Last modified by Xiaoling on 2025/04/23 15:56

From version 32.2
edited by Xiaoling
on 2022/06/02 15:22
Change comment: There is no comment for this version
To version 15.2
edited by Xiaoling
on 2022/05/19 17:47
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -RS485-LN – RS485 to LoRaWAN Converter
1 +RS485-BL – Waterproof RS485 to LoRaWAN Converter
Content
... ... @@ -1,11 +1,12 @@
1 1  (% style="text-align:center" %)
2 -[[image:1653266934636-343.png||height="385" width="385"]]
2 +[[image:1652947681187-144.png||height="385" width="385"]]
3 3  
4 4  
5 5  
6 -**RS485-LN – RS485 to LoRaWAN Converter User Manual**
7 7  
7 +**RS485-BL – Waterproof RS485 to LoRaWAN Converter User Manual**
8 8  
9 +
9 9  **Table of Contents:**
10 10  
11 11  
... ... @@ -14,30 +14,42 @@
14 14  
15 15  = 1.Introduction =
16 16  
17 -== 1.1 What is RS485-LN RS485 to LoRaWAN Converter ==
18 +== 1.1 What is RS485-BL RS485 to LoRaWAN Converter ==
18 18  
19 19  (((
21 +
22 +)))
23 +
20 20  (((
21 -The Dragino RS485-LN is a **RS485 to LoRaWAN Converter**. It converts the RS485 signal into LoRaWAN wireless signal which simplify the IoT installation and reduce the installation/maintaining cost.
25 +The Dragino RS485-BL is a **RS485 / UART to LoRaWAN Converter** for Internet of Things solutions. User can connect RS485 or UART sensor to RS485-BL converter, and configure RS485-BL to periodically read sensor data and upload via LoRaWAN network to IoT server.
22 22  )))
23 23  
24 24  (((
25 -RS485-LN allows user to **monitor / control RS485 devices** and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
29 +RS485-BL can interface to RS485 sensor, 3.3v/5v UART sensor or interrupt sensor. RS485-BL provides **a 3.3v output** and** a 5v output** to power external sensors. Both output voltages are controllable to minimize the total system power consumption.
26 26  )))
27 27  
28 28  (((
29 -**For data uplink**, RS485-LN sends user-defined commands to RS485 devices and gets the return from the RS485 devices. RS485-LN will process these returns according to user-define rules to get the final payload and upload to LoRaWAN server.
33 +RS485-BL is IP67 **waterproof** and powered by **8500mAh Li-SOCI2 battery**, it is designed for long term use for several years.
30 30  )))
31 31  
32 32  (((
33 -**For data downlink**, RS485-LN runs in LoRaWAN Class C. When there downlink commands from LoRaWAN server, RS485-LN will forward the commands from LoRaWAN server to RS485 devices.
37 +RS485-BL runs standard **LoRaWAN 1.0.3 in Class A**. It can reach long transfer range and easy to integrate with LoRaWAN compatible gateway and IoT server.
38 +)))
34 34  
35 -**Demo Dashboard for RS485-LN** connect to two energy meters: [[https:~~/~~/app.datacake.de/dashboard/d/58844a26-378d-4c5a-aaf5-b5b5b153447a>>url:https://app.datacake.de/dashboard/d/58844a26-378d-4c5a-aaf5-b5b5b153447a]]
40 +(((
41 +For data uplink, RS485-BL sends user-defined commands to RS485 devices and gets the return from the RS485 devices. RS485-BL will process these returns data according to user-define rules to get the final payload and upload to LoRaWAN server.
36 36  )))
43 +
44 +(((
45 +For data downlink, RS485-BL runs in LoRaWAN Class A. When there is downlink commands from LoRaWAN server, RS485-BL will forward the commands from LoRaWAN server to RS485 devices.
