
307 307  During each sampling, the RS485-BL can support 15 commands to read sensors. And combine the return to one or several uplink payloads.
308 -)))
309 309  
310 -(((
334 +
311 311  **Command from RS485-BL to Sensor:**
312 -)))
313 313  
314 -(((
315 315  RS485-BL can send out pre-set max 15 strings via **AT+COMMAD1**, **ATCOMMAND2**,…, to **AT+COMMANDF** . All commands are of same grammar.
316 -)))
317 317  
318 -(((
339 +
319 319  **Handle return from sensors to RS485-BL**:
320 -)))
321 321  
322 -(((
323 323  After RS485-BL send out a string to sensor, RS485-BL will wait for the return from RS485 or TTL sensor. And user can specify how to handle the return, by **AT+DATACUT or AT+SEARCH commands**
324 -)))
325 325  
326 -* (((
327 -**AT+DATACUT**
328 -)))
329 329  
330 -(((
345 +* **AT+DATACUT**
346 +
331 331  When the return value from sensor have fix length and we know which position the valid value we should get, we can use AT+DATACUT command.
332 -)))
333 333  
334 -* (((
335 -**AT+SEARCH**
336 -)))
337 337  
338 -(((
350 +* **AT+SEARCH**
351 +
339 339  When the return value from sensor is dynamic length and we are not sure which bytes the valid data is, instead, we know what value the valid value following. We can use AT+SEARCH to search the valid value in the return string.
340 -)))
341 341  
342 -(((
354 +
343 343  **Define wait timeout:**
344 -)))
345 345  
346 -(((
347 347  Some RS485 device might has longer delay on reply, so user can use AT+CMDDL to set the timeout for getting reply after the RS485 command is sent. For example, AT+CMDDL1=1000 to send the open time to 1000ms
348 -)))
349 349  
350 -(((
359 +
351 351  After we got the valid value from each RS485 commands, we need to combine them together with the command **AT+DATAUP**.
352 -)))
353 353  
362 +
354 354  **Examples:**
355 355  
356 356  Below are examples for the how above AT Commands works.
357 357  
367 +
358 358  **AT+COMMANDx : **This command will be sent to RS485/TTL devices during each sampling, Max command length is 14 bytes. The grammar is:
359 359  
360 -(% border="1" class="table-bordered" %)
361 361  |(((
362 362  **AT+COMMANDx=xx xx xx xx xx xx xx xx xx xx xx xx,m**
363 363  
... ... @@ -366,19 +366,13 @@
366 366  **m: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command**
367 367  )))
368 368  
369 -(((
370 370  For example, if we have a RS485 sensor. The command to get sensor value is: 01 03 0B B8 00 02 46 0A. Where 01 03 0B B8 00 02 is the Modbus command to read the register 0B B8 where stored the sensor value. The 46 0A is the CRC-16/MODBUS which calculate manually.
371 -)))
372 372  
373 -(((
374 374  In the RS485-BL, we should use this command AT+COMMAND1=01 03 0B B8 00 02,1 for the same.
375 -)))
376 376  
377 -(((
382 +
378 378  **AT+SEARCHx**: This command defines how to handle the return from AT+COMMANDx.
379 -)))
380 380  
381 -(% border="1" class="table-bordered" %)
382 382  |(((
383 383  **AT+SEARCHx=aa,xx xx xx xx xx**
384 384  
... ... @@ -388,24 +388,26 @@
388 388  
389 389  )))
390 390  
391 -**Examples:**
394 +Examples:
392 392  
393 -~1. For a return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
396 +1. For a return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
394 394  
395 395  If we set AT+SEARCH1=1,1E 56 34.      (max 5 bytes for prefix)
396 396  
397 -The valid data will be all bytes after 1E 56 34 , so it is (% style="background-color:yellow" %)** 2e 30 58 5f 36 41 30 31 00 49**
400 +The valid data will be all bytes after 1E 56 34 , so it is 2e 30 58 5f 36 41 30 31 00 49
398 398  
399 -[[image:1653269403619-508.png]]
402 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image013.png]]
400 400  
401 -2. For a return string from AT+COMMAND1:  16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
402 402  
405 +1. For a return string from AT+COMMAND1:  16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
406 +
403 403  If we set AT+SEARCH1=2, 1E 56 34+31 00 49
404 404  
405 -Device will search the bytes between 1E 56 34 and 31 00 49. So it is (% style="background-color:yellow" %)** 2e 30 58 5f 36 41 30**
409 +Device will search the bytes between 1E 56 34 and 31 00 49. So it is 2e 30 58 5f 36 41 30
406 406  
407 -[[image:1653269438444-278.png]]
411 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image014.png]]
408 408  
413 +
409 409  **AT+DATACUTx : **This command defines how to handle the return from AT+COMMANDx, max return length is 45 bytes.
