<
From version < 32.4 >
edited by Xiaoling
on 2022/06/02 15:24
To version < 21.2 >
edited by Xiaoling
on 2022/05/23 09:09
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -18,33 +18,30 @@
18 18  
19 19  (((
20 20  (((
21 -The Dragino RS485-LN is a (% style="color:blue" %)**RS485 to LoRaWAN Converter**(%%). It converts the RS485 signal into LoRaWAN wireless signal which simplify the IoT installation and reduce the installation/maintaining cost.
21 +The Dragino RS485-LN is a RS485 to LoRaWAN Converter. It converts the RS485 signal into LoRaWAN wireless signal which simplify the IoT installation and reduce the installation/maintaining cost.
22 22  )))
23 23  
24 24  (((
25 -RS485-LN allows user to (% style="color:blue" %)**monitor / control RS485 devices**(%%) and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
25 +RS485-LN allows user to monitor / control RS485 devices and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
26 26  )))
27 27  
28 28  (((
29 -(% style="color:blue" %)**For data uplink**(%%), RS485-LN sends user-defined commands to RS485 devices and gets the return from the RS485 devices. RS485-LN will process these returns according to user-define rules to get the final payload and upload to LoRaWAN server.
29 +For data uplink, RS485-LN sends user-defined commands to RS485 devices and gets the return from the RS485 devices. RS485-LN will process these returns according to user-define rules to get the final payload and upload to LoRaWAN server.
30 30  )))
31 31  
32 32  (((
33 -(% style="color:blue" %)**For data downlink**(%%), RS485-LN runs in LoRaWAN Class C. When there downlink commands from LoRaWAN server, RS485-LN will forward the commands from LoRaWAN server to RS485 devices.
34 -
35 -(% style="color:blue" %)**Demo Dashboard for RS485-LN**(%%) connect to two energy meters: [[https:~~/~~/app.datacake.de/dashboard/d/58844a26-378d-4c5a-aaf5-b5b5b153447a>>url:https://app.datacake.de/dashboard/d/58844a26-378d-4c5a-aaf5-b5b5b153447a]]
33 +For data downlink, RS485-LN runs in LoRaWAN Class C. When there downlink commands from LoRaWAN server, RS485-LN will forward the commands from LoRaWAN server to RS485 devices.
36 36  )))
37 37  )))
38 38  
39 39  [[image:1653267211009-519.png||height="419" width="724"]]
40 40  
41 -
42 42  == 1.2 Specifications ==
43 43  
44 44  **Hardware System:**
45 45  
46 46  * STM32L072CZT6 MCU
47 -* SX1276/78 Wireless Chip 
44 +* SX1276/78 Wireless Chip
48 48  * Power Consumption (exclude RS485 device):
49 49  ** Idle: 32mA@12v
50 50  
... ... @@ -54,7 +54,7 @@
54 54  **Interface for Model:**
55 55  
56 56  * RS485
57 -* Power Input 7~~ 24V DC. 
54 +* Power Input 7~~ 24V DC.
58 58  
59 59  **LoRa Spec:**
60 60  
... ... @@ -141,29 +141,24 @@
141 141  [[image:1653268155545-638.png||height="334" width="724"]]
142 142  
143 143  (((
144 -The RS485-LN in this example connected to two RS485 devices for demonstration, user can connect to other RS485 devices via the same method. The connection is as below:
141 +The RS485-BL in this example connected to two RS485 devices for demonstration, user can connect to other RS485 devices via the same method.
142 +)))
145 145  
146 -485A+ and 485B- of the sensor are connected to RS485A and RA485B of RS485-LN respectively.
147 -
148 -[[image:1653268227651-549.png||height="592" width="720"]]
149 -
150 150  (((
151 -The LG308 is already set to connect to [[TTN V3 network >>path:eu1.cloud.thethings.network/]]. So what we need to now is only configure the TTN V3:
145 +The LG308 is already set to connect to [[TTN V3 network >>url:https://www.thethingsnetwork.org/]]. So what we need to now is only configure the TTN V3:
152 152  )))
153 153  
154 154  (((
155 -**Step 1**: Create a device in TTN V3 with the OTAA keys from RS485-LN.