37 37  )))
38 38  
39 -[[image:1653267211009-519.png||height="419" width="724"]]
48 +(((
49 +Each RS485-BL pre-load with a set of unique keys for LoRaWAN registration, register these keys to LoRaWAN server and it will auto connect after power on.
50 +)))
40 40  
52 +[[image:1652953304999-717.png||height="424" width="733"]]
53 +
41 41  == 1.2 Specifications ==
42 42  
43 43  **Hardware System:**
... ... @@ -45,15 +45,19 @@
45 45  * STM32L072CZT6 MCU
46 46  * SX1276/78 Wireless Chip 
47 47  * Power Consumption (exclude RS485 device):
48 -** Idle: 32mA@12v
61 +** Idle: 6uA@3.3v
49 49  
50 50  *
51 -** 20dB Transmit: 65mA@12v
64 +** 20dB Transmit: 130mA@3.3v
52 52  
53 53  **Interface for Model:**
54 54  
55 -* RS485
56 -* Power Input 7~~ 24V DC. 
68 +* 1 x RS485 Interface
69 +* 1 x TTL Serial , 3.3v or 5v.
70 +* 1 x I2C Interface, 3.3v or 5v.
71 +* 1 x one wire interface
72 +* 1 x Interrupt Interface
73 +* 1 x Controllable 5V output, max
57 57  
58 58  **LoRa Spec:**
59 59  
... ... @@ -62,30 +62,27 @@
62 62  ** Band 2 (LF): 410 ~~ 528 Mhz
63 63  * 168 dB maximum link budget.
64 64  * +20 dBm - 100 mW constant RF output vs.
65 -* +14 dBm high efficiency PA.
66 66  * Programmable bit rate up to 300 kbps.
67 67  * High sensitivity: down to -148 dBm.
68 68  * Bullet-proof front end: IIP3 = -12.5 dBm.
69 69  * Excellent blocking immunity.
70 -* Low RX current of 10.3 mA, 200 nA register retention.
71 71  * Fully integrated synthesizer with a resolution of 61 Hz.
72 -* FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation.
87 +* LoRa modulation.
73 73  * Built-in bit synchronizer for clock recovery.
74 74  * Preamble detection.
75 75  * 127 dB Dynamic Range RSSI.
76 -* Automatic RF Sense and CAD with ultra-fast AFC.
77 -* Packet engine up to 256 bytes with CRC.
91 +* Automatic RF Sense and CAD with ultra-fast AFC. ​​​
78 78  
79 79  == 1.3 Features ==
80 80  
81 -* LoRaWAN Class A & Class C protocol (default Class C)
95 +* LoRaWAN Class A & Class C protocol (default Class A)
82 82  * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865/RU864
83 83  * AT Commands to change parameters
84 -* Remote configure parameters via LoRa Downlink
98 +* Remote configure parameters via LoRaWAN Downlink
85 85  * Firmware upgradable via program port
86 86  * Support multiply RS485 devices by flexible rules
87 87  * Support Modbus protocol
88 -* Support Interrupt uplink (Since hardware version v1.2)
102 +* Support Interrupt uplink
89 89  
90 90  == 1.4 Applications ==
91 91  
... ... @@ -98,39 +98,53 @@
98 98  
99 99  == 1.5 Firmware Change log ==
100 100  
101 -[[RS485-LN Image files – Download link and Change log>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/]]
115 +[[RS485-BL Image files – Download link and Change log>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/RS485-BL/Firmware/||style="background-color: rgb(255, 255, 255);"]]
102 102  
103 103  == 1.6 Hardware Change log ==
104 104  
105 105  (((
120 +v1.4
121 +)))
122 +
106 106  (((
107 -v1.2: Add External Interrupt Pin.
