Last modified by Xiaoling on 2025/04/23 15:56

From version 32.3
edited by Xiaoling
on 2022/06/02 15:23
Change comment: There is no comment for this version
To version 6.1
edited by Xiaoling
on 2022/05/19 17:41
Change comment: Uploaded new attachment "1652953304999-717.png", version {1}

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -RS485-LN – RS485 to LoRaWAN Converter
1 +RS485-BL – Waterproof RS485 to LoRaWAN Converter
Content
... ... @@ -1,11 +1,13 @@
1 1  (% style="text-align:center" %)
2 -[[image:1653266934636-343.png||height="385" width="385"]]
2 +[[image:1652947681187-144.png||height="385" width="385"]]
3 3  
4 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image001.jpg]]
4 4  
5 5  
6 -**RS485-LN – RS485 to LoRaWAN Converter User Manual**
7 7  
8 +**RS485-BL – Waterproof RS485 to LoRaWAN Converter User Manual**
8 8  
10 +
9 9  **Table of Contents:**
10 10  
11 11  
... ... @@ -14,46 +14,62 @@
14 14  
15 15  = 1.Introduction =
16 16  
17 -== 1.1 What is RS485-LN RS485 to LoRaWAN Converter ==
19 +== 1.1 What is RS485-BL RS485 to LoRaWAN Converter ==
18 18  
19 19  (((
22 +
23 +)))
24 +
20 20  (((
21 -The Dragino RS485-LN is a (% style="color:blue" %)**RS485 to LoRaWAN Converter**(%%). It converts the RS485 signal into LoRaWAN wireless signal which simplify the IoT installation and reduce the installation/maintaining cost.
26 +The Dragino RS485-BL is a **RS485 / UART to LoRaWAN Converter** for Internet of Things solutions. User can connect RS485 or UART sensor to RS485-BL converter, and configure RS485-BL to periodically read sensor data and upload via LoRaWAN network to IoT server.
22 22  )))
23 23  
24 24  (((
25 -RS485-LN allows user to (% style="color:blue" %)**monitor / control RS485 devices**(%%) and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
30 +RS485-BL can interface to RS485 sensor, 3.3v/5v UART sensor or interrupt sensor. RS485-BL provides **a 3.3v output** and** a 5v output** to power external sensors. Both output voltages are controllable to minimize the total system power consumption.
26 26  )))
27 27  
28 28  (((
29 -(% style="color:blue" %)**For data uplink**(%%), RS485-LN sends user-defined commands to RS485 devices and gets the return from the RS485 devices. RS485-LN will process these returns according to user-define rules to get the final payload and upload to LoRaWAN server.
34 +RS485-BL is IP67 **waterproof** and powered by **8500mAh Li-SOCI2 battery**, it is designed for long term use for several years.
30 30  )))
31 31  
32 32  (((
33 -(% style="color:blue" %)**For data downlink**(%%), RS485-LN runs in LoRaWAN Class C. When there downlink commands from LoRaWAN server, RS485-LN will forward the commands from LoRaWAN server to RS485 devices.
38 +RS485-BL runs standard **LoRaWAN 1.0.3 in Class A**. It can reach long transfer range and easy to integrate with LoRaWAN compatible gateway and IoT server.
39 +)))
34 34  
35 -(% style="color:blue" %)**Demo Dashboard for RS485-LN**(%%) connect to two energy meters: [[https:~~/~~/app.datacake.de/dashboard/d/58844a26-378d-4c5a-aaf5-b5b5b153447a>>url:https://app.datacake.de/dashboard/d/58844a26-378d-4c5a-aaf5-b5b5b153447a]]
41 +(((
42 +For data uplink, RS485-BL sends user-defined commands to RS485 devices and gets the return from the RS485 devices. RS485-BL will process these returns data according to user-define rules to get the final payload and upload to LoRaWAN server.
36 36  )))
44 +
45 +(((
46 +For data downlink, RS485-BL runs in LoRaWAN Class A. When there is downlink commands from LoRaWAN server, RS485-BL will forward the commands from LoRaWAN server to RS485 devices.
37 37  )))
38 38  
39 -[[image:1653267211009-519.png||height="419" width="724"]]
49 +(((
50 +Each RS485-BL pre-load with a set of unique keys for LoRaWAN registration, register these keys to LoRaWAN server and it will auto connect after power on.
51 +)))
40 40  
53 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image002.png]]
54 +
41 41  == 1.2 Specifications ==
42 42  
43 43  **Hardware System:**
44 44  
45 45  * STM32L072CZT6 MCU
46 -* SX1276/78 Wireless Chip 
60 +* SX1276/78 Wireless Chip
47 47  * Power Consumption (exclude RS485 device):
48 -** Idle: 32mA@12v
62 +** Idle: 6uA@3.3v
49 49  
50 50  *
51 -** 20dB Transmit: 65mA@12v
65 +** 20dB Transmit: 130mA@3.3v
52 52  
53 53  **Interface for Model:**
54 54  
55 -* RS485
56 -* Power Input 7~~ 24V DC. 
69 +* 1 x RS485 Interface
70 +* 1 x TTL Serial , 3.3v or 5v.
71 +* 1 x I2C Interface, 3.3v or 5v.