149 +**Step 1**: Create a device in TTN V3 with the OTAA keys from RS485-BL.
156 156  )))
157 157  
158 158  (((
159 -Each RS485-LN is shipped with a sticker with unique device EUI:
153 +Each RS485-BL is shipped with a sticker with unique device EUI:
160 160  )))
161 -)))
162 162  
163 163  [[image:1652953462722-299.png]]
164 164  
165 165  (((
166 -(((
167 167  User can enter this key in their LoRaWAN Server portal. Below is TTN V3 screen shot:
168 168  )))
169 169  
... ... @@ -170,11 +170,13 @@
170 170  (((
171 171  Add APP EUI in the application.
172 172  )))
173 -)))
174 174  
166 +
167 +
168 +
175 175  [[image:image-20220519174512-1.png]]
176 176  
177 -[[image:image-20220519174512-2.png||height="323" width="720"]]
171 +[[image:image-20220519174512-2.png||height="328" width="731"]]
178 178  
179 179  [[image:image-20220519174512-3.png||height="556" width="724"]]
180 180  
... ... @@ -190,7 +190,7 @@
190 190  
191 191  
192 192  (((
193 -**Step 2**: Power on RS485-LN and it will auto join to the TTN V3 network. After join success, it will start to upload message to TTN V3 and user can see in the panel.
187 +**Step 2**: Power on RS485-BL and it will auto join to the TTN V3 network. After join success, it will start to upload message to TTN V3 and user can see in the panel.
194 194  )))
195 195  
196 196  [[image:1652953568895-172.png||height="232" width="724"]]
... ... @@ -198,19 +198,23 @@
198 198  == 3.3 Configure Commands to read data ==
199 199  
200 200  (((
201 -(((
202 -There are plenty of RS485 devices in the market and each device has different command to read the valid data. To support these devices in flexible, RS485-LN supports flexible command set. User can use [[AT Commands>>path:#AT_COMMAND]] or LoRaWAN Downlink Command to configure what commands RS485-LN should send for each sampling and how to handle the return from RS485 devices.
195 +There are plenty of RS485 and TTL level devices in the market and each device has different command to read the valid data. To support these devices in flexible, RS485-BL supports flexible command set. User can use [[AT Commands or LoRaWAN Downlink>>path:#AT_COMMAND]] Command to configure how RS485-BL should read the sensor and how to handle the return from RS485 or TTL sensors.
203 203  )))
204 204  
205 -(((
206 -(% style="color:red" %)Note: below description and commands are for firmware version >v1.1, if you have firmware version v1.0. Please check the [[user manual v1.0>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/&file=RS485-LN_UserManual_v1.0.1.pdf]] or upgrade the firmware to v1.1
207 -)))
208 -)))
209 -
210 210  === 3.3.1 onfigure UART settings for RS485 or TTL communication ===
211 211  
212 -To use RS485-LN to read data from RS485 sensors, connect the RS485-LN A/B traces to the sensors. And user need to make sure RS485-LN use the match UART setting to access the sensors. The related commands for UART settings are:
200 +RS485-BL can connect to either RS485 sensors or TTL sensor. User need to specify what type of sensor need to connect.
213 213  
202 +**~1. RS485-MODBUS mode:**
203 +
204 +AT+MOD=1 ~/~/ Support RS485-MODBUS type sensors. User can connect multiply RS485 , Modbus sensors to the A / B pins.
205 +
206 +**2. TTL mode:**
207 +
208 +AT+MOD=2 ~/~/ Support TTL Level sensors, User can connect one TTL Sensor to the TXD/RXD/GND pins.
209 +
210 +RS485-BL default UART settings is **9600, no parity, stop bit 1**. If the sensor has a different settings, user can change the RS485-BL setting to match.
