<
From version < 32.5 >
edited by Xiaoling
on 2022/06/02 15:25
To version < 22.4 >
edited by Xiaoling
on 2022/05/23 09:15
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -18,27 +18,24 @@
18 18  
19 19  (((
20 20  (((
21 -The Dragino RS485-LN is a (% style="color:blue" %)**RS485 to LoRaWAN Converter**(%%). It converts the RS485 signal into LoRaWAN wireless signal which simplify the IoT installation and reduce the installation/maintaining cost.
21 +The Dragino RS485-LN is a RS485 to LoRaWAN Converter. It converts the RS485 signal into LoRaWAN wireless signal which simplify the IoT installation and reduce the installation/maintaining cost.
22 22  )))
23 23  
24 24  (((
25 -RS485-LN allows user to (% style="color:blue" %)**monitor / control RS485 devices**(%%) and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
25 +RS485-LN allows user to monitor / control RS485 devices and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
26 26  )))
27 27  
28 28  (((
29 -(% style="color:blue" %)**For data uplink**(%%), RS485-LN sends user-defined commands to RS485 devices and gets the return from the RS485 devices. RS485-LN will process these returns according to user-define rules to get the final payload and upload to LoRaWAN server.
29 +For data uplink, RS485-LN sends user-defined commands to RS485 devices and gets the return from the RS485 devices. RS485-LN will process these returns according to user-define rules to get the final payload and upload to LoRaWAN server.
30 30  )))
31 31  
32 32  (((
33 -(% style="color:blue" %)**For data downlink**(%%), RS485-LN runs in LoRaWAN Class C. When there downlink commands from LoRaWAN server, RS485-LN will forward the commands from LoRaWAN server to RS485 devices.
34 -
35 -(% style="color:blue" %)**Demo Dashboard for RS485-LN**(%%) connect to two energy meters: [[https:~~/~~/app.datacake.de/dashboard/d/58844a26-378d-4c5a-aaf5-b5b5b153447a>>url:https://app.datacake.de/dashboard/d/58844a26-378d-4c5a-aaf5-b5b5b153447a]]
33 +For data downlink, RS485-LN runs in LoRaWAN Class C. When there downlink commands from LoRaWAN server, RS485-LN will forward the commands from LoRaWAN server to RS485 devices.
36 36  )))
37 37  )))
38 38  
39 39  [[image:1653267211009-519.png||height="419" width="724"]]
40 40  
41 -
42 42  == 1.2 Specifications ==
43 43  
44 44  **Hardware System:**
... ... @@ -47,6 +47,8 @@
47 47  * SX1276/78 Wireless Chip 
48 48  * Power Consumption (exclude RS485 device):
49 49  ** Idle: 32mA@12v
47 +
48 +*
50 50  ** 20dB Transmit: 65mA@12v
51 51  
52 52  **Interface for Model:**
... ... @@ -207,8 +207,18 @@
207 207  
208 208  === 3.3.1 onfigure UART settings for RS485 or TTL communication ===
209 209  
210 -To use RS485-LN to read data from RS485 sensors, connect the RS485-LN A/B traces to the sensors. And user need to make sure RS485-LN use the match UART setting to access the sensors. The related commands for UART settings are:
209 +RS485-BL can connect to either RS485 sensors or TTL sensor. User need to specify what type of sensor need to connect.
211 211  
211 +**~1. RS485-MODBUS mode:**
212 +
213 +AT+MOD=1 ~/~/ Support RS485-MODBUS type sensors. User can connect multiply RS485 , Modbus sensors to the A / B pins.
214 +
215 +**2. TTL mode:**
216 +
217 +AT+MOD=2 ~/~/ Support TTL Level sensors, User can connect one TTL Sensor to the TXD/RXD/GND pins.
218 +
219 +RS485-BL default UART settings is **9600, no parity, stop bit 1**. If the sensor has a different settings, user can change the RS485-BL setting to match.