72 +* 1 x one wire interface
73 +* 1 x Interrupt Interface
74 +* 1 x Controllable 5V output, max
57 57  
58 58  **LoRa Spec:**
59 59  
... ... @@ -62,30 +62,27 @@
62 62  ** Band 2 (LF): 410 ~~ 528 Mhz
63 63  * 168 dB maximum link budget.
64 64  * +20 dBm - 100 mW constant RF output vs.
65 -* +14 dBm high efficiency PA.
66 66  * Programmable bit rate up to 300 kbps.
67 67  * High sensitivity: down to -148 dBm.
68 68  * Bullet-proof front end: IIP3 = -12.5 dBm.
69 69  * Excellent blocking immunity.
70 -* Low RX current of 10.3 mA, 200 nA register retention.
71 71  * Fully integrated synthesizer with a resolution of 61 Hz.
72 -* FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation.
88 +* LoRa modulation.
73 73  * Built-in bit synchronizer for clock recovery.
74 74  * Preamble detection.
75 75  * 127 dB Dynamic Range RSSI.
76 -* Automatic RF Sense and CAD with ultra-fast AFC.
77 -* Packet engine up to 256 bytes with CRC.
92 +* Automatic RF Sense and CAD with ultra-fast AFC. ​​​
78 78  
79 79  == 1.3 Features ==
80 80  
81 -* LoRaWAN Class A & Class C protocol (default Class C)
96 +* LoRaWAN Class A & Class C protocol (default Class A)
82 82  * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865/RU864
83 83  * AT Commands to change parameters
84 -* Remote configure parameters via LoRa Downlink
99 +* Remote configure parameters via LoRaWAN Downlink
85 85  * Firmware upgradable via program port
86 86  * Support multiply RS485 devices by flexible rules
87 87  * Support Modbus protocol
88 -* Support Interrupt uplink (Since hardware version v1.2)
103 +* Support Interrupt uplink
89 89  
90 90  == 1.4 Applications ==
91 91  
... ... @@ -96,269 +96,262 @@
96 96  * Smart Cities
97 97  * Smart Factory
98 98  
99 -== 1.5 Firmware Change log ==
114 +== 1.5 Firmware Change log ==
100 100  
101 -[[RS485-LN Image files – Download link and Change log>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/]]
116 +[[RS485-BL Image files – Download link and Change log>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/RS485-BL/Firmware/||style="background-color: rgb(255, 255, 255);"]]
102 102  
103 103  == 1.6 Hardware Change log ==
104 104  
105 105  (((
106 -(((
107 -v1.2: Add External Interrupt Pin.
108 -
109 -v1.0: Release
121 +v1.4
110 110  )))
111 -)))
112 112  
113 -= 2. Power ON Device =
114 -
115 115  (((
116 -The RS485-LN can be powered by 7 ~~ 24V DC power source. Connection as below
125 +~1. Change Power IC to TPS22916
126 +)))
117 117  
118 -* Power Source VIN to RS485-LN VIN+
119 -* Power Source GND to RS485-LN VIN-
120 120  
121 121  (((
122 -Once there is power, the RS485-LN will be on.
130 +v1.3
123 123  )))
124 124  
125 -[[image:1653268091319-405.png]]
133 +(((
134 +~1. Change JP3 from KF350-8P to KF350-11P, Add one extra interface for I2C and one extra interface for one-wire
126 126  )))
127 127  
128 -= 3. Operation Mode =
129 129  
130 -== 3.1 How it works? ==
138 +(((
139 +v1.2
140 +)))
131 131  
132 132  (((
133 -The RS485-LN is configured as LoRaWAN OTAA Class C mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the RS485-LN. It will auto join the network via OTAA.
143 +Release version ​​​​​
134 134  )))
135 135  
136 -== 3.2 Example to join LoRaWAN network ==
146 += 2. Pin mapping and Power ON Device =
137 137  
138 -Here shows an example for how to join the TTN V3 Network. Below is the network structure, we use [[LG308>>url:http://www.dragino.com/products/lora-lorawan-gateway/item/140-lg308.html]] as LoRaWAN gateway here. 
148 +The RS485-BL is powered on by 8500mAh battery. To save battery life, RS485-BL is shipped with power off. User can put the jumper to power on RS485-BL.
139 139  
140 -[[image:1653268155545-638.png||height="334" width="724"]]
150 +[[image:1652953055962-143.png||height="387" width="728"]]
141 141  
142 -(((
143 -The RS485-LN in this example connected to two RS485 devices for demonstration, user can connect to other RS485 devices via the same method. The connection is as below:
152 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image003.png]]
144 144  
145 -485A+ and 485B- of the sensor are connected to RS485A and RA485B of RS485-LN respectively.
154 +The Left TXD and RXD are TTL interface for external sensor. TTL level is controlled by 3.3/5v Jumper.
146 146  
147 -[[image:1653268227651-549.png||height="592" width="720"]]
148 148  
149 -(((
150 -The LG308 is already set to connect to [[TTN V3 network >>path:eu1.cloud.thethings.network/]]. So what we need to now is only configure the TTN V3:
151 -)))
152 152  
153 -(((
154 -**Step 1**: Create a device in TTN V3 with the OTAA keys from RS485-LN.