211 +
214 214  (% border="1" style="background-color:#ffffcc; color:green; width:795px" %)
215 215  |(((
216 216  **AT Commands**
... ... @@ -235,7 +235,13 @@
235 235  |(((
236 236  AT+PARITY
237 237  )))|(% style="width:285px" %)(((
236 +(((
238 238  Set UART parity (for RS485 connection)
238 +)))
239 +
240 +(((
241 +Default Value is: no parity.
242 +)))
239 239  )))|(% style="width:347px" %)(((
240 240  (((
241 241  AT+PARITY=0
... ... @@ -253,7 +253,7 @@
253 253  )))
254 254  
255 255  (((
256 -
260 +Default Value is: 1bit.
257 257  )))
258 258  )))|(% style="width:347px" %)(((
259 259  (((
... ... @@ -272,10 +272,12 @@
272 272  === 3.3.2 Configure sensors ===
273 273  
274 274  (((
279 +Some sensors might need to configure before normal operation. User can configure such sensor via PC or through RS485-BL AT Commands (% style="color:#4f81bd" %)**AT+CFGDEV**.
280 +)))
281 +
275 275  (((
276 -Some sensors might need to configure before normal operation. User can configure such sensor via PC and RS485 adapter or through RS485-LN AT Commands (% style="color:#4f81bd" %)**AT+CFGDEV**(%%). Each (% style="color:#4f81bd" %)**AT+CFGDEV **(%%)equals to send a RS485 command to sensors. This command will only run when user input it and won’t run during each sampling.
283 +When user issue an (% style="color:#4f81bd" %)**AT+CFGDEV**(%%) command, Each (% style="color:#4f81bd" %)**AT+CFGDEV**(%%) equals to send a command to the RS485 or TTL sensors. This command will only run when user input it and won’t run during each sampling.
277 277  )))
278 -)))
279 279  
280 280  (% border="1" style="background-color:#ffffcc; color:green; width:806px" %)
281 281  |**AT Commands**|(% style="width:418px" %)**Description**|(% style="width:256px" %)**Example**
... ... @@ -287,6 +287,8 @@
287 287  mm: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command
288 288  )))|(% style="width:256px" %)AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m
289 289  
296 +Detail of AT+CFGDEV command see [[AT+CFGDEV detail>>path:#AT_CFGDEV]].
297 +
290 290  === 3.3.3 Configure read commands for each sampling ===
291 291  
292 292  (((
... ... @@ -368,17 +368,11 @@
368 368  **m: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command**
369 369  )))
370 370  
371 -(((
372 372  For example, if we have a RS485 sensor. The command to get sensor value is: 01 03 0B B8 00 02 46 0A. Where 01 03 0B B8 00 02 is the Modbus command to read the register 0B B8 where stored the sensor value. The 46 0A is the CRC-16/MODBUS which calculate manually.
373 -)))
374 374  
375 -(((
376 376  In the RS485-BL, we should use this command AT+COMMAND1=01 03 0B B8 00 02,1 for the same.
377 -)))
378 378  
379 -(((
380 380  **AT+SEARCHx**: This command defines how to handle the return from AT+COMMANDx.
381 -)))
382 382  
383 383  (% border="1" class="table-bordered" %)
384 384  |(((
... ... @@ -390,24 +390,26 @@
390 390  
391 391  )))
392 392  
393 -**Examples:**
395 +Examples:
394 394  
395 -~1. For a return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
397 +1. For a return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
396 396  
397 397  If we set AT+SEARCH1=1,1E 56 34.      (max 5 bytes for prefix)
398 398  
399 -The valid data will be all bytes after 1E 56 34 , so it is (% style="background-color:yellow" %)** 2e 30 58 5f 36 41 30 31 00 49**
401 +The valid data will be all bytes after 1E 56 34 , so it is 2e 30 58 5f 36 41 30 31 00 49
400 400  
401 -[[image:1653269403619-508.png]]
403 +[[image:1652954654347-831.png]]
402 402  
403 -2. For a return string from AT+COMMAND1:  16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
404 404  
406 +1. For a return string from AT+COMMAND1:  16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
407 +
405 405  If we set AT+SEARCH1=2, 1E 56 34+31 00 49
406 406  
407 -Device will search the bytes between 1E 56 34 and 31 00 49. So it is (% style="background-color:yellow" %)** 2e 30 58 5f 36 41 30**
410 +Device will search the bytes between 1E 56 34 and 31 00 49. So it is 2e 30 58 5f 36 41 30
408 408  
409 -[[image:1653269438444-278.png]]
412 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image014.png]]
410 410  
414 +
411 411  **AT+DATACUTx : **This command defines how to handle the return from AT+COMMANDx, max return length is 45 bytes.