220 +
212 212  (% border="1" style="background-color:#ffffcc; color:green; width:795px" %)
213 213  |(((
214 214  **AT Commands**
... ... @@ -233,7 +233,13 @@
233 233  |(((
234 234  AT+PARITY
235 235  )))|(% style="width:285px" %)(((
245 +(((
236 236  Set UART parity (for RS485 connection)
247 +)))
248 +
249 +(((
250 +Default Value is: no parity.
251 +)))
237 237  )))|(% style="width:347px" %)(((
238 238  (((
239 239  AT+PARITY=0
... ... @@ -251,7 +251,7 @@
251 251  )))
252 252  
253 253  (((
254 -
269 +Default Value is: 1bit.
255 255  )))
256 256  )))|(% style="width:347px" %)(((
257 257  (((
... ... @@ -270,10 +270,12 @@
270 270  === 3.3.2 Configure sensors ===
271 271  
272 272  (((
288 +Some sensors might need to configure before normal operation. User can configure such sensor via PC or through RS485-BL AT Commands (% style="color:#4f81bd" %)**AT+CFGDEV**.
289 +)))
290 +
273 273  (((
274 -Some sensors might need to configure before normal operation. User can configure such sensor via PC and RS485 adapter or through RS485-LN AT Commands (% style="color:#4f81bd" %)**AT+CFGDEV**(%%). Each (% style="color:#4f81bd" %)**AT+CFGDEV **(%%)equals to send a RS485 command to sensors. This command will only run when user input it and won’t run during each sampling.
292 +When user issue an (% style="color:#4f81bd" %)**AT+CFGDEV**(%%) command, Each (% style="color:#4f81bd" %)**AT+CFGDEV**(%%) equals to send a command to the RS485 or TTL sensors. This command will only run when user input it and won’t run during each sampling.
275 275  )))
276 -)))
277 277  
278 278  (% border="1" style="background-color:#ffffcc; color:green; width:806px" %)
279 279  |**AT Commands**|(% style="width:418px" %)**Description**|(% style="width:256px" %)**Example**
... ... @@ -285,6 +285,8 @@
285 285  mm: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command
286 286  )))|(% style="width:256px" %)AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m
287 287  
305 +Detail of AT+CFGDEV command see [[AT+CFGDEV detail>>path:#AT_CFGDEV]].
306 +
288 288  === 3.3.3 Configure read commands for each sampling ===
289 289  
290 290  (((
... ... @@ -366,17 +366,11 @@
366 366  **m: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command**
367 367  )))
368 368  
369 -(((
370 370  For example, if we have a RS485 sensor. The command to get sensor value is: 01 03 0B B8 00 02 46 0A. Where 01 03 0B B8 00 02 is the Modbus command to read the register 0B B8 where stored the sensor value. The 46 0A is the CRC-16/MODBUS which calculate manually.
371 -)))
372 372  
373 -(((
374 374  In the RS485-BL, we should use this command AT+COMMAND1=01 03 0B B8 00 02,1 for the same.
375 -)))
376 376  
377 -(((
378 378  **AT+SEARCHx**: This command defines how to handle the return from AT+COMMANDx.
379 -)))
380 380  
381 381  (% border="1" class="table-bordered" %)
382 382  |(((
... ... @@ -388,24 +388,26 @@
388 388  
389 389  )))
390 390  
391 -**Examples:**
404 +Examples:
392 392  
393 -~1. For a return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
406 +1. For a return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
394 394  
395 395  If we set AT+SEARCH1=1,1E 56 34.      (max 5 bytes for prefix)
396 396  
397 -The valid data will be all bytes after 1E 56 34 , so it is (% style="background-color:yellow" %)** 2e 30 58 5f 36 41 30 31 00 49**
410 +The valid data will be all bytes after 1E 56 34 , so it is 2e 30 58 5f 36 41 30 31 00 49
398 398  
399 -[[image:1653269403619-508.png]]
412 +[[image:1652954654347-831.png]]
400 400  
401 -2. For a return string from AT+COMMAND1:  16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
402 402  
415 +1. For a return string from AT+COMMAND1:  16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
416 +
403 403  If we set AT+SEARCH1=2, 1E 56 34+31 00 49
404 404  
405 -Device will search the bytes between 1E 56 34 and 31 00 49. So it is (% style="background-color:yellow" %)** 2e 30 58 5f 36 41 30**
419 +Device will search the bytes between 1E 56 34 and 31 00 49. So it is 2e 30 58 5f 36 41 30
406 406  
407 -[[image:1653269438444-278.png]]
421 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image014.png]]
408 408  
423 +
409 409  **AT+DATACUTx : **This command defines how to handle the return from AT+COMMANDx, max return length is 45 bytes.
