<
From version < 32.3 >
edited by Xiaoling
on 2022/06/02 15:23
To version < 20.3 >
edited by Xiaoling
on 2022/05/23 09:08
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -18,21 +18,19 @@
18 18  
19 19  (((
20 20  (((
21 -The Dragino RS485-LN is a (% style="color:blue" %)**RS485 to LoRaWAN Converter**(%%). It converts the RS485 signal into LoRaWAN wireless signal which simplify the IoT installation and reduce the installation/maintaining cost.
21 +The Dragino RS485-LN is a RS485 to LoRaWAN Converter. It converts the RS485 signal into LoRaWAN wireless signal which simplify the IoT installation and reduce the installation/maintaining cost.
22 22  )))
23 23  
24 24  (((
25 -RS485-LN allows user to (% style="color:blue" %)**monitor / control RS485 devices**(%%) and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
25 +RS485-LN allows user to monitor / control RS485 devices and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
26 26  )))
27 27  
28 28  (((
29 -(% style="color:blue" %)**For data uplink**(%%), RS485-LN sends user-defined commands to RS485 devices and gets the return from the RS485 devices. RS485-LN will process these returns according to user-define rules to get the final payload and upload to LoRaWAN server.
29 +For data uplink, RS485-LN sends user-defined commands to RS485 devices and gets the return from the RS485 devices. RS485-LN will process these returns according to user-define rules to get the final payload and upload to LoRaWAN server.
30 30  )))
31 31  
32 32  (((
33 -(% style="color:blue" %)**For data downlink**(%%), RS485-LN runs in LoRaWAN Class C. When there downlink commands from LoRaWAN server, RS485-LN will forward the commands from LoRaWAN server to RS485 devices.
34 -
35 -(% style="color:blue" %)**Demo Dashboard for RS485-LN**(%%) connect to two energy meters: [[https:~~/~~/app.datacake.de/dashboard/d/58844a26-378d-4c5a-aaf5-b5b5b153447a>>url:https://app.datacake.de/dashboard/d/58844a26-378d-4c5a-aaf5-b5b5b153447a]]
33 +For data downlink, RS485-LN runs in LoRaWAN Class C. When there downlink commands from LoRaWAN server, RS485-LN will forward the commands from LoRaWAN server to RS485 devices.
36 36  )))
37 37  )))
38 38  
... ... @@ -43,7 +43,7 @@
43 43  **Hardware System:**
44 44  
45 45  * STM32L072CZT6 MCU
46 -* SX1276/78 Wireless Chip 
44 +* SX1276/78 Wireless Chip
47 47  * Power Consumption (exclude RS485 device):
48 48  ** Idle: 32mA@12v
49 49  
... ... @@ -53,7 +53,7 @@
53 53  **Interface for Model:**
54 54  
55 55  * RS485
56 -* Power Input 7~~ 24V DC. 
54 +* Power Input 7~~ 24V DC.
57 57  
58 58  **LoRa Spec:**
59 59  
... ... @@ -130,7 +130,7 @@
130 130  == 3.1 How it works? ==
131 131  
132 132  (((
133 -The RS485-LN is configured as LoRaWAN OTAA Class C mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the RS485-LN. It will auto join the network via OTAA.
131 +The RS485-BL is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the RS485-BL. It will auto join the network via OTAA.
134 134  )))
135 135  
136 136  == 3.2 Example to join LoRaWAN network ==
... ... @@ -137,32 +137,27 @@
137 137  
138 138  Here shows an example for how to join the TTN V3 Network. Below is the network structure, we use [[LG308>>url:http://www.dragino.com/products/lora-lorawan-gateway/item/140-lg308.html]] as LoRaWAN gateway here. 
139 139  
140 -[[image:1653268155545-638.png||height="334" width="724"]]
138 +[[image:1652953414711-647.png||height="337" width="723"]]
141 141  
142 142  (((
143 -The RS485-LN in this example connected to two RS485 devices for demonstration, user can connect to other RS485 devices via the same method. The connection is as below:
141 +The RS485-BL in this example connected to two RS485 devices for demonstration, user can connect to other RS485 devices via the same method.
142 +)))
144 144  
145 -485A+ and 485B- of the sensor are connected to RS485A and RA485B of RS485-LN respectively.