155 -)))
158 +3. Operation Mode
159 +3.1 How it works?
156 156  
157 -(((
158 -Each RS485-LN is shipped with a sticker with unique device EUI:
159 -)))
160 -)))
161 +The RS485-BL is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the RS485-BL. It will auto join the network via OTAA.
161 161  
162 -[[image:1652953462722-299.png]]
163 163  
164 -(((
165 -(((
164 +1.
165 +11. Example to join LoRaWAN network
166 +
167 +Here shows an example for how to join the TTN V3 Network. Below is the network structure, we use [[LG308>>url:http://www.dragino.com/products/lora-lorawan-gateway/item/140-lg308.html]] as LoRaWAN gateway here.
168 +
169 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image004.png]]
170 +
171 +
172 +The RS485-BL in this example connected to two RS485 devices for demonstration, user can connect to other RS485 devices via the same method.
173 +
174 +
175 +The LG308 is already set to connect to [[TTN V3 network >>url:https://www.thethingsnetwork.org/]]. So what we need to now is only configure the TTN V3:
176 +
177 +**Step 1**: Create a device in TTN V3 with the OTAA keys from RS485-BL.
178 +
179 +Each RS485-BL is shipped with a sticker with unique device EUI:
180 +
181 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image005.png]]
182 +
183 +
184 +
185 +
166 166  User can enter this key in their LoRaWAN Server portal. Below is TTN V3 screen shot:
167 -)))
168 168  
169 -(((
170 170  Add APP EUI in the application.
171 -)))
172 -)))
173 173  
174 -[[image:image-20220519174512-1.png]]
190 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image006.png]]
175 175  
176 -[[image:image-20220519174512-2.png||height="323" width="720"]]
192 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image007.png]]
177 177  
178 -[[image:image-20220519174512-3.png||height="556" width="724"]]
194 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image008.png]]
179 179  
180 -[[image:image-20220519174512-4.png]]
196 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image009.png]]
181 181  
182 -You can also choose to create the device manually.
183 183  
184 -[[image:1652953542269-423.png||height="710" width="723"]]
185 185  
186 -Add APP KEY and DEV EUI
187 187  
188 -[[image:1652953553383-907.png||height="514" width="724"]]
189 189  
190 190  
191 -(((
192 -**Step 2**: Power on RS485-LN and it will auto join to the TTN V3 network. After join success, it will start to upload message to TTN V3 and user can see in the panel.
193 -)))
194 194  
195 -[[image:1652953568895-172.png||height="232" width="724"]]
196 196  
197 -== 3.3 Configure Commands to read data ==
198 198  
199 -(((
200 -(((
201 -There are plenty of RS485 devices in the market and each device has different command to read the valid data. To support these devices in flexible, RS485-LN supports flexible command set. User can use [[AT Commands>>path:#AT_COMMAND]] or LoRaWAN Downlink Command to configure what commands RS485-LN should send for each sampling and how to handle the return from RS485 devices.
202 -)))
203 203  
204 -(((
205 -(% style="color:red" %)Note: below description and commands are for firmware version >v1.1, if you have firmware version v1.0. Please check the [[user manual v1.0>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/&file=RS485-LN_UserManual_v1.0.1.pdf]] or upgrade the firmware to v1.1
206 -)))
207 -)))
208 208  
209 -=== 3.3.1 onfigure UART settings for RS485 or TTL communication ===
210 210  
211 -To use RS485-LN to read data from RS485 sensors, connect the RS485-LN A/B traces to the sensors. And user need to make sure RS485-LN use the match UART setting to access the sensors. The related commands for UART settings are:
212 212  
213 -(% border="1" style="background-color:#ffffcc; color:green; width:795px" %)
210 +
211 +
212 +
213 +
214 +You can also choose to create the device manually.
215 +
214 214  |(((
215 -**AT Commands**
216 -)))|(% style="width:285px" %)(((
217 -**Description**
218 -)))|(% style="width:347px" %)(((
219 -**Example**
217 +
220 220  )))
221 -|(((
222 -AT+BAUDR
223 -)))|(% style="width:285px" %)(((
224 -Set the baud rate (for RS485 connection). Default Value is: 9600.
225 -)))|(% style="width:347px" %)(((
226 -(((
219 +
220 +
221 +
222 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image010.png]]
223 +
224 +Add APP KEY and DEV EUI
225 +
226 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image011.png]]
227 +
228 +
229 +**Step 2**: Power on RS485-BL and it will auto join to the TTN V3 network. After join success, it will start to upload message to TTN V3 and user can see in the panel.
230 +
231 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image012.png]]
232 +
233 +
234 +
235 +
236 +1.
237 +11. Configure Commands to read data
238 +
239 +There are plenty of RS485 and TTL level devices in the market and each device has different command to read the valid data. To support these devices in flexible, RS485-BL supports flexible command set. User can use [[AT Commands or LoRaWAN Downlink>>path:#AT_COMMAND]] Command to configure how RS485-BL should read the sensor and how to handle the return from RS485 or TTL sensors.
240 +
241 +
242 +1.
243 +11.