410 410  
411 411  |(((
... ... @@ -420,95 +420,94 @@
420 420  
421 421  * Grab bytes:
422 422  
423 -[[image:1653269551753-223.png||height="311" width="717"]]
438 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image015.png]]
424 424  
425 425  * Grab a section.
426 426  
427 -[[image:1653269568276-930.png||height="325" width="718"]]
442 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image016.png]]
428 428  
429 429  * Grab different sections.
430 430  
431 -[[image:1653269593172-426.png||height="303" width="725"]]
446 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image017.png]]
432 432  
433 -(% style="color:red" %)**Note:**
434 434  
449 +Note:
450 +
435 435  AT+SEARCHx and AT+DATACUTx can be used together, if both commands are set, RS485-BL will first process AT+SEARCHx on the return string and get a temporary string, and then process AT+DATACUTx on this temporary string to get the final payload. In this case, AT+DATACUTx need to set to format AT+DATACUTx=0,xx,xx where the return bytes set to 0.
436 436  
437 437  Example:
438 438  
439 -(% style="color:red" %)AT+COMMAND1=11 01 1E D0,0
455 +AT+COMMAND1=11 01 1E D0,0
440 440  
441 -(% style="color:red" %)AT+SEARCH1=1,1E 56 34
457 +AT+SEARCH1=1,1E 56 34
442 442  
443 -(% style="color:red" %)AT+DATACUT1=0,2,1~~5
459 +AT+DATACUT1=0,2,1~~5
444 444  
445 -(% style="color:red" %)Return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
461 +Return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
446 446  
447 -(% style="color:red" %)String after SEARCH command: 2e 30 58 5f 36 41 30 31 00 49
463 +String after SEARCH command: 2e 30 58 5f 36 41 30 31 00 49
448 448  
449 -(% style="color:red" %)Valid payload after DataCUT command: 2e 30 58 5f 36
465 +Valid payload after DataCUT command: 2e 30 58 5f 36
450 450  
451 -[[image:1653269618463-608.png]]
467 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image018.png]]
452 452  
453 -=== 3.3.4 Compose the uplink payload ===
454 454  
455 -(((
470 +
471 +
472 +1.
473 +11.
474 +111. Compose the uplink payload
475 +
456 456  Through AT+COMMANDx and AT+DATACUTx we got valid value from each RS485 commands, Assume these valid value are RETURN1, RETURN2, .., to RETURNx. The next step is how to compose the LoRa Uplink Payload by these RETURNs. The command is **AT+DATAUP.**
457 -)))
458 458  
459 -(((
460 -(% style="color:#4f81bd" %)**Examples: AT+DATAUP=0**
461 -)))
462 462  
463 -(((
464 -Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**A SIGNLE UPLINK**.
465 -)))
479 +**Examples: AT+DATAUP=0**
466 466  
467 -(((
481 +Compose the uplink payload with value returns in sequence and send with **A SIGNLE UPLINK**.
482 +
468 468  Final Payload is
469 -)))
470 470  
471 -(((
472 -(% style="color:#4f81bd" %)**Battery Info+PAYVER + VALID Value from RETURN1 + Valid Value from RETURN2 + … + RETURNx**
473 -)))
485 +Battery Info+PAYVER + VALID Value from RETURN1 + Valid Value from RETURN2 + … + RETURNx
474 474  
475 -(((
476 476  Where PAYVER is defined by AT+PAYVER, below is an example screen shot.
477 -)))
478 478  
479 -[[image:1653269759169-150.png||height="513" width="716"]]
489 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image019.png]]
480 480  
481 -(% style="color:#4f81bd" %)**Examples: AT+DATAUP=1**
482 482  
483 -Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**Multiply UPLINKs**.
