Changes for page RS485-LN – RS485 to LoRaWAN Converter User Manual
Last modified by Karry Zhuang on 2025/03/06 16:34
Summary
-
Page properties (1 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 7 removed)
Details
- Page properties
-
- Content
-
... ... @@ -18,21 +18,19 @@ 18 18 19 19 ((( 20 20 ((( 21 -The Dragino RS485-LN is a **RS485 to LoRaWAN Converter**. It converts the RS485 signal into LoRaWAN wireless signal which simplify the IoT installation and reduce the installation/maintaining cost.21 +The Dragino RS485-LN is a RS485 to LoRaWAN Converter. It converts the RS485 signal into LoRaWAN wireless signal which simplify the IoT installation and reduce the installation/maintaining cost. 22 22 ))) 23 23 24 24 ((( 25 -RS485-LN allows user to **monitor / control RS485 devices**and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.25 +RS485-LN allows user to monitor / control RS485 devices and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on. 26 26 ))) 27 27 28 28 ((( 29 - **For data uplink**, RS485-LN sends user-defined commands to RS485 devices and gets the return from the RS485 devices. RS485-LN will process these returns according to user-define rules to get the final payload and upload to LoRaWAN server.29 +For data uplink, RS485-LN sends user-defined commands to RS485 devices and gets the return from the RS485 devices. RS485-LN will process these returns according to user-define rules to get the final payload and upload to LoRaWAN server. 30 30 ))) 31 31 32 32 ((( 33 -**For data downlink**, RS485-LN runs in LoRaWAN Class C. When there downlink commands from LoRaWAN server, RS485-LN will forward the commands from LoRaWAN server to RS485 devices. 34 - 35 -**Demo Dashboard for RS485-LN** connect to two energy meters: [[https:~~/~~/app.datacake.de/dashboard/d/58844a26-378d-4c5a-aaf5-b5b5b153447a>>url:https://app.datacake.de/dashboard/d/58844a26-378d-4c5a-aaf5-b5b5b153447a]] 33 +For data downlink, RS485-LN runs in LoRaWAN Class C. When there downlink commands from LoRaWAN server, RS485-LN will forward the commands from LoRaWAN server to RS485 devices. 36 36 ))) 37 37 ))) 38 38 ... ... @@ -367,17 +367,11 @@ 367 367 **m: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command** 368 368 ))) 369 369 370 -((( 371 371 For example, if we have a RS485 sensor. The command to get sensor value is: 01 03 0B B8 00 02 46 0A. Where 01 03 0B B8 00 02 is the Modbus command to read the register 0B B8 where stored the sensor value. The 46 0A is the CRC-16/MODBUS which calculate manually. 372 -))) 373 373 374 -((( 375 375 In the RS485-BL, we should use this command AT+COMMAND1=01 03 0B B8 00 02,1 for the same. 376 -))) 377 377 378 -((( 379 379 **AT+SEARCHx**: This command defines how to handle the return from AT+COMMANDx. 380 -))) 381 381 382 382 (% border="1" class="table-bordered" %) 383 383 |((( ... ... @@ -389,24 +389,26 @@ 389 389 390 390 ))) 391 391 392 - **Examples:**384 +Examples: 393 393 394 - ~1. For a return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49386 +1. For a return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49 395 395 396 396 If we set AT+SEARCH1=1,1E 56 34. (max 5 bytes for prefix) 397 397 398 -The valid data will be all bytes after 1E 56 34 , so it is (% style="background-color:yellow" %)**2e 30 58 5f 36 41 30 31 00 49**390 +The valid data will be all bytes after 1E 56 34 , so it is 2e 30 58 5f 36 41 30 31 00 49 399 399 400 -[[image:165 3269403619-508.png]]392 +[[image:1652954654347-831.png]] 401 401 402 -2. For a return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49 403 403 395 +1. For a return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49 396 + 404 404 If we set AT+SEARCH1=2, 1E 56 34+31 00 49 405 405 406 -Device will search the bytes between 1E 56 34 and 31 00 49. So it is (% style="background-color:yellow" %)**2e 30 58 5f 36 41 30**399 +Device will search the bytes between 1E 56 34 and 31 00 49. So it is 2e 30 58 5f 36 41 30 407 407 408 -[[image: 1653269438444-278.png]]401 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image014.png]] 409 409 403 + 410 410 **AT+DATACUTx : **This command defines how to handle the return from AT+COMMANDx, max return length is 45 bytes. 