410 410  
411 411  |(((
... ... @@ -413,7 +413,7 @@
413 413  
414 414  * **a: length for the return of AT+COMMAND**
415 415  * **b:1: grab valid value by byte, max 6 bytes. 2: grab valid value by bytes section, max 3 sections.**
416 -* **c: define the position for valid value.  **
421 +* **c: define the position for valid value. **
417 417  )))
418 418  
419 419  Examples:
... ... @@ -420,95 +420,94 @@
420 420  
421 421  * Grab bytes:
422 422  
423 -[[image:1653269551753-223.png||height="311" width="717"]]
428 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image015.png]]
424 424  
425 425  * Grab a section.
426 426  
427 -[[image:1653269568276-930.png||height="325" width="718"]]
432 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image016.png]]
428 428  
429 429  * Grab different sections.
430 430  
431 -[[image:1653269593172-426.png||height="303" width="725"]]
436 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image017.png]]
432 432  
433 -(% style="color:red" %)**Note:**
434 434  
439 +Note:
440 +
435 435  AT+SEARCHx and AT+DATACUTx can be used together, if both commands are set, RS485-BL will first process AT+SEARCHx on the return string and get a temporary string, and then process AT+DATACUTx on this temporary string to get the final payload. In this case, AT+DATACUTx need to set to format AT+DATACUTx=0,xx,xx where the return bytes set to 0.
436 436  
437 437  Example:
438 438  
439 -(% style="color:red" %)AT+COMMAND1=11 01 1E D0,0
445 +AT+COMMAND1=11 01 1E D0,0
440 440  
441 -(% style="color:red" %)AT+SEARCH1=1,1E 56 34
447 +AT+SEARCH1=1,1E 56 34
442 442  
443 -(% style="color:red" %)AT+DATACUT1=0,2,1~~5
449 +AT+DATACUT1=0,2,1~~5
444 444  
445 -(% style="color:red" %)Return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
451 +Return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
446 446  
447 -(% style="color:red" %)String after SEARCH command: 2e 30 58 5f 36 41 30 31 00 49
453 +String after SEARCH command: 2e 30 58 5f 36 41 30 31 00 49
448 448  
449 -(% style="color:red" %)Valid payload after DataCUT command: 2e 30 58 5f 36
455 +Valid payload after DataCUT command: 2e 30 58 5f 36
450 450  
451 -[[image:1653269618463-608.png]]
457 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image018.png]]
452 452  
453 -=== 3.3.4 Compose the uplink payload ===
454 454  
455 -(((
460 +
461 +
462 +1.
463 +11.
464 +111. Compose the uplink payload
465 +
456 456  Through AT+COMMANDx and AT+DATACUTx we got valid value from each RS485 commands, Assume these valid value are RETURN1, RETURN2, .., to RETURNx. The next step is how to compose the LoRa Uplink Payload by these RETURNs. The command is **AT+DATAUP.**
457 -)))
458 458  
459 -(((
460 -(% style="color:#4f81bd" %)**Examples: AT+DATAUP=0**
461 -)))
462 462  
463 -(((
464 -Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**A SIGNLE UPLINK**.
465 -)))
469 +**Examples: AT+DATAUP=0**
466 466  
467 -(((
471 +Compose the uplink payload with value returns in sequence and send with **A SIGNLE UPLINK**.
472 +
468 468  Final Payload is
469 -)))
470 470  
471 -(((
472 -(% style="color:#4f81bd" %)**Battery Info+PAYVER + VALID Value from RETURN1 + Valid Value from RETURN2 + … + RETURNx**
473 -)))
475 +Battery Info+PAYVER + VALID Value from RETURN1 + Valid Value from RETURN2 + … + RETURNx
474 474  
475 -(((
476 476  Where PAYVER is defined by AT+PAYVER, below is an example screen shot.