146 -
147 -[[image:1653268227651-549.png||height="592" width="720"]]
148 -
149 149  (((
150 -The LG308 is already set to connect to [[TTN V3 network >>path:eu1.cloud.thethings.network/]]. So what we need to now is only configure the TTN V3:
145 +The LG308 is already set to connect to [[TTN V3 network >>url:https://www.thethingsnetwork.org/]]. So what we need to now is only configure the TTN V3:
151 151  )))
152 152  
153 153  (((
154 -**Step 1**: Create a device in TTN V3 with the OTAA keys from RS485-LN.
149 +**Step 1**: Create a device in TTN V3 with the OTAA keys from RS485-BL.
155 155  )))
156 156  
157 157  (((
158 -Each RS485-LN is shipped with a sticker with unique device EUI:
153 +Each RS485-BL is shipped with a sticker with unique device EUI:
159 159  )))
160 -)))
161 161  
162 162  [[image:1652953462722-299.png]]
163 163  
164 164  (((
165 -(((
166 166  User can enter this key in their LoRaWAN Server portal. Below is TTN V3 screen shot:
167 167  )))
168 168  
... ... @@ -169,11 +169,13 @@
169 169  (((
170 170  Add APP EUI in the application.
171 171  )))
172 -)))
173 173  
166 +
167 +
168 +
174 174  [[image:image-20220519174512-1.png]]
175 175  
176 -[[image:image-20220519174512-2.png||height="323" width="720"]]
171 +[[image:image-20220519174512-2.png||height="328" width="731"]]
177 177  
178 178  [[image:image-20220519174512-3.png||height="556" width="724"]]
179 179  
... ... @@ -189,7 +189,7 @@
189 189  
190 190  
191 191  (((
192 -**Step 2**: Power on RS485-LN and it will auto join to the TTN V3 network. After join success, it will start to upload message to TTN V3 and user can see in the panel.
187 +**Step 2**: Power on RS485-BL and it will auto join to the TTN V3 network. After join success, it will start to upload message to TTN V3 and user can see in the panel.
193 193  )))
194 194  
195 195  [[image:1652953568895-172.png||height="232" width="724"]]
... ... @@ -197,19 +197,23 @@
197 197  == 3.3 Configure Commands to read data ==
198 198  
199 199  (((
200 -(((
201 -There are plenty of RS485 devices in the market and each device has different command to read the valid data. To support these devices in flexible, RS485-LN supports flexible command set. User can use [[AT Commands>>path:#AT_COMMAND]] or LoRaWAN Downlink Command to configure what commands RS485-LN should send for each sampling and how to handle the return from RS485 devices.
195 +There are plenty of RS485 and TTL level devices in the market and each device has different command to read the valid data. To support these devices in flexible, RS485-BL supports flexible command set. User can use [[AT Commands or LoRaWAN Downlink>>path:#AT_COMMAND]] Command to configure how RS485-BL should read the sensor and how to handle the return from RS485 or TTL sensors.
202 202  )))
203 203  
204 -(((
205 -(% style="color:red" %)Note: below description and commands are for firmware version >v1.1, if you have firmware version v1.0. Please check the [[user manual v1.0>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/&file=RS485-LN_UserManual_v1.0.1.pdf]] or upgrade the firmware to v1.1
206 -)))
207 -)))
208 -
209 209  === 3.3.1 onfigure UART settings for RS485 or TTL communication ===
210 210  
211 -To use RS485-LN to read data from RS485 sensors, connect the RS485-LN A/B traces to the sensors. And user need to make sure RS485-LN use the match UART setting to access the sensors. The related commands for UART settings are:
200 +RS485-BL can connect to either RS485 sensors or TTL sensor. User need to specify what type of sensor need to connect.
212 212  
202 +**~1. RS485-MODBUS mode:**
203 +
204 +AT+MOD=1 ~/~/ Support RS485-MODBUS type sensors. User can connect multiply RS485 , Modbus sensors to the A / B pins.
205 +
206 +**2. TTL mode:**
207 +
208 +AT+MOD=2 ~/~/ Support TTL Level sensors, User can connect one TTL Sensor to the TXD/RXD/GND pins.