124 +~1. Change Power IC to TPS22916
125 +)))
108 108  
109 -v1.0: Release
127 +
128 +(((
129 +v1.3
110 110  )))
131 +
132 +(((
133 +~1. Change JP3 from KF350-8P to KF350-11P, Add one extra interface for I2C and one extra interface for one-wire
111 111  )))
112 112  
113 -= 2. Power ON Device =
114 114  
115 115  (((
116 -The RS485-LN can be powered by 7 ~~ 24V DC power source. Connection as below
138 +v1.2
139 +)))
117 117  
118 -* Power Source VIN to RS485-LN VIN+
119 -* Power Source GND to RS485-LN VIN-
120 -
121 121  (((
122 -Once there is power, the RS485-LN will be on.
142 +Release version ​​​​​
123 123  )))
124 124  
125 -[[image:1653268091319-405.png]]
145 += 2. Pin mapping and Power ON Device =
146 +
147 +(((
148 +The RS485-BL is powered on by 8500mAh battery. To save battery life, RS485-BL is shipped with power off. User can put the jumper to power on RS485-BL.
126 126  )))
127 127  
151 +[[image:1652953055962-143.png||height="387" width="728"]]
152 +
153 +
154 +The Left TXD and RXD are TTL interface for external sensor. TTL level is controlled by 3.3/5v Jumper.
155 +
128 128  = 3. Operation Mode =
129 129  
130 130  == 3.1 How it works? ==
131 131  
132 132  (((
133 -The RS485-LN is configured as LoRaWAN OTAA Class C mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the RS485-LN. It will auto join the network via OTAA.
161 +The RS485-BL is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the RS485-BL. It will auto join the network via OTAA.
134 134  )))
135 135  
136 136  == 3.2 Example to join LoRaWAN network ==
... ... @@ -137,43 +137,28 @@
137 137  
138 138  Here shows an example for how to join the TTN V3 Network. Below is the network structure, we use [[LG308>>url:http://www.dragino.com/products/lora-lorawan-gateway/item/140-lg308.html]] as LoRaWAN gateway here. 
139 139  
140 -[[image:1653268155545-638.png||height="334" width="724"]]
168 +[[image:1652953414711-647.png||height="337" width="723"]]
141 141  
142 -(((
143 -The RS485-LN in this example connected to two RS485 devices for demonstration, user can connect to other RS485 devices via the same method. The connection is as below:
170 +The RS485-BL in this example connected to two RS485 devices for demonstration, user can connect to other RS485 devices via the same method.
144 144  
145 -485A+ and 485B- of the sensor are connected to RS485A and RA485B of RS485-LN respectively.
172 +The LG308 is already set to connect to [[TTN V3 network >>url:https://www.thethingsnetwork.org/]]. So what we need to now is only configure the TTN V3:
146 146  
147 -[[image:1653268227651-549.png||height="592" width="720"]]
174 +**Step 1**: Create a device in TTN V3 with the OTAA keys from RS485-BL.
148 148  
149 -(((
150 -The LG308 is already set to connect to [[TTN V3 network >>path:eu1.cloud.thethings.network/]]. So what we need to now is only configure the TTN V3:
151 -)))
176 +Each RS485-BL is shipped with a sticker with unique device EUI:
152 152  
153 -(((
154 -**Step 1**: Create a device in TTN V3 with the OTAA keys from RS485-LN.
155 -)))
156 -
157 -(((
158 -Each RS485-LN is shipped with a sticker with unique device EUI:
159 -)))
160 -)))
161 -
162 162  [[image:1652953462722-299.png]]
163 163  
164 -(((
165 -(((
166 166  User can enter this key in their LoRaWAN Server portal. Below is TTN V3 screen shot:
167 -)))
168 168  
169 -(((
170 170  Add APP EUI in the application.