244 +111. Configure UART settings for RS485 or TTL communication
245 +
246 +RS485-BL can connect to either RS485 sensors or TTL sensor. User need to specify what type of sensor need to connect.
247 +
248 +1. RS485-MODBUS mode:
249 +
250 +AT+MOD=1 ~/~/ Support RS485-MODBUS type sensors. User can connect multiply RS485 , Modbus sensors to the A / B pins.
251 +
252 +
253 +1. TTL mode:
254 +
255 +AT+MOD=2 ~/~/ Support TTL Level sensors, User can connect one TTL Sensor to the TXD/RXD/GND pins.
256 +
257 +
258 +RS485-BL default UART settings is **9600, no parity, stop bit 1**. If the sensor has a different settings, user can change the RS485-BL setting to match.
259 +
260 +
261 +|**AT Commands**|**Description**|**Example**
262 +|AT+BAUDR|Set the baud rate (for RS485 connection). Default Value is: 9600.|(((
227 227  AT+BAUDR=9600
228 -)))
229 229  
230 -(((
231 231  Options: (1200,2400,4800,14400,19200,115200)
232 232  )))
233 -)))
234 -|(((
235 -AT+PARITY
236 -)))|(% style="width:285px" %)(((
267 +|AT+PARITY|(((
237 237  Set UART parity (for RS485 connection)
238 -)))|(% style="width:347px" %)(((
239 -(((
269 +
270 +Default Value is: no parity.
271 +)))|(((
240 240  AT+PARITY=0
241 -)))
242 242  
243 -(((
244 244  Option: 0: no parity, 1: odd parity, 2: even parity
245 245  )))
246 -)))
247 -|(((
248 -AT+STOPBIT
249 -)))|(% style="width:285px" %)(((
250 -(((
276 +|AT+STOPBIT|(((
251 251  Set serial stopbit (for RS485 connection)
252 -)))
253 253  
254 -(((
255 -
256 -)))
257 -)))|(% style="width:347px" %)(((
258 -(((
279 +Default Value is: 1bit.
280 +)))|(((
259 259  AT+STOPBIT=0 for 1bit
260 -)))
261 261  
262 -(((
263 263  AT+STOPBIT=1 for 1.5 bit
264 -)))
265 265  
266 -(((
267 267  AT+STOPBIT=2 for 2 bits
268 268  )))
269 -)))
270 270  
271 -=== 3.3.2 Configure sensors ===
272 272  
273 -(((
274 -(((
275 -Some sensors might need to configure before normal operation. User can configure such sensor via PC and RS485 adapter or through RS485-LN AT Commands (% style="color:#4f81bd" %)**AT+CFGDEV**(%%). Each (% style="color:#4f81bd" %)**AT+CFGDEV **(%%)equals to send a RS485 command to sensors. This command will only run when user input it and won’t run during each sampling.
276 -)))
277 -)))
278 278  
279 -(% border="1" style="background-color:#ffffcc; color:green; width:806px" %)
280 -|**AT Commands**|(% style="width:418px" %)**Description**|(% style="width:256px" %)**Example**
281 -|AT+CFGDEV|(% style="width:418px" %)(((
290 +
291 +
292 +1.
293 +11.
294 +111. Configure sensors
295 +
296 +Some sensors might need to configure before normal operation. User can configure such sensor via PC or through RS485-BL AT Commands AT+CFGDEV.
297 +
298 +
299 +When user issue an AT+CFGDEV command, Each AT+CFGDEV equals to send a command to the RS485 or TTL sensors. This command will only run when user input it and won’t run during each sampling.
300 +
301 +|**AT Commands**|**Description**|**Example**
302 +|AT+CFGDEV|(((
282 282  This command is used to configure the RS485/TTL devices; they won’t be used during sampling.
283 283  
284 -AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,
305 +AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m
285 285  
286 -mm: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command
287 -)))|(% style="width:256px" %)AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m
307 +m: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command
308 +)))|AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m
288 288  
289 -=== 3.3.3 Configure read commands for each sampling ===
310 +Detail of AT+CFGDEV command see [[AT+CFGDEV detail>>path:#AT_CFGDEV]].
290 290  
291 -(((
312 +
313 +
314 +
315 +
316 +1.
317 +11.
318 +111. Configure read commands for each sampling
319 +
292 292  RS485-BL is a battery powered device; it will sleep most of time. And wake up on each period and read RS485 / TTL sensor data and uplink.
293 -)))
294 294  
295 -(((
322 +
296 296  During each sampling, we need to confirm what commands we need to send to the sensors to read data. After the RS485/TTL sensors send back the value, it normally includes some bytes and we only need a few from them for a shorten payload.
297 -)))
298 298  
299 -(((
325 +
300 300  To save the LoRaWAN network bandwidth, we might need to read data from different sensors and combine their valid value into a short payload.
301 -)))
302 302  
303 -(((
328 +
304 304  This section describes how to achieve above goals.
305 -)))
306 306  
307 -(((
331 +
308 308  During each sampling, the RS485-BL can support 15 commands to read sensors. And combine the return to one or several uplink payloads.
309 -)))
310 310  
311 -(((
334 +
312 312  **Command from RS485-BL to Sensor:**
313 -)))
314 314  
315 -(((
316 316  RS485-BL can send out pre-set max 15 strings via **AT+COMMAD1**, **ATCOMMAND2**,…, to **AT+COMMANDF** . All commands are of same grammar.
