Changes for page RS485-LN – RS485 to LoRaWAN Converter User Manual
Last modified by Karry Zhuang on 2025/03/06 16:34
Summary
-
Page properties (1 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 9 removed)
Details
- Page properties
-
- Content
-
... ... @@ -18,41 +18,40 @@ 18 18 19 19 ((( 20 20 ((( 21 -The Dragino RS485-LN is a (% style="color:blue" %)**RS485 to LoRaWAN Converter**(%%). It converts the RS485 signal into LoRaWAN wireless signal which simplify the IoT installation and reduce the installation/maintaining cost.21 +The Dragino RS485-LN is a RS485 to LoRaWAN Converter. It converts the RS485 signal into LoRaWAN wireless signal which simplify the IoT installation and reduce the installation/maintaining cost. 22 22 ))) 23 23 24 24 ((( 25 -RS485-LN allows user to (% style="color:blue" %)**monitor / control RS485 devices**(%%)and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.25 +RS485-LN allows user to monitor / control RS485 devices and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on. 26 26 ))) 27 27 28 28 ((( 29 - (% style="color:blue" %)**For data uplink**(%%), RS485-LN sends user-defined commands to RS485 devices and gets the return from the RS485 devices. RS485-LN will process these returns according to user-define rules to get the final payload and upload to LoRaWAN server.29 +For data uplink, RS485-LN sends user-defined commands to RS485 devices and gets the return from the RS485 devices. RS485-LN will process these returns according to user-define rules to get the final payload and upload to LoRaWAN server. 30 30 ))) 31 31 32 32 ((( 33 -(% style="color:blue" %)**For data downlink**(%%), RS485-LN runs in LoRaWAN Class C. When there downlink commands from LoRaWAN server, RS485-LN will forward the commands from LoRaWAN server to RS485 devices. 34 - 35 -(% style="color:blue" %)**Demo Dashboard for RS485-LN**(%%) connect to two energy meters: [[https:~~/~~/app.datacake.de/dashboard/d/58844a26-378d-4c5a-aaf5-b5b5b153447a>>url:https://app.datacake.de/dashboard/d/58844a26-378d-4c5a-aaf5-b5b5b153447a]] 33 +For data downlink, RS485-LN runs in LoRaWAN Class C. When there downlink commands from LoRaWAN server, RS485-LN will forward the commands from LoRaWAN server to RS485 devices. 36 36 ))) 37 37 ))) 38 38 39 39 [[image:1653267211009-519.png||height="419" width="724"]] 40 40 41 - 42 42 == 1.2 Specifications == 43 43 44 44 **Hardware System:** 45 45 46 46 * STM32L072CZT6 MCU 47 -* SX1276/78 Wireless Chip 44 +* SX1276/78 Wireless Chip 48 48 * Power Consumption (exclude RS485 device): 49 49 ** Idle: 32mA@12v 47 + 48 +* 50 50 ** 20dB Transmit: 65mA@12v 51 51 52 52 **Interface for Model:** 53 53 54 54 * RS485 55 -* Power Input 7~~ 24V DC. 54 +* Power Input 7~~ 24V DC. 56 56 57 57 **LoRa Spec:** 58 58 ... ... @@ -161,7 +161,6 @@ 161 161 [[image:1652953462722-299.png]] 162 162 163 163 ((( 164 -((( 165 165 User can enter this key in their LoRaWAN Server portal. Below is TTN V3 screen shot: 166 166 ))) 167 167 ... ... @@ -168,11 +168,13 @@ 168 168 ((( 169 169 Add APP EUI in the application. 170 170 ))) 171 -))) 172 172 170 + 171 + 172 + 173 173 [[image:image-20220519174512-1.png]] 174 174 175 -[[image:image-20220519174512-2.png||height="32 3" width="720"]]175 +[[image:image-20220519174512-2.png||height="328" width="731"]] 176 176 177 177 [[image:image-20220519174512-3.png||height="556" width="724"]] 178 178 ... ... @@ -188,7 +188,7 @@ 188 188 189 189 190 190 ((( 191 -**Step 2**: Power on RS485-L Nand it will auto join to the TTN V3 network. After join success, it will start to upload message to TTN V3 and user can see in the panel.191 +**Step 2**: Power on RS485-BL and it will auto join to the TTN V3 network. After join success, it will start to upload message to TTN V3 and user can see in the panel. 192 192 ))) 193 193 194 194 [[image:1652953568895-172.png||height="232" width="724"]] ... ... @@ -196,19 +196,23 @@ 196 196 == 3.3 Configure Commands to read data == 197 197 198 198 ((( 199 -((( 200 -There are plenty of RS485 devices in the market and each device has different command to read the valid data. To support these devices in flexible, RS485-LN supports flexible command set. User can use [[AT Commands>>path:#AT_COMMAND]] or LoRaWAN Downlink Command to configure what commands RS485-LN should send for each sampling and how to handle the return from RS485 devices. 