209 +
210 +RS485-BL default UART settings is **9600, no parity, stop bit 1**. If the sensor has a different settings, user can change the RS485-BL setting to match.
211 +
213 213  (% border="1" style="background-color:#ffffcc; color:green; width:795px" %)
214 214  |(((
215 215  **AT Commands**
... ... @@ -234,7 +234,13 @@
234 234  |(((
235 235  AT+PARITY
236 236  )))|(% style="width:285px" %)(((
236 +(((
237 237  Set UART parity (for RS485 connection)
238 +)))
239 +
240 +(((
241 +Default Value is: no parity.
242 +)))
238 238  )))|(% style="width:347px" %)(((
239 239  (((
240 240  AT+PARITY=0
... ... @@ -252,7 +252,7 @@
252 252  )))
253 253  
254 254  (((
255 -
260 +Default Value is: 1bit.
256 256  )))
257 257  )))|(% style="width:347px" %)(((
258 258  (((
... ... @@ -271,10 +271,12 @@
271 271  === 3.3.2 Configure sensors ===
272 272  
273 273  (((
279 +Some sensors might need to configure before normal operation. User can configure such sensor via PC or through RS485-BL AT Commands (% style="color:#4f81bd" %)**AT+CFGDEV**.
280 +)))
281 +
274 274  (((
275 -Some sensors might need to configure before normal operation. User can configure such sensor via PC and RS485 adapter or through RS485-LN AT Commands (% style="color:#4f81bd" %)**AT+CFGDEV**(%%). Each (% style="color:#4f81bd" %)**AT+CFGDEV **(%%)equals to send a RS485 command to sensors. This command will only run when user input it and won’t run during each sampling.
283 +When user issue an (% style="color:#4f81bd" %)**AT+CFGDEV**(%%) command, Each (% style="color:#4f81bd" %)**AT+CFGDEV**(%%) equals to send a command to the RS485 or TTL sensors. This command will only run when user input it and won’t run during each sampling.
276 276  )))
277 -)))
278 278  
279 279  (% border="1" style="background-color:#ffffcc; color:green; width:806px" %)
280 280  |**AT Commands**|(% style="width:418px" %)**Description**|(% style="width:256px" %)**Example**
... ... @@ -286,6 +286,8 @@
286 286  mm: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command
287 287  )))|(% style="width:256px" %)AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m
288 288  
296 +Detail of AT+CFGDEV command see [[AT+CFGDEV detail>>path:#AT_CFGDEV]].
297 +
289 289  === 3.3.3 Configure read commands for each sampling ===
290 290  
291 291  (((
... ... @@ -367,17 +367,11 @@
367 367  **m: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command**
368 368  )))
369 369  
370 -(((
371 371  For example, if we have a RS485 sensor. The command to get sensor value is: 01 03 0B B8 00 02 46 0A. Where 01 03 0B B8 00 02 is the Modbus command to read the register 0B B8 where stored the sensor value. The 46 0A is the CRC-16/MODBUS which calculate manually.
372 -)))
373 373  
374 -(((
375 375  In the RS485-BL, we should use this command AT+COMMAND1=01 03 0B B8 00 02,1 for the same.
376 -)))
377 377  
378 -(((
379 379  **AT+SEARCHx**: This command defines how to handle the return from AT+COMMANDx.
380 -)))
381 381  
382 382  (% border="1" class="table-bordered" %)
383 383  |(((
... ... @@ -389,24 +389,26 @@
389 389  
390 390  )))
391 391  
392 -**Examples:**
395 +Examples:
393 393  
394 -~1. For a return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
397 +1. For a return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
395 395  
396 396  If we set AT+SEARCH1=1,1E 56 34.      (max 5 bytes for prefix)
397 397  
398 -The valid data will be all bytes after 1E 56 34 , so it is (% style="background-color:yellow" %)** 2e 30 58 5f 36 41 30 31 00 49**
401 +The valid data will be all bytes after 1E 56 34 , so it is 2e 30 58 5f 36 41 30 31 00 49
399 399  
400 -[[image:1653269403619-508.png]]
403 +[[image:1652954654347-831.png]]
401 401  
402 -2. For a return string from AT+COMMAND1:  16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
403 403  
406 +1. For a return string from AT+COMMAND1:  16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
407 +
404 404  If we set AT+SEARCH1=2, 1E 56 34+31 00 49
405 405  
406 -Device will search the bytes between 1E 56 34 and 31 00 49. So it is (% style="background-color:yellow" %)** 2e 30 58 5f 36 41 30**
410 +Device will search the bytes between 1E 56 34 and 31 00 49. So it is 2e 30 58 5f 36 41 30
407 407  
408 -[[image:1653269438444-278.png]]
412 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image014.png]]
409 409  
414 +
410 410  **AT+DATACUTx : **This command defines how to handle the return from AT+COMMANDx, max return length is 45 bytes.