171 -)))
172 -)))
173 173  
184 +
185 +
186 +
174 174  [[image:image-20220519174512-1.png]]
175 175  
176 -[[image:image-20220519174512-2.png||height="323" width="720"]]
189 +[[image:image-20220519174512-2.png||height="328" width="731"]]
177 177  
178 178  [[image:image-20220519174512-3.png||height="556" width="724"]]
179 179  
... ... @@ -189,176 +189,147 @@
189 189  
190 190  
191 191  (((
192 -**Step 2**: Power on RS485-LN and it will auto join to the TTN V3 network. After join success, it will start to upload message to TTN V3 and user can see in the panel.
205 +**Step 2**: Power on RS485-BL and it will auto join to the TTN V3 network. After join success, it will start to upload message to TTN V3 and user can see in the panel.
193 193  )))
194 194  
195 195  [[image:1652953568895-172.png||height="232" width="724"]]
196 196  
197 -== 3.3 Configure Commands to read data ==
198 198  
199 -(((
200 -(((
201 -There are plenty of RS485 devices in the market and each device has different command to read the valid data. To support these devices in flexible, RS485-LN supports flexible command set. User can use [[AT Commands>>path:#AT_COMMAND]] or LoRaWAN Downlink Command to configure what commands RS485-LN should send for each sampling and how to handle the return from RS485 devices.
202 -)))
203 203  
204 -(((
205 -(% style="color:red" %)Note: below description and commands are for firmware version >v1.1, if you have firmware version v1.0. Please check the [[user manual v1.0>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/&file=RS485-LN_UserManual_v1.0.1.pdf]] or upgrade the firmware to v1.1
206 -)))
207 -)))
208 208  
209 -=== 3.3.1 onfigure UART settings for RS485 or TTL communication ===
213 +1.
214 +11. Configure Commands to read data
210 210  
211 -To use RS485-LN to read data from RS485 sensors, connect the RS485-LN A/B traces to the sensors. And user need to make sure RS485-LN use the match UART setting to access the sensors. The related commands for UART settings are:
216 +There are plenty of RS485 and TTL level devices in the market and each device has different command to read the valid data. To support these devices in flexible, RS485-BL supports flexible command set. User can use [[AT Commands or LoRaWAN Downlink>>path:#AT_COMMAND]] Command to configure how RS485-BL should read the sensor and how to handle the return from RS485 or TTL sensors.
212 212  
213 -(% border="1" style="background-color:#ffffcc; color:green; width:795px" %)
214 -|(((
215 -**AT Commands**
216 -)))|(% style="width:285px" %)(((
217 -**Description**
218 -)))|(% style="width:347px" %)(((
219 -**Example**
220 -)))
221 -|(((
222 -AT+BAUDR
223 -)))|(% style="width:285px" %)(((
224 -Set the baud rate (for RS485 connection). Default Value is: 9600.
225 -)))|(% style="width:347px" %)(((
226 -(((
218 +
219 +1.
220 +11.
221 +111. Configure UART settings for RS485 or TTL communication
222 +
223 +RS485-BL can connect to either RS485 sensors or TTL sensor. User need to specify what type of sensor need to connect.
224 +
225 +1. RS485-MODBUS mode:
226 +
227 +AT+MOD=1 ~/~/ Support RS485-MODBUS type sensors. User can connect multiply RS485 , Modbus sensors to the A / B pins.
228 +
229 +
230 +1. TTL mode:
231 +
232 +AT+MOD=2 ~/~/ Support TTL Level sensors, User can connect one TTL Sensor to the TXD/RXD/GND pins.
233 +
234 +
235 +RS485-BL default UART settings is **9600, no parity, stop bit 1**. If the sensor has a different settings, user can change the RS485-BL setting to match.
236 +
237 +
238 +|**AT Commands**|**Description**|**Example**
239 +|AT+BAUDR|Set the baud rate (for RS485 connection). Default Value is: 9600.|(((
227 227  AT+BAUDR=9600
228 -)))
229 229  
230 -(((
231 231  Options: (1200,2400,4800,14400,19200,115200)
232 232  )))
233 -)))
234 -|(((
235 -AT+PARITY
236 -)))|(% style="width:285px" %)(((
244 +|AT+PARITY|(((
237 237  Set UART parity (for RS485 connection)
238 -)))|(% style="width:347px" %)(((
239 -(((
246 +
247 +Default Value is: no parity.