411 411 412 412 |((( ... ... @@ -421,95 +421,94 @@ 421 421 422 422 * Grab bytes: 423 423 424 -[[image: 1653269551753-223.png||height="311" width="717"]]418 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image015.png]] 425 425 426 426 * Grab a section. 427 427 428 -[[image: 1653269568276-930.png||height="325" width="718"]]422 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image016.png]] 429 429 430 430 * Grab different sections. 431 431 432 -[[image: 1653269593172-426.png||height="303" width="725"]]426 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image017.png]] 433 433 434 -(% style="color:red" %)**Note:** 435 435 429 +Note: 430 + 436 436 AT+SEARCHx and AT+DATACUTx can be used together, if both commands are set, RS485-BL will first process AT+SEARCHx on the return string and get a temporary string, and then process AT+DATACUTx on this temporary string to get the final payload. In this case, AT+DATACUTx need to set to format AT+DATACUTx=0,xx,xx where the return bytes set to 0. 437 437 438 438 Example: 439 439 440 - (% style="color:red" %)AT+COMMAND1=11 01 1E D0,0435 +AT+COMMAND1=11 01 1E D0,0 441 441 442 - (% style="color:red" %)AT+SEARCH1=1,1E 56 34437 +AT+SEARCH1=1,1E 56 34 443 443 444 - (% style="color:red" %)AT+DATACUT1=0,2,1~~5439 +AT+DATACUT1=0,2,1~~5 445 445 446 - (% style="color:red" %)Return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49441 +Return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49 447 447 448 - (% style="color:red" %)String after SEARCH command: 2e 30 58 5f 36 41 30 31 00 49443 +String after SEARCH command: 2e 30 58 5f 36 41 30 31 00 49 449 449 450 - (% style="color:red" %)Valid payload after DataCUT command: 2e 30 58 5f 36445 +Valid payload after DataCUT command: 2e 30 58 5f 36 451 451 452 -[[image: 1653269618463-608.png]]447 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image018.png]] 453 453 454 -=== 3.3.4 Compose the uplink payload === 455 455 456 -((( 450 + 451 + 452 +1. 453 +11. 454 +111. Compose the uplink payload 455 + 457 457 Through AT+COMMANDx and AT+DATACUTx we got valid value from each RS485 commands, Assume these valid value are RETURN1, RETURN2, .., to RETURNx. The next step is how to compose the LoRa Uplink Payload by these RETURNs. The command is **AT+DATAUP.** 458 -))) 459 459 460 -((( 461 -(% style="color:#4f81bd" %)**Examples: AT+DATAUP=0** 462 -))) 463 463 464 -((( 465 -Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**A SIGNLE UPLINK**. 466 -))) 459 +**Examples: AT+DATAUP=0** 467 467 468 -((( 461 +Compose the uplink payload with value returns in sequence and send with **A SIGNLE UPLINK**. 462 + 469 469 Final Payload is 470 -))) 471 471 472 -((( 473 -(% style="color:#4f81bd" %)**Battery Info+PAYVER + VALID Value from RETURN1 + Valid Value from RETURN2 + … + RETURNx** 474 -))) 465 +Battery Info+PAYVER + VALID Value from RETURN1 + Valid Value from RETURN2 + … + RETURNx 475 475 476 -((( 477 477 Where PAYVER is defined by AT+PAYVER, below is an example screen shot. 478 -))) 479 479 480 -[[image: 1653269759169-150.png||height="513" width="716"]]469 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image019.png]] 481 481 482 -(% style="color:#4f81bd" %)**Examples: AT+DATAUP=1** 483 483 484 -Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**Multiply UPLINKs**. 