199 +There are plenty of RS485 and TTL level devices in the market and each device has different command to read the valid data. To support these devices in flexible, RS485-BL supports flexible command set. User can use [[AT Commands or LoRaWAN Downlink>>path:#AT_COMMAND]] Command to configure how RS485-BL should read the sensor and how to handle the return from RS485 or TTL sensors. 201 201 ))) 202 202 203 -((( 204 -(% style="color:red" %)Note: below description and commands are for firmware version >v1.1, if you have firmware version v1.0. Please check the [[user manual v1.0>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/&file=RS485-LN_UserManual_v1.0.1.pdf]] or upgrade the firmware to v1.1 205 -))) 206 -))) 207 - 208 208 === 3.3.1 onfigure UART settings for RS485 or TTL communication === 209 209 210 - To useRS485-LNto read data from RS485 sensors,connect the RS485-LNA/B tracestothesensors.And user need tomakesureRS485-LN use the matchUART settingtoaccess thesensors.Therelatedcommandsfor UART settings are:204 +RS485-BL can connect to either RS485 sensors or TTL sensor. User need to specify what type of sensor need to connect. 211 211 206 +**~1. RS485-MODBUS mode:** 207 + 208 +AT+MOD=1 ~/~/ Support RS485-MODBUS type sensors. User can connect multiply RS485 , Modbus sensors to the A / B pins. 209 + 210 +**2. TTL mode:** 211 + 212 +AT+MOD=2 ~/~/ Support TTL Level sensors, User can connect one TTL Sensor to the TXD/RXD/GND pins. 213 + 214 +RS485-BL default UART settings is **9600, no parity, stop bit 1**. If the sensor has a different settings, user can change the RS485-BL setting to match. 215 + 212 212 (% border="1" style="background-color:#ffffcc; color:green; width:795px" %) 213 213 |((( 214 214 **AT Commands** ... ... @@ -233,7 +233,13 @@ 233 233 |((( 234 234 AT+PARITY 235 235 )))|(% style="width:285px" %)((( 240 +((( 236 236 Set UART parity (for RS485 connection) 242 +))) 243 + 244 +((( 245 +Default Value is: no parity. 246 +))) 237 237 )))|(% style="width:347px" %)((( 238 238 ((( 239 239 AT+PARITY=0 ... ... @@ -251,7 +251,7 @@ 251 251 ))) 252 252 253 253 ((( 254 - 264 +Default Value is: 1bit. 255 255 ))) 256 256 )))|(% style="width:347px" %)((( 257 257 ((( ... ... @@ -270,10 +270,12 @@ 270 270 === 3.3.2 Configure sensors === 271 271 272 272 ((( 283 +Some sensors might need to configure before normal operation. User can configure such sensor via PC or through RS485-BL AT Commands (% style="color:#4f81bd" %)**AT+CFGDEV**. 284 +))) 285 + 273 273 ((( 274 - Some sensors might need to configurebefore normal operation. Usercan configuresuchsensorviaPC andRS485 adapter or through RS485-LN AT Commands(% style="color:#4f81bd" %)**AT+CFGDEV**(%%).Each (% style="color:#4f81bd" %)**AT+CFGDEVRS485command to sensors. This command will only run when user input it and won’t run during each sampling.287 +When user issue an (% style="color:#4f81bd" %)**AT+CFGDEV**(%%) command, Each (% style="color:#4f81bd" %)**AT+CFGDEV**(%%) equals to send a command to the RS485 or TTL sensors. This command will only run when user input it and won’t run during each sampling. 275 275 ))) 276 -))) 277 277 278 278 (% border="1" style="background-color:#ffffcc; color:green; width:806px" %) 279 279 |**AT Commands**|(% style="width:418px" %)**Description**|(% style="width:256px" %)**Example** ... ... @@ -285,6 +285,8 @@ 285 285 mm: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command 286 286 )))|(% style="width:256px" %)AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m 287 287 300 +Detail of AT+CFGDEV command see [[AT+CFGDEV detail>>path:#AT_CFGDEV]]. 301 + 288 288 === 3.3.3 Configure read commands for each sampling === 289 289 290 290 ((( ... ... @@ -366,17 +366,11 @@ 366 366 **m: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command** 367 367 ))) 368 368 369 -((( 370 370 For example, if we have a RS485 sensor. The command to get sensor value is: 01 03 0B B8 00 02 46 0A. Where 01 03 0B B8 00 02 is the Modbus command to read the register 0B B8 where stored the sensor value. The 46 0A is the CRC-16/MODBUS which calculate manually. 