317 -)))
318 318  
319 -(((
339 +
320 320  **Handle return from sensors to RS485-BL**:
321 -)))
322 322  
323 -(((
324 324  After RS485-BL send out a string to sensor, RS485-BL will wait for the return from RS485 or TTL sensor. And user can specify how to handle the return, by **AT+DATACUT or AT+SEARCH commands**
325 -)))
326 326  
327 -* (((
328 -**AT+DATACUT**
329 -)))
330 330  
331 -(((
345 +* **AT+DATACUT**
346 +
332 332  When the return value from sensor have fix length and we know which position the valid value we should get, we can use AT+DATACUT command.
333 -)))
334 334  
335 -* (((
336 -**AT+SEARCH**
337 -)))
338 338  
339 -(((
350 +* **AT+SEARCH**
351 +
340 340  When the return value from sensor is dynamic length and we are not sure which bytes the valid data is, instead, we know what value the valid value following. We can use AT+SEARCH to search the valid value in the return string.
341 -)))
342 342  
343 -(((
354 +
344 344  **Define wait timeout:**
345 -)))
346 346  
347 -(((
348 348  Some RS485 device might has longer delay on reply, so user can use AT+CMDDL to set the timeout for getting reply after the RS485 command is sent. For example, AT+CMDDL1=1000 to send the open time to 1000ms
349 -)))
350 350  
351 -(((
359 +
352 352  After we got the valid value from each RS485 commands, we need to combine them together with the command **AT+DATAUP**.
353 -)))
354 354  
362 +
355 355  **Examples:**
356 356  
357 357  Below are examples for the how above AT Commands works.
358 358  
367 +
359 359  **AT+COMMANDx : **This command will be sent to RS485/TTL devices during each sampling, Max command length is 14 bytes. The grammar is:
360 360  
361 -(% border="1" class="table-bordered" %)
362 362  |(((
363 363  **AT+COMMANDx=xx xx xx xx xx xx xx xx xx xx xx xx,m**
364 364  
... ... @@ -367,19 +367,13 @@
367 367  **m: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command**
368 368  )))
369 369  
370 -(((
371 371  For example, if we have a RS485 sensor. The command to get sensor value is: 01 03 0B B8 00 02 46 0A. Where 01 03 0B B8 00 02 is the Modbus command to read the register 0B B8 where stored the sensor value. The 46 0A is the CRC-16/MODBUS which calculate manually.
372 -)))
373 373  
374 -(((
375 375  In the RS485-BL, we should use this command AT+COMMAND1=01 03 0B B8 00 02,1 for the same.
376 -)))
377 377  
378 -(((
382 +
379 379  **AT+SEARCHx**: This command defines how to handle the return from AT+COMMANDx.
380 -)))
381 381  
382 -(% border="1" class="table-bordered" %)
383 383  |(((
384 384  **AT+SEARCHx=aa,xx xx xx xx xx**
385 385  
... ... @@ -389,24 +389,26 @@
389 389  
390 390  )))
391 391  
392 -**Examples:**
394 +Examples:
393 393  
394 -~1. For a return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
396 +1. For a return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
395 395  
396 396  If we set AT+SEARCH1=1,1E 56 34.      (max 5 bytes for prefix)
397 397  
398 -The valid data will be all bytes after 1E 56 34 , so it is (% style="background-color:yellow" %)** 2e 30 58 5f 36 41 30 31 00 49**
400 +The valid data will be all bytes after 1E 56 34 , so it is 2e 30 58 5f 36 41 30 31 00 49
399 399  
400 -[[image:1653269403619-508.png]]
402 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image013.png]]
401 401  
402 -2. For a return string from AT+COMMAND1:  16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
403 403  
405 +1. For a return string from AT+COMMAND1:  16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
406 +
404 404  If we set AT+SEARCH1=2, 1E 56 34+31 00 49
405 405  
406 -Device will search the bytes between 1E 56 34 and 31 00 49. So it is (% style="background-color:yellow" %)** 2e 30 58 5f 36 41 30**
409 +Device will search the bytes between 1E 56 34 and 31 00 49. So it is 2e 30 58 5f 36 41 30
407 407  
408 -[[image:1653269438444-278.png]]
411 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image014.png]]
409 409  
413 +
410 410  **AT+DATACUTx : **This command defines how to handle the return from AT+COMMANDx, max return length is 45 bytes.
411 411  
412 412  |(((
... ... @@ -414,7 +414,7 @@
414 414  
415 415  * **a: length for the return of AT+COMMAND**
416 416  * **b:1: grab valid value by byte, max 6 bytes. 2: grab valid value by bytes section, max 3 sections.**
417 -* **c: define the position for valid value.  **
421 +* **c: define the position for valid value. **
418 418  )))
419 419  
420 420  Examples:
... ... @@ -421,95 +421,94 @@
421 421  
422 422  * Grab bytes:
423 423  
424 -[[image:1653269551753-223.png||height="311" width="717"]]
428 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image015.png]]
425 425  
426 426  * Grab a section.