248 +)))|(((
240 240  AT+PARITY=0
241 -)))
242 242  
243 -(((
244 244  Option: 0: no parity, 1: odd parity, 2: even parity
245 245  )))
246 -)))
247 -|(((
248 -AT+STOPBIT
249 -)))|(% style="width:285px" %)(((
250 -(((
253 +|AT+STOPBIT|(((
251 251  Set serial stopbit (for RS485 connection)
252 -)))
253 253  
254 -(((
255 -
256 -)))
257 -)))|(% style="width:347px" %)(((
258 -(((
256 +Default Value is: 1bit.
257 +)))|(((
259 259  AT+STOPBIT=0 for 1bit
260 -)))
261 261  
262 -(((
263 263  AT+STOPBIT=1 for 1.5 bit
264 -)))
265 265  
266 -(((
267 267  AT+STOPBIT=2 for 2 bits
268 268  )))
269 -)))
270 270  
271 -=== 3.3.2 Configure sensors ===
272 272  
273 -(((
274 -(((
275 -Some sensors might need to configure before normal operation. User can configure such sensor via PC and RS485 adapter or through RS485-LN AT Commands (% style="color:#4f81bd" %)**AT+CFGDEV**(%%). Each (% style="color:#4f81bd" %)**AT+CFGDEV **(%%)equals to send a RS485 command to sensors. This command will only run when user input it and won’t run during each sampling.
276 -)))
277 -)))
278 278  
279 -(% border="1" style="background-color:#ffffcc; color:green; width:806px" %)
280 -|**AT Commands**|(% style="width:418px" %)**Description**|(% style="width:256px" %)**Example**
281 -|AT+CFGDEV|(% style="width:418px" %)(((
267 +
268 +1.
269 +11.
270 +111. Configure sensors
271 +
272 +Some sensors might need to configure before normal operation. User can configure such sensor via PC or through RS485-BL AT Commands AT+CFGDEV.
273 +
274 +
275 +When user issue an AT+CFGDEV command, Each AT+CFGDEV equals to send a command to the RS485 or TTL sensors. This command will only run when user input it and won’t run during each sampling.
276 +
277 +|**AT Commands**|**Description**|**Example**
278 +|AT+CFGDEV|(((
282 282  This command is used to configure the RS485/TTL devices; they won’t be used during sampling.
283 283  
284 -AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,
281 +AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m
285 285  
286 -mm: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command
287 -)))|(% style="width:256px" %)AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m
283 +m: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command
284 +)))|AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m
288 288  
289 -=== 3.3.3 Configure read commands for each sampling ===
286 +Detail of AT+CFGDEV command see [[AT+CFGDEV detail>>path:#AT_CFGDEV]].
290 290  
291 -(((
288 +
289 +
290 +
291 +
292 +1.
293 +11.
294 +111. Configure read commands for each sampling
295 +
292 292  RS485-BL is a battery powered device; it will sleep most of time. And wake up on each period and read RS485 / TTL sensor data and uplink.
293 -)))
294 294  
295 -(((
298 +
296 296  During each sampling, we need to confirm what commands we need to send to the sensors to read data. After the RS485/TTL sensors send back the value, it normally includes some bytes and we only need a few from them for a shorten payload.
297 -)))
298 298  
299 -(((
301 +
300 300  To save the LoRaWAN network bandwidth, we might need to read data from different sensors and combine their valid value into a short payload.
301 -)))
302 302  
303 -(((
304 +
304 304  This section describes how to achieve above goals.
305 -)))
306 306  
307 -(((
307 +
308 308  During each sampling, the RS485-BL can support 15 commands to read sensors. And combine the return to one or several uplink payloads.