371 -))) 372 372 373 -((( 374 374 In the RS485-BL, we should use this command AT+COMMAND1=01 03 0B B8 00 02,1 for the same. 375 -))) 376 376 377 -((( 378 378 **AT+SEARCHx**: This command defines how to handle the return from AT+COMMANDx. 379 -))) 380 380 381 381 (% border="1" class="table-bordered" %) 382 382 |((( ... ... @@ -388,24 +388,26 @@ 388 388 389 389 ))) 390 390 391 - **Examples:**399 +Examples: 392 392 393 - ~1. For a return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49401 +1. For a return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49 394 394 395 395 If we set AT+SEARCH1=1,1E 56 34. (max 5 bytes for prefix) 396 396 397 -The valid data will be all bytes after 1E 56 34 , so it is (% style="background-color:yellow" %)**2e 30 58 5f 36 41 30 31 00 49**405 +The valid data will be all bytes after 1E 56 34 , so it is 2e 30 58 5f 36 41 30 31 00 49 398 398 399 -[[image:165 3269403619-508.png]]407 +[[image:1652954654347-831.png]] 400 400 401 -2. For a return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49 402 402 410 +1. For a return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49 411 + 403 403 If we set AT+SEARCH1=2, 1E 56 34+31 00 49 404 404 405 -Device will search the bytes between 1E 56 34 and 31 00 49. So it is (% style="background-color:yellow" %)**2e 30 58 5f 36 41 30**414 +Device will search the bytes between 1E 56 34 and 31 00 49. So it is 2e 30 58 5f 36 41 30 406 406 407 -[[image: 1653269438444-278.png]]416 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image014.png]] 408 408 418 + 409 409 **AT+DATACUTx : **This command defines how to handle the return from AT+COMMANDx, max return length is 45 bytes. 410 410 411 411 |((( ... ... @@ -420,95 +420,94 @@ 420 420 421 421 * Grab bytes: 422 422 423 -[[image: 1653269551753-223.png||height="311" width="717"]]433 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image015.png]] 424 424 425 425 * Grab a section. 426 426 427 -[[image: 1653269568276-930.png||height="325" width="718"]]437 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image016.png]] 428 428 429 429 * Grab different sections. 430 430 431 -[[image: 1653269593172-426.png||height="303" width="725"]]441 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image017.png]] 432 432 433 -(% style="color:red" %)**Note:** 434 434 444 +Note: 445 + 435 435 AT+SEARCHx and AT+DATACUTx can be used together, if both commands are set, RS485-BL will first process AT+SEARCHx on the return string and get a temporary string, and then process AT+DATACUTx on this temporary string to get the final payload. In this case, AT+DATACUTx need to set to format AT+DATACUTx=0,xx,xx where the return bytes set to 0. 436 436 437 437 Example: 438 438 439 - (% style="color:red" %)AT+COMMAND1=11 01 1E D0,0450 +AT+COMMAND1=11 01 1E D0,0 440 440 441 - (% style="color:red" %)AT+SEARCH1=1,1E 56 34452 +AT+SEARCH1=1,1E 56 34 442 442 443 - (% style="color:red" %)AT+DATACUT1=0,2,1~~5454 +AT+DATACUT1=0,2,1~~5 444 444 445 - (% style="color:red" %)Return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49456 +Return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49 446 446 447 - (% style="color:red" %)String after SEARCH command: 2e 30 58 5f 36 41 30 31 00 49458 +String after SEARCH command: 2e 30 58 5f 36 41 30 31 00 49 448 448 449 - (% style="color:red" %)Valid payload after DataCUT command: 2e 30 58 5f 36460 +Valid payload after DataCUT command: 2e 30 58 5f 36 450 450 451 -[[image: 1653269618463-608.png]]462 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image018.png]] 452 452 453 -=== 3.3.4 Compose the uplink payload === 454 454 455 -((( 465 + 466 + 467 +1. 468 +11. 469 +111. Compose the uplink payload 470 + 456 456 Through AT+COMMANDx and AT+DATACUTx we got valid value from each RS485 commands, Assume these valid value are RETURN1, RETURN2, .., to RETURNx. The next step is how to compose the LoRa Uplink Payload by these RETURNs. The command is **AT+DATAUP.** 457 -))) 458 458 459 -((( 460 -(% style="color:#4f81bd" %)**Examples: AT+DATAUP=0** 461 -))) 462 462 463 -((( 464 -Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**A SIGNLE UPLINK**. 465 -))) 474 +**Examples: AT+DATAUP=0** 466 466 467 -((( 476 +Compose the uplink payload with value returns in sequence and send with **A SIGNLE UPLINK**. 