427 427  
428 -[[image:1653269568276-930.png||height="325" width="718"]]
432 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image016.png]]
429 429  
430 430  * Grab different sections.
431 431  
432 -[[image:1653269593172-426.png||height="303" width="725"]]
436 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image017.png]]
433 433  
434 -(% style="color:red" %)**Note:**
435 435  
439 +Note:
440 +
436 436  AT+SEARCHx and AT+DATACUTx can be used together, if both commands are set, RS485-BL will first process AT+SEARCHx on the return string and get a temporary string, and then process AT+DATACUTx on this temporary string to get the final payload. In this case, AT+DATACUTx need to set to format AT+DATACUTx=0,xx,xx where the return bytes set to 0.
437 437  
438 438  Example:
439 439  
440 -(% style="color:red" %)AT+COMMAND1=11 01 1E D0,0
445 +AT+COMMAND1=11 01 1E D0,0
441 441  
442 -(% style="color:red" %)AT+SEARCH1=1,1E 56 34
447 +AT+SEARCH1=1,1E 56 34
443 443  
444 -(% style="color:red" %)AT+DATACUT1=0,2,1~~5
449 +AT+DATACUT1=0,2,1~~5
445 445  
446 -(% style="color:red" %)Return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
451 +Return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
447 447  
448 -(% style="color:red" %)String after SEARCH command: 2e 30 58 5f 36 41 30 31 00 49
453 +String after SEARCH command: 2e 30 58 5f 36 41 30 31 00 49
449 449  
450 -(% style="color:red" %)Valid payload after DataCUT command: 2e 30 58 5f 36
455 +Valid payload after DataCUT command: 2e 30 58 5f 36
451 451  
452 -[[image:1653269618463-608.png]]
457 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image018.png]]
453 453  
454 -=== 3.3.4 Compose the uplink payload ===
455 455  
456 -(((
460 +
461 +
462 +1.
463 +11.
464 +111. Compose the uplink payload
465 +
457 457  Through AT+COMMANDx and AT+DATACUTx we got valid value from each RS485 commands, Assume these valid value are RETURN1, RETURN2, .., to RETURNx. The next step is how to compose the LoRa Uplink Payload by these RETURNs. The command is **AT+DATAUP.**
458 -)))
459 459  
460 -(((
461 -(% style="color:#4f81bd" %)**Examples: AT+DATAUP=0**
462 -)))
463 463  
464 -(((
465 -Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**A SIGNLE UPLINK**.
466 -)))
469 +**Examples: AT+DATAUP=0**
467 467  
468 -(((
471 +Compose the uplink payload with value returns in sequence and send with **A SIGNLE UPLINK**.
472 +
469 469  Final Payload is
470 -)))
471 471  
472 -(((
473 -(% style="color:#4f81bd" %)**Battery Info+PAYVER + VALID Value from RETURN1 + Valid Value from RETURN2 + … + RETURNx**
474 -)))
475 +Battery Info+PAYVER + VALID Value from RETURN1 + Valid Value from RETURN2 + … + RETURNx
475 475  
476 -(((
477 477  Where PAYVER is defined by AT+PAYVER, below is an example screen shot.
478 -)))
479 479  
480 -[[image:1653269759169-150.png||height="513" width="716"]]
479 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image019.png]]
481 481  
482 -(% style="color:#4f81bd" %)**Examples: AT+DATAUP=1**
483 483  
484 -Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**Multiply UPLINKs**.
485 485  
483 +**Examples: AT+DATAUP=1**
484 +
485 +Compose the uplink payload with value returns in sequence and send with **Multiply UPLINKs**.
486 +
486 486  Final Payload is
487 487  
488 -(% style="color:#4f81bd" %)**Battery Info+PAYVER + PAYLOAD COUNT + PAYLOAD# + DATA**
489 +Battery Info+PAYVER + PAYLOAD COUNT + PAYLOAD# + DATA
489 489  
490 490  1. Battery Info (2 bytes): Battery voltage
491 491  1. PAYVER (1 byte): Defined by AT+PAYVER
492 492  1. PAYLOAD COUNT (1 byte): Total how many uplinks of this sampling.