309 -)))
310 310  
311 -(((
310 +
312 312  **Command from RS485-BL to Sensor:**
313 -)))
314 314  
315 -(((
316 316  RS485-BL can send out pre-set max 15 strings via **AT+COMMAD1**, **ATCOMMAND2**,…, to **AT+COMMANDF** . All commands are of same grammar.
317 -)))
318 318  
319 -(((
315 +
320 320  **Handle return from sensors to RS485-BL**:
321 -)))
322 322  
323 -(((
324 324  After RS485-BL send out a string to sensor, RS485-BL will wait for the return from RS485 or TTL sensor. And user can specify how to handle the return, by **AT+DATACUT or AT+SEARCH commands**
325 -)))
326 326  
327 -* (((
328 -**AT+DATACUT**
329 -)))
330 330  
331 -(((
321 +* **AT+DATACUT**
322 +
332 332  When the return value from sensor have fix length and we know which position the valid value we should get, we can use AT+DATACUT command.
333 -)))
334 334  
335 -* (((
336 -**AT+SEARCH**
337 -)))
338 338  
339 -(((
326 +* **AT+SEARCH**
327 +
340 340  When the return value from sensor is dynamic length and we are not sure which bytes the valid data is, instead, we know what value the valid value following. We can use AT+SEARCH to search the valid value in the return string.
341 -)))
342 342  
343 -(((
330 +
344 344  **Define wait timeout:**
345 -)))
346 346  
347 -(((
348 348  Some RS485 device might has longer delay on reply, so user can use AT+CMDDL to set the timeout for getting reply after the RS485 command is sent. For example, AT+CMDDL1=1000 to send the open time to 1000ms
349 -)))
350 350  
351 -(((
335 +
352 352  After we got the valid value from each RS485 commands, we need to combine them together with the command **AT+DATAUP**.
353 -)))
354 354  
338 +
355 355  **Examples:**
356 356  
357 357  Below are examples for the how above AT Commands works.
358 358  
343 +
359 359  **AT+COMMANDx : **This command will be sent to RS485/TTL devices during each sampling, Max command length is 14 bytes. The grammar is:
360 360  
361 -(% border="1" class="table-bordered" %)
362 362  |(((
363 363  **AT+COMMANDx=xx xx xx xx xx xx xx xx xx xx xx xx,m**
364 364  
... ... @@ -367,19 +367,13 @@
367 367  **m: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command**
368 368  )))
369 369  
370 -(((
371 371  For example, if we have a RS485 sensor. The command to get sensor value is: 01 03 0B B8 00 02 46 0A. Where 01 03 0B B8 00 02 is the Modbus command to read the register 0B B8 where stored the sensor value. The 46 0A is the CRC-16/MODBUS which calculate manually.
372 -)))
373 373  
374 -(((
375 375  In the RS485-BL, we should use this command AT+COMMAND1=01 03 0B B8 00 02,1 for the same.
376 -)))
377 377  
378 -(((
358 +
379 379  **AT+SEARCHx**: This command defines how to handle the return from AT+COMMANDx.
380 -)))
381 381  
382 -(% border="1" class="table-bordered" %)
383 383  |(((
384 384  **AT+SEARCHx=aa,xx xx xx xx xx**
385 385  
... ... @@ -389,24 +389,26 @@
389 389  
390 390  )))
391 391  
392 -**Examples:**
370 +Examples:
393 393  
394 -~1. For a return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
372 +1. For a return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
395 395  
396 396  If we set AT+SEARCH1=1,1E 56 34.      (max 5 bytes for prefix)
397 397  
398 -The valid data will be all bytes after 1E 56 34 , so it is (% style="background-color:yellow" %)** 2e 30 58 5f 36 41 30 31 00 49**
376 +The valid data will be all bytes after 1E 56 34 , so it is 2e 30 58 5f 36 41 30 31 00 49
399 399  
400 -[[image:1653269403619-508.png]]
378 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image013.png]]
401 401  
402 -2. For a return string from AT+COMMAND1:  16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
403 403  
381 +1. For a return string from AT+COMMAND1:  16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
382 +
404 404  If we set AT+SEARCH1=2, 1E 56 34+31 00 49
405 405  
406 -Device will search the bytes between 1E 56 34 and 31 00 49. So it is (% style="background-color:yellow" %)** 2e 30 58 5f 36 41 30**
385 +Device will search the bytes between 1E 56 34 and 31 00 49. So it is 2e 30 58 5f 36 41 30
407 407  
408 -[[image:1653269438444-278.png]]
387 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image014.png]]
409 409  
389 +
410 410  **AT+DATACUTx : **This command defines how to handle the return from AT+COMMANDx, max return length is 45 bytes.