477 -)))
478 478  
479 -[[image:1653269759169-150.png||height="513" width="716"]]
479 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image019.png]]
480 480  
481 -(% style="color:#4f81bd" %)**Examples: AT+DATAUP=1**
482 482  
483 -Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**Multiply UPLINKs**.
484 484  
483 +**Examples: AT+DATAUP=1**
484 +
485 +Compose the uplink payload with value returns in sequence and send with **Multiply UPLINKs**.
486 +
485 485  Final Payload is
486 486  
487 -(% style="color:#4f81bd" %)**Battery Info+PAYVER + PAYLOAD COUNT + PAYLOAD# + DATA**
489 +Battery Info+PAYVER + PAYLOAD COUNT + PAYLOAD# + DATA
488 488  
489 489  1. Battery Info (2 bytes): Battery voltage
490 490  1. PAYVER (1 byte): Defined by AT+PAYVER
491 491  1. PAYLOAD COUNT (1 byte): Total how many uplinks of this sampling.
492 492  1. PAYLOAD# (1 byte): Number of this uplink. (from 0,1,2,3…,to PAYLOAD COUNT)
493 -1. DATA: Valid value: max 6 bytes(US915 version here, Notice*!) for each uplink so each uplink <= 11 bytes. For the last uplink, DATA will might less than 6 bytes
495 +1. DATA: Valid value: max 6 bytes(US915 version here, [[Notice*!>>path:#max_byte]]) for each uplink so each uplink <= 11 bytes. For the last uplink, DATA will might less than 6 bytes
494 494  
495 -[[image:1653269916228-732.png||height="433" width="711"]]
497 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
496 496  
497 497  
498 498  So totally there will be 3 uplinks for this sampling, each uplink includes 6 bytes DATA
499 499  
500 -DATA1=RETURN1 Valid Value = (% style="background-color:green; color:white" %)20 20 0a 33 90 41
502 +DATA1=RETURN1 Valid Value = 20 20 0a 33 90 41
501 501  
502 -DATA2=1^^st^^ ~~ 6^^th^^ byte of Valid value of RETURN10=(% style="background-color:green; color:white" %) 02 aa 05 81 0a 20
504 +DATA2=1^^st^^ ~~ 6^^th^^ byte of Valid value of RETURN10= 02 aa 05 81 0a 20
503 503  
504 -DATA3=7^^th^^ ~~ 11^^th^^ bytes of Valid value of RETURN10 = (% style="background-color:green; color:white" %)20 20 20 2d 30
506 +DATA3=7^^th^^ ~~ 11^^th^^ bytes of Valid value of RETURN10 = 20 20 20 2d 30
505 505  
508 +
509 +
506 506  Below are the uplink payloads:
507 507  
508 -[[image:1653270130359-810.png]]
512 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image021.png]]
509 509  
510 510  
511 -(% style="color:red" %)**Notice: the Max bytes is according to the max support bytes in different Frequency Bands for lowest SF. As below:**
515 +Notice: the Max bytes is according to the max support bytes in different Frequency Bands for lowest SF. As below:
512 512  
513 513   ~* For AU915/AS923 bands, if UplinkDwell time=0, max 51 bytes for each uplink ( so 51 -5 = 46 max valid date)
514 514  
... ... @@ -518,8 +518,12 @@
518 518  
519 519   ~* For all other bands: max 51 bytes for each uplink  ( so 51 -5 = 46 max valid date).
520 520  
521 -=== 3.3.5 Uplink on demand ===
522 522  
526 +
527 +1.
528 +11.
529 +111. Uplink on demand
530 +
523 523  Except uplink periodically, RS485-BL is able to uplink on demand. The server sends downlink command to RS485-BL and RS485 will uplink data base on the command.
524 524  
525 525  Downlink control command:
... ... @@ -548,6 +548,7 @@
548 548  1.
549 549  11. Uplink Payload
550 550  
559 +
551 551  |**Size(bytes)**|**2**|**1**|**Length depends on the return from the commands**
552 552  |Value|(((
553 553  Battery(mV)
... ... @@ -596,7 +596,7 @@
596 596  
597 597  [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image023.png]]
598 598  
599 -1.