484 484  
493 +**Examples: AT+DATAUP=1**
494 +
495 +Compose the uplink payload with value returns in sequence and send with **Multiply UPLINKs**.
496 +
485 485  Final Payload is
486 486  
487 -(% style="color:#4f81bd" %)**Battery Info+PAYVER + PAYLOAD COUNT + PAYLOAD# + DATA**
499 +Battery Info+PAYVER + PAYLOAD COUNT + PAYLOAD# + DATA
488 488  
489 489  1. Battery Info (2 bytes): Battery voltage
490 490  1. PAYVER (1 byte): Defined by AT+PAYVER
491 491  1. PAYLOAD COUNT (1 byte): Total how many uplinks of this sampling.
492 492  1. PAYLOAD# (1 byte): Number of this uplink. (from 0,1,2,3…,to PAYLOAD COUNT)
493 -1. DATA: Valid value: max 6 bytes(US915 version here, Notice*!) for each uplink so each uplink <= 11 bytes. For the last uplink, DATA will might less than 6 bytes
505 +1. DATA: Valid value: max 6 bytes(US915 version here, [[Notice*!>>path:#max_byte]]) for each uplink so each uplink <= 11 bytes. For the last uplink, DATA will might less than 6 bytes
494 494  
495 -[[image:1653269916228-732.png||height="433" width="711"]]
507 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
496 496  
497 497  
498 498  So totally there will be 3 uplinks for this sampling, each uplink includes 6 bytes DATA
499 499  
500 -DATA1=RETURN1 Valid Value = (% style="background-color:green; color:white" %)20 20 0a 33 90 41
512 +DATA1=RETURN1 Valid Value = 20 20 0a 33 90 41
501 501  
502 -DATA2=1^^st^^ ~~ 6^^th^^ byte of Valid value of RETURN10=(% style="background-color:green; color:white" %) 02 aa 05 81 0a 20
514 +DATA2=1^^st^^ ~~ 6^^th^^ byte of Valid value of RETURN10= 02 aa 05 81 0a 20
503 503  
504 -DATA3=7^^th^^ ~~ 11^^th^^ bytes of Valid value of RETURN10 = (% style="background-color:green; color:white" %)20 20 20 2d 30
516 +DATA3=7^^th^^ ~~ 11^^th^^ bytes of Valid value of RETURN10 = 20 20 20 2d 30
505 505  
518 +
519 +
506 506  Below are the uplink payloads:
507 507  
508 -[[image:1653270130359-810.png]]
522 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image021.png]]
509 509  
510 510  
511 -(% style="color:red" %)**Notice: the Max bytes is according to the max support bytes in different Frequency Bands for lowest SF. As below:**
525 +Notice: the Max bytes is according to the max support bytes in different Frequency Bands for lowest SF. As below:
512 512  
513 513   ~* For AU915/AS923 bands, if UplinkDwell time=0, max 51 bytes for each uplink ( so 51 -5 = 46 max valid date)
514 514  
... ... @@ -518,8 +518,12 @@
518 518  
519 519   ~* For all other bands: max 51 bytes for each uplink  ( so 51 -5 = 46 max valid date).
520 520  
521 -=== 3.3.5 Uplink on demand ===
522 522  
536 +
537 +1.
538 +11.
539 +111. Uplink on demand
540 +
523 523  Except uplink periodically, RS485-BL is able to uplink on demand. The server sends downlink command to RS485-BL and RS485 will uplink data base on the command.
524 524  
525 525  Downlink control command:
... ... @@ -530,8 +530,8 @@
530 530  
531 531  
532 532  
533 -1.
534 -11.
551 +1.
552 +11.
535 535  111. Uplink on Interrupt
536 536  
537 537  Put the interrupt sensor between 3.3v_out and GPIO ext.[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image022.png]]
... ... @@ -545,7 +545,7 @@
545 545  AT+INTMOD=3  Interrupt trigger by rising edge.
546 546  
547 547  
548 -1.
566 +1.
549 549  11. Uplink Payload
550 550  
551 551  |**Size(bytes)**|**2**|**1**|**Length depends on the return from the commands**
... ... @@ -607,15 +607,15 @@
607 607  
608 608  * **Sensor Related Commands**: These commands are special designed for RS485-BL.  User can see these commands below:
609 609  
610 -1.