411 411  
412 412  |(((
... ... @@ -421,95 +421,94 @@
421 421  
422 422  * Grab bytes:
423 423  
424 -[[image:1653269551753-223.png||height="311" width="717"]]
429 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image015.png]]
425 425  
426 426  * Grab a section.
427 427  
428 -[[image:1653269568276-930.png||height="325" width="718"]]
433 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image016.png]]
429 429  
430 430  * Grab different sections.
431 431  
432 -[[image:1653269593172-426.png||height="303" width="725"]]
437 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image017.png]]
433 433  
434 -(% style="color:red" %)**Note:**
435 435  
440 +Note:
441 +
436 436  AT+SEARCHx and AT+DATACUTx can be used together, if both commands are set, RS485-BL will first process AT+SEARCHx on the return string and get a temporary string, and then process AT+DATACUTx on this temporary string to get the final payload. In this case, AT+DATACUTx need to set to format AT+DATACUTx=0,xx,xx where the return bytes set to 0.
437 437  
438 438  Example:
439 439  
440 -(% style="color:red" %)AT+COMMAND1=11 01 1E D0,0
446 +AT+COMMAND1=11 01 1E D0,0
441 441  
442 -(% style="color:red" %)AT+SEARCH1=1,1E 56 34
448 +AT+SEARCH1=1,1E 56 34
443 443  
444 -(% style="color:red" %)AT+DATACUT1=0,2,1~~5
450 +AT+DATACUT1=0,2,1~~5
445 445  
446 -(% style="color:red" %)Return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
452 +Return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
447 447  
448 -(% style="color:red" %)String after SEARCH command: 2e 30 58 5f 36 41 30 31 00 49
454 +String after SEARCH command: 2e 30 58 5f 36 41 30 31 00 49
449 449  
450 -(% style="color:red" %)Valid payload after DataCUT command: 2e 30 58 5f 36
456 +Valid payload after DataCUT command: 2e 30 58 5f 36
451 451  
452 -[[image:1653269618463-608.png]]
458 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image018.png]]
453 453  
454 -=== 3.3.4 Compose the uplink payload ===
455 455  
456 -(((
461 +
462 +
463 +1.
464 +11.
465 +111. Compose the uplink payload
466 +
457 457  Through AT+COMMANDx and AT+DATACUTx we got valid value from each RS485 commands, Assume these valid value are RETURN1, RETURN2, .., to RETURNx. The next step is how to compose the LoRa Uplink Payload by these RETURNs. The command is **AT+DATAUP.**
458 -)))
459 459  
460 -(((
461 -(% style="color:#4f81bd" %)**Examples: AT+DATAUP=0**
462 -)))
463 463  
464 -(((
465 -Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**A SIGNLE UPLINK**.
466 -)))
470 +**Examples: AT+DATAUP=0**
467 467  
468 -(((
472 +Compose the uplink payload with value returns in sequence and send with **A SIGNLE UPLINK**.
473 +
469 469  Final Payload is
470 -)))
471 471  
472 -(((
473 -(% style="color:#4f81bd" %)**Battery Info+PAYVER + VALID Value from RETURN1 + Valid Value from RETURN2 + … + RETURNx**
474 -)))
476 +Battery Info+PAYVER + VALID Value from RETURN1 + Valid Value from RETURN2 + … + RETURNx
475 475  
476 -(((
477 477  Where PAYVER is defined by AT+PAYVER, below is an example screen shot.