608 +1.
600 600  11. Configure RS485-BL via AT or Downlink
601 601  
602 602  User can configure RS485-BL via [[AT Commands >>path:#_​Using_the_AT]]or LoRaWAN Downlink Commands
... ... @@ -607,10 +607,12 @@
607 607  
608 608  * **Sensor Related Commands**: These commands are special designed for RS485-BL.  User can see these commands below:
609 609  
619 +
610 610  1.
611 611  11.
612 612  111. Common Commands:
613 613  
624 +
614 614  They should be available for each of Dragino Sensors, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: [[http:~~/~~/wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands>>url:http://wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands]]
615 615  
616 616  
... ... @@ -618,6 +618,7 @@
618 618  11.
619 619  111. Sensor related commands:
620 620  
632 +
621 621  ==== Choose Device Type (RS485 or TTL) ====
622 622  
623 623  RS485-BL can connect to either RS485 sensors or TTL sensor. User need to specify what type of sensor need to connect.
... ... @@ -658,6 +658,7 @@
658 658  * XX XX XX XX: RS485 command total NN bytes
659 659  * YY: How many bytes will be uplink from the return of this RS485 command, if YY=0, RS485-BL will execute the downlink command without uplink; if YY>0, RS485-BL will uplink total YY bytes from the output of this RS485 command
660 660  
673 +
661 661  **Example 1:**
662 662  
663 663  To connect a Modbus Alarm with below commands.
... ... @@ -766,6 +766,7 @@
766 766  
767 767  * AT+MBFUN=0: Disable Modbus fast reading.
768 768  
782 +
769 769  Example:
770 770  
771 771  * AT+MBFUN=1 and AT+DATACUT1/AT+DATACUT2 are not configure (0,0,0).
... ... @@ -850,7 +850,7 @@
850 850  
851 851  Etc. AT+CMDEAR=1,10 means erase AT+COMMAND1/AT+DATACUT1 to AT+COMMAND10/AT+DATACUT10
852 852  
853 -Example screen shot after clear all RS485 commands. 
867 +Example screen shot after clear all RS485 commands.
854 854  
855 855  
856 856  
... ... @@ -894,6 +894,7 @@
894 894  * A7 01 00 60   same as AT+BAUDR=9600
895 895  * A7 01 04 80  same as AT+BAUDR=115200
896 896  
911 +
897 897  A7 02 aa: Same as  AT+PARITY=aa  (aa value: 00 , 01 or 02)
898 898  
899 899  A7 03 aa: Same as  AT+STOPBIT=aa  (aa value: 00 , 01 or 02)
... ... @@ -924,15 +924,17 @@
924 924  1.
925 925  11. Buttons
926 926  
942 +
927 927  |**Button**|**Feature**
928 928  |**RST**|Reboot RS485-BL
929 929  
946 +
930 930  1.
931 931  11. +3V3 Output
932 932  
933 933  RS485-BL has a Controllable +3V3 output, user can use this output to power external sensor.
934 934  
935 -The +3V3 output will be valid for every sampling. RS485-BL will enable +3V3 output before all sampling and disable the +3V3 after all sampling. 
952 +The +3V3 output will be valid for every sampling. RS485-BL will enable +3V3 output before all sampling and disable the +3V3 after all sampling.
936 936  
937 937  
938 938  The +3V3 output time can be controlled by AT Command.
... ... @@ -950,7 +950,7 @@
950 950  
951 951  RS485-BL has a Controllable +5V output, user can use this output to power external sensor.
952 952  
953 -The +5V output will be valid for every sampling. RS485-BL will enable +5V output before all sampling and disable the +5v after all sampling. 
970 +The +5V output will be valid for every sampling. RS485-BL will enable +5V output before all sampling and disable the +5v after all sampling.
954 954  
955 955  
956 956  The 5V output time can be controlled by AT Command.
... ... @@ -971,6 +971,7 @@
971 971  |**LEDs**|**Feature**
972 972  |**LED1**|Blink when device transmit a packet.
973 973  
991 +
974 974  1.
975 975  11. Switch Jumper
976 976  
... ... @@ -992,6 +992,7 @@
992 992  
993 993  1. Case Study
994 994  
1013 +
995 995  User can check this URL for some case studies.