611 -11.
628 +1.
629 +11.
612 612  111. Common Commands:
613 613  
614 614  They should be available for each of Dragino Sensors, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: [[http:~~/~~/wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands>>url:http://wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands]]
615 615  
616 616  
617 -1.
618 -11.
635 +1.
636 +11.
619 619  111. Sensor related commands:
620 620  
621 621  ==== Choose Device Type (RS485 or TTL) ====
... ... @@ -921,13 +921,13 @@
921 921  
922 922  
923 923  
924 -1.
942 +1.
925 925  11. Buttons
926 926  
927 927  |**Button**|**Feature**
928 928  |**RST**|Reboot RS485-BL
929 929  
930 -1.
948 +1.
931 931  11. +3V3 Output
932 932  
933 933  RS485-BL has a Controllable +3V3 output, user can use this output to power external sensor.
... ... @@ -945,7 +945,7 @@
945 945  By default, the AT+3V3T=0. This is a special case, means the +3V3 output is always on at any time
946 946  
947 947  
948 -1.
966 +1.
949 949  11. +5V Output
950 950  
951 951  RS485-BL has a Controllable +5V output, user can use this output to power external sensor.
... ... @@ -965,13 +965,13 @@
965 965  
966 966  
967 967  
968 -1.
986 +1.
969 969  11. LEDs
970 970  
971 971  |**LEDs**|**Feature**
972 972  |**LED1**|Blink when device transmit a packet.
973 973  
974 -1.
992 +1.
975 975  11. Switch Jumper
976 976  
977 977  |**Switch Jumper**|**Feature**
... ... @@ -1017,7 +1017,7 @@
1017 1017  
1018 1018  
1019 1019  
1020 -1.
1038 +1.
1021 1021  11. Common AT Command Sequence
1022 1022  111. Multi-channel ABP mode (Use with SX1301/LG308)
1023 1023  
... ... @@ -1036,8 +1036,8 @@
1036 1036  
1037 1037  ATZ
1038 1038  
1039 -1.
1040 -11.
1057 +1.
1058 +11.
1041 1041  111. Single-channel ABP mode (Use with LG01/LG02)
1042 1042  
1043 1043  AT+FDR   Reset Parameters to Factory Default, Keys Reserve
... ... @@ -1112,7 +1112,7 @@
1112 1112  [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image035.png]] [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image036.png]]
1113 1113  
1114 1114  
1115 -1.
1133 +1.
1116 1116  11. How to change the LoRa Frequency Bands/Region?
1117 1117  
1118 1118  User can follow the introduction for [[how to upgrade image>>path:#upgrade_image]]. When download the images, choose the required image file for download.
... ... @@ -1119,7 +1119,7 @@
1119 1119  
1120 1120  
1121 1121  
1122 -1.
1140 +1.
1123 1123  11. How many RS485-Slave can RS485-BL connects?
1124 1124  
1125 1125  The RS485-BL can support max 32 RS485 devices. Each uplink command of RS485-BL can support max 16 different RS485 command. So RS485-BL can support max 16 RS485 devices pre-program in the device for uplink. For other devices no pre-program, user can use the [[downlink message (type code 0xA8) to poll their info>>path:#downlink_A8]].
... ... @@ -1136,7 +1136,7 @@
1136 1136  
1137 1137  
1138 1138  
1139 -1.
1157 +1.
1140 1140  11. Why I can’t join TTN V3 in US915 /AU915 bands?
1141 1141  
1142 1142  It might about the channels mapping. Please see for detail.
1653269403619-508.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -27.8 KB
Content
1653269438444-278.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -26.6 KB
Content
1653269551753-223.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -138.7 KB
Content
1653269568276-930.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -131.4 KB
Content
1653269593172-426.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -142.6 KB
Content
1653269618463-608.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -27.7 KB
Content
1653269759169-150.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -294.0 KB
Content
1653269916228-732.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -143.3 KB
Content
1653270130359-810.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -197.8 KB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0