493 493  1. PAYLOAD# (1 byte): Number of this uplink. (from 0,1,2,3…,to PAYLOAD COUNT)
494 -1. DATA: Valid value: max 6 bytes(US915 version here, Notice*!) for each uplink so each uplink <= 11 bytes. For the last uplink, DATA will might less than 6 bytes
495 +1. DATA: Valid value: max 6 bytes(US915 version here, [[Notice*!>>path:#max_byte]]) for each uplink so each uplink <= 11 bytes. For the last uplink, DATA will might less than 6 bytes
495 495  
496 -[[image:1653269916228-732.png||height="433" width="711"]]
497 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
497 497  
498 498  
499 499  So totally there will be 3 uplinks for this sampling, each uplink includes 6 bytes DATA
500 500  
501 -DATA1=RETURN1 Valid Value = (% style="background-color:green; color:white" %)20 20 0a 33 90 41
502 +DATA1=RETURN1 Valid Value = 20 20 0a 33 90 41
502 502  
503 -DATA2=1^^st^^ ~~ 6^^th^^ byte of Valid value of RETURN10=(% style="background-color:green; color:white" %) 02 aa 05 81 0a 20
504 +DATA2=1^^st^^ ~~ 6^^th^^ byte of Valid value of RETURN10= 02 aa 05 81 0a 20
504 504  
505 -DATA3=7^^th^^ ~~ 11^^th^^ bytes of Valid value of RETURN10 = (% style="background-color:green; color:white" %)20 20 20 2d 30
506 +DATA3=7^^th^^ ~~ 11^^th^^ bytes of Valid value of RETURN10 = 20 20 20 2d 30
506 506  
508 +
509 +
507 507  Below are the uplink payloads:
508 508  
509 -[[image:1653270130359-810.png]]
512 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image021.png]]
510 510  
511 511  
512 -(% style="color:red" %)**Notice: the Max bytes is according to the max support bytes in different Frequency Bands for lowest SF. As below:**
515 +Notice: the Max bytes is according to the max support bytes in different Frequency Bands for lowest SF. As below:
513 513  
514 514   ~* For AU915/AS923 bands, if UplinkDwell time=0, max 51 bytes for each uplink ( so 51 -5 = 46 max valid date)
515 515  
... ... @@ -519,8 +519,12 @@
519 519  
520 520   ~* For all other bands: max 51 bytes for each uplink  ( so 51 -5 = 46 max valid date).
521 521  
522 -=== 3.3.5 Uplink on demand ===
523 523  
526 +
527 +1.
528 +11.
529 +111. Uplink on demand
530 +
524 524  Except uplink periodically, RS485-BL is able to uplink on demand. The server sends downlink command to RS485-BL and RS485 will uplink data base on the command.
525 525  
526 526  Downlink control command:
... ... @@ -549,6 +549,7 @@
549 549  1.
550 550  11. Uplink Payload
551 551  
559 +
552 552  |**Size(bytes)**|**2**|**1**|**Length depends on the return from the commands**
553 553  |Value|(((
554 554  Battery(mV)
... ... @@ -597,7 +597,7 @@
597 597  
598 598  [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image023.png]]
599 599  
600 -1.
608 +1.
601 601  11. Configure RS485-BL via AT or Downlink
602 602  
603 603  User can configure RS485-BL via [[AT Commands >>path:#_​Using_the_AT]]or LoRaWAN Downlink Commands
... ... @@ -608,10 +608,12 @@
608 608  
609 609  * **Sensor Related Commands**: These commands are special designed for RS485-BL.  User can see these commands below:
610 610  
619 +
611 611  1.
612 612  11.
613 613  111. Common Commands:
614 614  
624 +
615 615  They should be available for each of Dragino Sensors, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: [[http:~~/~~/wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands>>url:http://wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands]]
616 616  
617 617  
... ... @@ -619,6 +619,7 @@
619 619  11.
620 620  111. Sensor related commands:
621 621  
632 +
622 622  ==== Choose Device Type (RS485 or TTL) ====
623 623  
624 624  RS485-BL can connect to either RS485 sensors or TTL sensor. User need to specify what type of sensor need to connect.
... ... @@ -659,6 +659,7 @@
659 659  * XX XX XX XX: RS485 command total NN bytes
660 660  * YY: How many bytes will be uplink from the return of this RS485 command, if YY=0, RS485-BL will execute the downlink command without uplink; if YY>0, RS485-BL will uplink total YY bytes from the output of this RS485 command
661 661  
673 +
662 662  **Example 1:**
663 663  
664 664  To connect a Modbus Alarm with below commands.
... ... @@ -767,6 +767,7 @@
767 767  
768 768  * AT+MBFUN=0: Disable Modbus fast reading.
769 769  
782 +
770 770  Example:
771 771  
772 772  * AT+MBFUN=1 and AT+DATACUT1/AT+DATACUT2 are not configure (0,0,0).
... ... @@ -851,7 +851,7 @@
851 851  
852 852  Etc. AT+CMDEAR=1,10 means erase AT+COMMAND1/AT+DATACUT1 to AT+COMMAND10/AT+DATACUT10
853 853  
854 -Example screen shot after clear all RS485 commands. 
867 +Example screen shot after clear all RS485 commands.
855 855  
856 856  
857 857  
... ... @@ -895,6 +895,7 @@
895 895  * A7 01 00 60   same as AT+BAUDR=9600
896 896  * A7 01 04 80  same as AT+BAUDR=115200
897 897  
911 +
898 898  A7 02 aa: Same as  AT+PARITY=aa  (aa value: 00 , 01 or 02)
899 899  
900 900  A7 03 aa: Same as  AT+STOPBIT=aa  (aa value: 00 , 01 or 02)
... ... @@ -925,15 +925,17 @@
925 925  1.
926 926  11. Buttons
927 927  
942 +
928 928  |**Button**|**Feature**
929 929  |**RST**|Reboot RS485-BL
930 930  
946 +
931 931  1.
932 932  11. +3V3 Output
933 933  
934 934  RS485-BL has a Controllable +3V3 output, user can use this output to power external sensor.
935 935  
936 -The +3V3 output will be valid for every sampling. RS485-BL will enable +3V3 output before all sampling and disable the +3V3 after all sampling. 