996 996  
997 997  [[http:~~/~~/wiki.dragino.com/index.php?title=APP_RS485_COMMUNICATE_WITH_SENSORS>>url:http://wiki.dragino.com/index.php?title=APP_RS485_COMMUNICATE_WITH_SENSORS]]
... ... @@ -1079,6 +1079,7 @@
1079 1079  * For bug fix
1080 1080  * Change LoRaWAN bands.
1081 1081  
1101 +
1082 1082  Below shows the hardware connection for how to upload an image to RS485-BL:
1083 1083  
1084 1084  [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image030.png]]
... ... @@ -1122,6 +1122,7 @@
1122 1122  1.
1123 1123  11. How many RS485-Slave can RS485-BL connects?
1124 1124  
1145 +
1125 1125  The RS485-BL can support max 32 RS485 devices. Each uplink command of RS485-BL can support max 16 different RS485 command. So RS485-BL can support max 16 RS485 devices pre-program in the device for uplink. For other devices no pre-program, user can use the [[downlink message (type code 0xA8) to poll their info>>path:#downlink_A8]].
1126 1126  
1127 1127  
... ... @@ -1132,7 +1132,7 @@
1132 1132  
1133 1133  Please see this link for debug:
1134 1134  
1135 -[[http:~~/~~/wiki.dragino.com/index.php?title=Main_Page#LoRaWAN_Communication_Debug>>url:http://wiki.dragino.com/index.php?title=Main_Page#LoRaWAN_Communication_Debug]] 
1156 +[[http:~~/~~/wiki.dragino.com/index.php?title=Main_Page#LoRaWAN_Communication_Debug>>url:http://wiki.dragino.com/index.php?title=Main_Page#LoRaWAN_Communication_Debug]]
1136 1136  
1137 1137  
1138 1138  
... ... @@ -1147,6 +1147,7 @@
1147 1147  
1148 1148  1. Order Info
1149 1149  
1171 +
1150 1150  **Part Number: RS485-BL-XXX**
1151 1151  
1152 1152  **XXX:**
... ... @@ -1162,6 +1162,7 @@
1162 1162  * **RU864**: frequency bands RU864
1163 1163  * **KZ865: **frequency bands KZ865
1164 1164  
1187 +
1165 1165  1. Packing Info
1166 1166  
1167 1167  **Package Includes**:
... ... @@ -1170,6 +1170,7 @@
1170 1170  * Stick Antenna for LoRa RF part x 1
1171 1171  * Program cable x 1
1172 1172  
1196 +
1173 1173  **Dimension and weight**:
1174 1174  
1175 1175  * Device Size: 13.5 x 7 x 3 cm
... ... @@ -1177,6 +1177,7 @@
1177 1177  * Package Size / pcs : 14.5 x 8 x 5 cm
1178 1178  * Weight / pcs : 170g
1179 1179  
1204 +
1180 1180  1. Support
1181 1181  
1182 1182  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1652953304999-717.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -139.7 KB
Content
1652953414711-647.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -119.3 KB
Content
1652953462722-299.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -202.7 KB
Content
1652953542269-423.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -118.5 KB
Content
1652953553383-907.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -94.0 KB
Content
1652953568895-172.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -109.3 KB
Content
1652954654347-831.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -138.7 KB
Content
1653266934636-343.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -176.5 KB
Content
1653267211009-519.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -138.7 KB
Content
1653268091319-405.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -399.3 KB
Content
1653268155545-638.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -113.7 KB
Content
1653268227651-549.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -1.3 MB
Content
1653269403619-508.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -27.8 KB
Content
1653269438444-278.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -26.6 KB
Content
1653269551753-223.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -138.7 KB
Content
1653269568276-930.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -131.4 KB
Content
1653269593172-426.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -142.6 KB
Content
1653269618463-608.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -27.7 KB
Content
1653269759169-150.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -294.0 KB
Content
1653269916228-732.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -143.3 KB
Content
1653270130359-810.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -197.8 KB
Content
image-20220519174512-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -32.2 KB
Content
image-20220519174512-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -42.7 KB
Content
image-20220519174512-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -36.3 KB
Content
image-20220519174512-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -19.1 KB
Content