485 485 473 +**Examples: AT+DATAUP=1** 474 + 475 +Compose the uplink payload with value returns in sequence and send with **Multiply UPLINKs**. 476 + 486 486 Final Payload is 487 487 488 - (% style="color:#4f81bd" %)**Battery Info+PAYVER + PAYLOAD COUNT + PAYLOAD# + DATA**479 +Battery Info+PAYVER + PAYLOAD COUNT + PAYLOAD# + DATA 489 489 490 490 1. Battery Info (2 bytes): Battery voltage 491 491 1. PAYVER (1 byte): Defined by AT+PAYVER 492 492 1. PAYLOAD COUNT (1 byte): Total how many uplinks of this sampling. 493 493 1. PAYLOAD# (1 byte): Number of this uplink. (from 0,1,2,3…,to PAYLOAD COUNT) 494 -1. DATA: Valid value: max 6 bytes(US915 version here, Notice*!) for each uplink so each uplink <= 11 bytes. For the last uplink, DATA will might less than 6 bytes 485 +1. DATA: Valid value: max 6 bytes(US915 version here, [[Notice*!>>path:#max_byte]]) for each uplink so each uplink <= 11 bytes. For the last uplink, DATA will might less than 6 bytes 495 495 496 -[[image: 1653269916228-732.png||height="433" width="711"]]487 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]] 497 497 498 498 499 499 So totally there will be 3 uplinks for this sampling, each uplink includes 6 bytes DATA 500 500 501 -DATA1=RETURN1 Valid Value = (% style="background-color:green; color:white" %)20 20 0a 33 90 41492 +DATA1=RETURN1 Valid Value = 20 20 0a 33 90 41 502 502 503 -DATA2=1^^st^^ ~~ 6^^th^^ byte of Valid value of RETURN10= (%style="background-color:green; color:white" %)02 aa 05 81 0a 20494 +DATA2=1^^st^^ ~~ 6^^th^^ byte of Valid value of RETURN10= 02 aa 05 81 0a 20 504 504 505 -DATA3=7^^th^^ ~~ 11^^th^^ bytes of Valid value of RETURN10 = (%style="background-color:green; color:white" %)20 20 20 2d 30496 +DATA3=7^^th^^ ~~ 11^^th^^ bytes of Valid value of RETURN10 = 20 20 20 2d 30 506 506 498 + 499 + 507 507 Below are the uplink payloads: 508 508 509 -[[image: 1653270130359-810.png]]502 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image021.png]] 510 510 511 511 512 - (% style="color:red" %)**Notice: the Max bytes is according to the max support bytes in different Frequency Bands for lowest SF. As below:**505 +Notice: the Max bytes is according to the max support bytes in different Frequency Bands for lowest SF. As below: 513 513 514 514 ~* For AU915/AS923 bands, if UplinkDwell time=0, max 51 bytes for each uplink ( so 51 -5 = 46 max valid date) 515 515 ... ... @@ -519,8 +519,12 @@ 519 519 520 520 ~* For all other bands: max 51 bytes for each uplink ( so 51 -5 = 46 max valid date). 521 521 522 -=== 3.3.5 Uplink on demand === 523 523 516 + 517 +1. 518 +11. 519 +111. Uplink on demand 520 + 524 524 Except uplink periodically, RS485-BL is able to uplink on demand. The server sends downlink command to RS485-BL and RS485 will uplink data base on the command. 525 525 526 526 Downlink control command:
- 1653269551753-223.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -138.7 KB - Content
- 1653269568276-930.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -131.4 KB - Content
- 1653269593172-426.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -142.6 KB - Content
- 1653269618463-608.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -27.7 KB - Content
- 1653269759169-150.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -294.0 KB - Content
- 1653269916228-732.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -143.3 KB - Content
- 1653270130359-810.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -197.8 KB - Content