478 -)))
479 479  
480 -[[image:1653269759169-150.png||height="513" width="716"]]
480 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image019.png]]
481 481  
482 -(% style="color:#4f81bd" %)**Examples: AT+DATAUP=1**
483 483  
484 -Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**Multiply UPLINKs**.
485 485  
484 +**Examples: AT+DATAUP=1**
485 +
486 +Compose the uplink payload with value returns in sequence and send with **Multiply UPLINKs**.
487 +
486 486  Final Payload is
487 487  
488 -(% style="color:#4f81bd" %)**Battery Info+PAYVER + PAYLOAD COUNT + PAYLOAD# + DATA**
490 +Battery Info+PAYVER + PAYLOAD COUNT + PAYLOAD# + DATA
489 489  
490 490  1. Battery Info (2 bytes): Battery voltage
491 491  1. PAYVER (1 byte): Defined by AT+PAYVER
492 492  1. PAYLOAD COUNT (1 byte): Total how many uplinks of this sampling.
493 493  1. PAYLOAD# (1 byte): Number of this uplink. (from 0,1,2,3…,to PAYLOAD COUNT)
494 -1. DATA: Valid value: max 6 bytes(US915 version here, Notice*!) for each uplink so each uplink <= 11 bytes. For the last uplink, DATA will might less than 6 bytes
496 +1. DATA: Valid value: max 6 bytes(US915 version here, [[Notice*!>>path:#max_byte]]) for each uplink so each uplink <= 11 bytes. For the last uplink, DATA will might less than 6 bytes
495 495  
496 -[[image:1653269916228-732.png||height="433" width="711"]]
498 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
497 497  
498 498  
499 499  So totally there will be 3 uplinks for this sampling, each uplink includes 6 bytes DATA
500 500  
501 -DATA1=RETURN1 Valid Value = (% style="background-color:green; color:white" %)20 20 0a 33 90 41
503 +DATA1=RETURN1 Valid Value = 20 20 0a 33 90 41
502 502  
503 -DATA2=1^^st^^ ~~ 6^^th^^ byte of Valid value of RETURN10=(% style="background-color:green; color:white" %) 02 aa 05 81 0a 20
505 +DATA2=1^^st^^ ~~ 6^^th^^ byte of Valid value of RETURN10= 02 aa 05 81 0a 20
504 504  
505 -DATA3=7^^th^^ ~~ 11^^th^^ bytes of Valid value of RETURN10 = (% style="background-color:green; color:white" %)20 20 20 2d 30
507 +DATA3=7^^th^^ ~~ 11^^th^^ bytes of Valid value of RETURN10 = 20 20 20 2d 30
506 506  
509 +
510 +
507 507  Below are the uplink payloads:
508 508  
509 -[[image:1653270130359-810.png]]
513 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image021.png]]
510 510  
511 511  
512 -(% style="color:red" %)**Notice: the Max bytes is according to the max support bytes in different Frequency Bands for lowest SF. As below:**
516 +Notice: the Max bytes is according to the max support bytes in different Frequency Bands for lowest SF. As below:
513 513  
514 514   ~* For AU915/AS923 bands, if UplinkDwell time=0, max 51 bytes for each uplink ( so 51 -5 = 46 max valid date)
515 515  
... ... @@ -519,8 +519,12 @@
519 519  
520 520   ~* For all other bands: max 51 bytes for each uplink  ( so 51 -5 = 46 max valid date).
521 521  
522 -=== 3.3.5 Uplink on demand ===
523 523  
527 +
528 +1.
529 +11.
530 +111. Uplink on demand
531 +
524 524  Except uplink periodically, RS485-BL is able to uplink on demand. The server sends downlink command to RS485-BL and RS485 will uplink data base on the command.
525 525  
526 526  Downlink control command:
1653268155545-638.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -113.7 KB
Content
1653268227651-549.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -1.3 MB
Content
1653269403619-508.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -27.8 KB
Content
1653269438444-278.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -26.6 KB
Content
1653269551753-223.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -138.7 KB
Content
1653269568276-930.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -131.4 KB
Content
1653269593172-426.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -142.6 KB
Content
1653269618463-608.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -27.7 KB
Content
1653269759169-150.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -294.0 KB
Content
1653269916228-732.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -143.3 KB
Content
1653270130359-810.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -197.8 KB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0