412 412  
413 413  |(((
... ... @@ -422,95 +422,94 @@
422 422  
423 423  * Grab bytes:
424 424  
425 -[[image:1653269551753-223.png||height="311" width="717"]]
429 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image015.png]]
426 426  
427 427  * Grab a section.
428 428  
429 -[[image:1653269568276-930.png||height="325" width="718"]]
433 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image016.png]]
430 430  
431 431  * Grab different sections.
432 432  
433 -[[image:1653269593172-426.png||height="303" width="725"]]
437 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image017.png]]
434 434  
435 -(% style="color:red" %)**Note:**
436 436  
440 +Note:
441 +
437 437  AT+SEARCHx and AT+DATACUTx can be used together, if both commands are set, RS485-BL will first process AT+SEARCHx on the return string and get a temporary string, and then process AT+DATACUTx on this temporary string to get the final payload. In this case, AT+DATACUTx need to set to format AT+DATACUTx=0,xx,xx where the return bytes set to 0.
438 438  
439 439  Example:
440 440  
441 -(% style="color:red" %)AT+COMMAND1=11 01 1E D0,0
446 +AT+COMMAND1=11 01 1E D0,0
442 442  
443 -(% style="color:red" %)AT+SEARCH1=1,1E 56 34
448 +AT+SEARCH1=1,1E 56 34
444 444  
445 -(% style="color:red" %)AT+DATACUT1=0,2,1~~5
450 +AT+DATACUT1=0,2,1~~5
446 446  
447 -(% style="color:red" %)Return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
452 +Return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
448 448  
449 -(% style="color:red" %)String after SEARCH command: 2e 30 58 5f 36 41 30 31 00 49
454 +String after SEARCH command: 2e 30 58 5f 36 41 30 31 00 49
450 450  
451 -(% style="color:red" %)Valid payload after DataCUT command: 2e 30 58 5f 36
456 +Valid payload after DataCUT command: 2e 30 58 5f 36
452 452  
453 -[[image:1653269618463-608.png]]
458 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image018.png]]
454 454  
455 -=== 3.3.4 Compose the uplink payload ===
456 456  
457 -(((
461 +
462 +
463 +1.
464 +11.
465 +111. Compose the uplink payload
466 +
458 458  Through AT+COMMANDx and AT+DATACUTx we got valid value from each RS485 commands, Assume these valid value are RETURN1, RETURN2, .., to RETURNx. The next step is how to compose the LoRa Uplink Payload by these RETURNs. The command is **AT+DATAUP.**
459 -)))
460 460  
461 -(((
462 -(% style="color:#4f81bd" %)**Examples: AT+DATAUP=0**
463 -)))
464 464  
465 -(((
466 -Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**A SIGNLE UPLINK**.
467 -)))
470 +**Examples: AT+DATAUP=0**
468 468  
469 -(((
472 +Compose the uplink payload with value returns in sequence and send with **A SIGNLE UPLINK**.
473 +
470 470  Final Payload is
471 -)))
472 472  
473 -(((
474 -(% style="color:#4f81bd" %)**Battery Info+PAYVER + VALID Value from RETURN1 + Valid Value from RETURN2 + … + RETURNx**
475 -)))
476 +Battery Info+PAYVER + VALID Value from RETURN1 + Valid Value from RETURN2 + … + RETURNx
476 476  
477 -(((
478 478  Where PAYVER is defined by AT+PAYVER, below is an example screen shot.
479 -)))
480 480  
481 -[[image:1653269759169-150.png||height="513" width="716"]]
480 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image019.png]]
482 482  
483 -(% style="color:#4f81bd" %)**Examples: AT+DATAUP=1**
484 484  
485 -Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**Multiply UPLINKs**.