952 +The +3V3 output will be valid for every sampling. RS485-BL will enable +3V3 output before all sampling and disable the +3V3 after all sampling.
937 937  
938 938  
939 939  The +3V3 output time can be controlled by AT Command.
... ... @@ -951,7 +951,7 @@
951 951  
952 952  RS485-BL has a Controllable +5V output, user can use this output to power external sensor.
953 953  
954 -The +5V output will be valid for every sampling. RS485-BL will enable +5V output before all sampling and disable the +5v after all sampling. 
970 +The +5V output will be valid for every sampling. RS485-BL will enable +5V output before all sampling and disable the +5v after all sampling.
955 955  
956 956  
957 957  The 5V output time can be controlled by AT Command.
... ... @@ -972,6 +972,7 @@
972 972  |**LEDs**|**Feature**
973 973  |**LED1**|Blink when device transmit a packet.
974 974  
991 +
975 975  1.
976 976  11. Switch Jumper
977 977  
... ... @@ -993,6 +993,7 @@
993 993  
994 994  1. Case Study
995 995  
1013 +
996 996  User can check this URL for some case studies.
997 997  
998 998  [[http:~~/~~/wiki.dragino.com/index.php?title=APP_RS485_COMMUNICATE_WITH_SENSORS>>url:http://wiki.dragino.com/index.php?title=APP_RS485_COMMUNICATE_WITH_SENSORS]]
... ... @@ -1080,6 +1080,7 @@
1080 1080  * For bug fix
1081 1081  * Change LoRaWAN bands.
1082 1082  
1101 +
1083 1083  Below shows the hardware connection for how to upload an image to RS485-BL:
1084 1084  
1085 1085  [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image030.png]]
... ... @@ -1123,6 +1123,7 @@
1123 1123  1.
1124 1124  11. How many RS485-Slave can RS485-BL connects?
1125 1125  
1145 +
1126 1126  The RS485-BL can support max 32 RS485 devices. Each uplink command of RS485-BL can support max 16 different RS485 command. So RS485-BL can support max 16 RS485 devices pre-program in the device for uplink. For other devices no pre-program, user can use the [[downlink message (type code 0xA8) to poll their info>>path:#downlink_A8]].
1127 1127  
1128 1128  
... ... @@ -1133,7 +1133,7 @@
1133 1133  
1134 1134  Please see this link for debug:
1135 1135  
1136 -[[http:~~/~~/wiki.dragino.com/index.php?title=Main_Page#LoRaWAN_Communication_Debug>>url:http://wiki.dragino.com/index.php?title=Main_Page#LoRaWAN_Communication_Debug]] 
1156 +[[http:~~/~~/wiki.dragino.com/index.php?title=Main_Page#LoRaWAN_Communication_Debug>>url:http://wiki.dragino.com/index.php?title=Main_Page#LoRaWAN_Communication_Debug]]
1137 1137  
1138 1138  
1139 1139  
... ... @@ -1148,6 +1148,7 @@
1148 1148  
1149 1149  1. Order Info
1150 1150  
1171 +
1151 1151  **Part Number: RS485-BL-XXX**
1152 1152  
1153 1153  **XXX:**
... ... @@ -1163,6 +1163,7 @@
1163 1163  * **RU864**: frequency bands RU864
1164 1164  * **KZ865: **frequency bands KZ865
1165 1165  
1187 +
1166 1166  1. Packing Info
1167 1167  
1168 1168  **Package Includes**:
... ... @@ -1171,6 +1171,7 @@
1171 1171  * Stick Antenna for LoRa RF part x 1
1172 1172  * Program cable x 1
1173 1173  
1196 +
1174 1174  **Dimension and weight**:
1175 1175  
1176 1176  * Device Size: 13.5 x 7 x 3 cm
... ... @@ -1178,6 +1178,7 @@
1178 1178  * Package Size / pcs : 14.5 x 8 x 5 cm
1179 1179  * Weight / pcs : 170g
1180 1180  
1204 +
1181 1181  1. Support
1182 1182  
1183 1183  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1652953414711-647.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -119.3 KB
Content
1652953462722-299.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -202.7 KB
Content
1652953542269-423.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -118.5 KB
Content
1652953553383-907.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -94.0 KB
Content
1652953568895-172.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -109.3 KB
Content
1652954654347-831.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -138.7 KB
Content
1653266934636-343.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -176.5 KB
Content
1653267211009-519.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -138.7 KB
Content
1653268091319-405.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -399.3 KB
Content
1653268155545-638.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -113.7 KB
Content
1653268227651-549.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -1.3 MB
Content
1653269403619-508.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -27.8 KB
Content
1653269438444-278.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -26.6 KB
Content
1653269551753-223.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -138.7 KB
Content
1653269568276-930.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -131.4 KB
Content
1653269593172-426.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -142.6 KB
Content
1653269618463-608.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -27.7 KB
Content
1653269759169-150.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -294.0 KB
Content
1653269916228-732.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -143.3 KB
Content
1653270130359-810.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -197.8 KB
Content
image-20220519174512-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -32.2 KB
Content
image-20220519174512-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -42.7 KB
Content
image-20220519174512-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -36.3 KB
Content
image-20220519174512-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -19.1 KB
Content