477 + 468 468 Final Payload is 469 -))) 470 470 471 -((( 472 -(% style="color:#4f81bd" %)**Battery Info+PAYVER + VALID Value from RETURN1 + Valid Value from RETURN2 + … + RETURNx** 473 -))) 480 +Battery Info+PAYVER + VALID Value from RETURN1 + Valid Value from RETURN2 + … + RETURNx 474 474 475 -((( 476 476 Where PAYVER is defined by AT+PAYVER, below is an example screen shot. 477 -))) 478 478 479 -[[image: 1653269759169-150.png||height="513" width="716"]]484 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image019.png]] 480 480 481 -(% style="color:#4f81bd" %)**Examples: AT+DATAUP=1** 482 482 483 -Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**Multiply UPLINKs**. 484 484 488 +**Examples: AT+DATAUP=1** 489 + 490 +Compose the uplink payload with value returns in sequence and send with **Multiply UPLINKs**. 491 + 485 485 Final Payload is 486 486 487 - (% style="color:#4f81bd" %)**Battery Info+PAYVER + PAYLOAD COUNT + PAYLOAD# + DATA**494 +Battery Info+PAYVER + PAYLOAD COUNT + PAYLOAD# + DATA 488 488 489 489 1. Battery Info (2 bytes): Battery voltage 490 490 1. PAYVER (1 byte): Defined by AT+PAYVER 491 491 1. PAYLOAD COUNT (1 byte): Total how many uplinks of this sampling. 492 492 1. PAYLOAD# (1 byte): Number of this uplink. (from 0,1,2,3…,to PAYLOAD COUNT) 493 -1. DATA: Valid value: max 6 bytes(US915 version here, Notice*!) for each uplink so each uplink <= 11 bytes. For the last uplink, DATA will might less than 6 bytes 500 +1. DATA: Valid value: max 6 bytes(US915 version here, [[Notice*!>>path:#max_byte]]) for each uplink so each uplink <= 11 bytes. For the last uplink, DATA will might less than 6 bytes 494 494 495 -[[image: 1653269916228-732.png||height="433" width="711"]]502 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]] 496 496 497 497 498 498 So totally there will be 3 uplinks for this sampling, each uplink includes 6 bytes DATA 499 499 500 -DATA1=RETURN1 Valid Value = (% style="background-color:green; color:white" %)20 20 0a 33 90 41507 +DATA1=RETURN1 Valid Value = 20 20 0a 33 90 41 501 501 502 -DATA2=1^^st^^ ~~ 6^^th^^ byte of Valid value of RETURN10= (%style="background-color:green; color:white" %)02 aa 05 81 0a 20509 +DATA2=1^^st^^ ~~ 6^^th^^ byte of Valid value of RETURN10= 02 aa 05 81 0a 20 503 503 504 -DATA3=7^^th^^ ~~ 11^^th^^ bytes of Valid value of RETURN10 = (%style="background-color:green; color:white" %)20 20 20 2d 30511 +DATA3=7^^th^^ ~~ 11^^th^^ bytes of Valid value of RETURN10 = 20 20 20 2d 30 505 505 513 + 514 + 506 506 Below are the uplink payloads: 507 507 508 -[[image: 1653270130359-810.png]]517 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image021.png]] 509 509 510 510 511 - (% style="color:red" %)**Notice: the Max bytes is according to the max support bytes in different Frequency Bands for lowest SF. As below:**520 +Notice: the Max bytes is according to the max support bytes in different Frequency Bands for lowest SF. As below: 512 512 513 513 ~* For AU915/AS923 bands, if UplinkDwell time=0, max 51 bytes for each uplink ( so 51 -5 = 46 max valid date) 514 514 ... ... @@ -518,8 +518,12 @@ 518 518 519 519 ~* For all other bands: max 51 bytes for each uplink ( so 51 -5 = 46 max valid date). 520 520 521 -=== 3.3.5 Uplink on demand === 522 522 531 + 532 +1. 533 +11. 534 +111. Uplink on demand 535 + 523 523 Except uplink periodically, RS485-BL is able to uplink on demand. The server sends downlink command to RS485-BL and RS485 will uplink data base on the command. 524 524 525 525 Downlink control command:
- 1653269403619-508.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -27.8 KB - Content
- 1653269438444-278.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -26.6 KB - Content
- 1653269551753-223.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -138.7 KB - Content
- 1653269568276-930.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -131.4 KB - Content
- 1653269593172-426.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -142.6 KB - Content
- 1653269618463-608.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -27.7 KB - Content
- 1653269759169-150.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -294.0 KB - Content
- 1653269916228-732.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -143.3 KB - Content
- 1653270130359-810.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -197.8 KB - Content