486 486  
484 +**Examples: AT+DATAUP=1**
485 +
486 +Compose the uplink payload with value returns in sequence and send with **Multiply UPLINKs**.
487 +
487 487  Final Payload is
488 488  
489 -(% style="color:#4f81bd" %)**Battery Info+PAYVER + PAYLOAD COUNT + PAYLOAD# + DATA**
490 +Battery Info+PAYVER + PAYLOAD COUNT + PAYLOAD# + DATA
490 490  
491 491  1. Battery Info (2 bytes): Battery voltage
492 492  1. PAYVER (1 byte): Defined by AT+PAYVER
493 493  1. PAYLOAD COUNT (1 byte): Total how many uplinks of this sampling.
494 494  1. PAYLOAD# (1 byte): Number of this uplink. (from 0,1,2,3…,to PAYLOAD COUNT)
495 -1. DATA: Valid value: max 6 bytes(US915 version here, Notice*!) for each uplink so each uplink <= 11 bytes. For the last uplink, DATA will might less than 6 bytes
496 +1. DATA: Valid value: max 6 bytes(US915 version here, [[Notice*!>>path:#max_byte]]) for each uplink so each uplink <= 11 bytes. For the last uplink, DATA will might less than 6 bytes
496 496  
497 -[[image:1653269916228-732.png||height="433" width="711"]]
498 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
498 498  
499 499  
500 500  So totally there will be 3 uplinks for this sampling, each uplink includes 6 bytes DATA
501 501  
502 -DATA1=RETURN1 Valid Value = (% style="background-color:green; color:white" %)20 20 0a 33 90 41
503 +DATA1=RETURN1 Valid Value = 20 20 0a 33 90 41
503 503  
504 -DATA2=1^^st^^ ~~ 6^^th^^ byte of Valid value of RETURN10=(% style="background-color:green; color:white" %) 02 aa 05 81 0a 20
505 +DATA2=1^^st^^ ~~ 6^^th^^ byte of Valid value of RETURN10= 02 aa 05 81 0a 20
505 505  
506 -DATA3=7^^th^^ ~~ 11^^th^^ bytes of Valid value of RETURN10 = (% style="background-color:green; color:white" %)20 20 20 2d 30
507 +DATA3=7^^th^^ ~~ 11^^th^^ bytes of Valid value of RETURN10 = 20 20 20 2d 30
507 507  
509 +
510 +
508 508  Below are the uplink payloads:
509 509  
510 -[[image:1653270130359-810.png]]
513 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image021.png]]
511 511  
512 512  
513 -(% style="color:red" %)**Notice: the Max bytes is according to the max support bytes in different Frequency Bands for lowest SF. As below:**
516 +Notice: the Max bytes is according to the max support bytes in different Frequency Bands for lowest SF. As below:
514 514  
515 515   ~* For AU915/AS923 bands, if UplinkDwell time=0, max 51 bytes for each uplink ( so 51 -5 = 46 max valid date)
516 516  
... ... @@ -520,8 +520,12 @@
520 520  
521 521   ~* For all other bands: max 51 bytes for each uplink  ( so 51 -5 = 46 max valid date).
522 522  
523 -=== 3.3.5 Uplink on demand ===
524 524  
527 +
528 +1.
529 +11.
530 +111. Uplink on demand
531 +
525 525  Except uplink periodically, RS485-BL is able to uplink on demand. The server sends downlink command to RS485-BL and RS485 will uplink data base on the command.
526 526  
527 527  Downlink control command:
1653268227651-549.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -1.3 MB
Content
1653269403619-508.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -27.8 KB
Content
1653269438444-278.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -26.6 KB
Content
1653269551753-223.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -138.7 KB
Content
1653269568276-930.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -131.4 KB
Content
1653269593172-426.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -142.6 KB
Content
1653269618463-608.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -27.7 KB
Content
1653269759169-150.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -294.0 KB
Content
1653269916228-732.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -143.3 KB
Content
1653270130359-810.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -197.8 KB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0