411 411  
412 412  |(((
... ... @@ -421,95 +421,94 @@
421 421  
422 422  * Grab bytes:
423 423  
424 -[[image:1653269551753-223.png||height="311" width="717"]]
404 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image015.png]]
425 425  
426 426  * Grab a section.
427 427  
428 -[[image:1653269568276-930.png||height="325" width="718"]]
408 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image016.png]]
429 429  
430 430  * Grab different sections.
431 431  
432 -[[image:1653269593172-426.png||height="303" width="725"]]
412 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image017.png]]
433 433  
434 -(% style="color:red" %)**Note:**
435 435  
415 +Note:
416 +
436 436  AT+SEARCHx and AT+DATACUTx can be used together, if both commands are set, RS485-BL will first process AT+SEARCHx on the return string and get a temporary string, and then process AT+DATACUTx on this temporary string to get the final payload. In this case, AT+DATACUTx need to set to format AT+DATACUTx=0,xx,xx where the return bytes set to 0.
437 437  
438 438  Example:
439 439  
440 -(% style="color:red" %)AT+COMMAND1=11 01 1E D0,0
421 +AT+COMMAND1=11 01 1E D0,0
441 441  
442 -(% style="color:red" %)AT+SEARCH1=1,1E 56 34
423 +AT+SEARCH1=1,1E 56 34
443 443  
444 -(% style="color:red" %)AT+DATACUT1=0,2,1~~5
425 +AT+DATACUT1=0,2,1~~5
445 445  
446 -(% style="color:red" %)Return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
427 +Return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
447 447  
448 -(% style="color:red" %)String after SEARCH command: 2e 30 58 5f 36 41 30 31 00 49
429 +String after SEARCH command: 2e 30 58 5f 36 41 30 31 00 49
449 449  
450 -(% style="color:red" %)Valid payload after DataCUT command: 2e 30 58 5f 36
431 +Valid payload after DataCUT command: 2e 30 58 5f 36
451 451  
452 -[[image:1653269618463-608.png]]
433 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image018.png]]
453 453  
454 -=== 3.3.4 Compose the uplink payload ===
455 455  
456 -(((
436 +
437 +
438 +1.
439 +11.
440 +111. Compose the uplink payload
441 +
457 457  Through AT+COMMANDx and AT+DATACUTx we got valid value from each RS485 commands, Assume these valid value are RETURN1, RETURN2, .., to RETURNx. The next step is how to compose the LoRa Uplink Payload by these RETURNs. The command is **AT+DATAUP.**
458 -)))
459 459  
460 -(((
461 -(% style="color:#4f81bd" %)**Examples: AT+DATAUP=0**
462 -)))
463 463  
464 -(((
465 -Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**A SIGNLE UPLINK**.
466 -)))
445 +**Examples: AT+DATAUP=0**
467 467  
468 -(((
447 +Compose the uplink payload with value returns in sequence and send with **A SIGNLE UPLINK**.
448 +
469 469  Final Payload is
470 -)))
471 471  
472 -(((
473 -(% style="color:#4f81bd" %)**Battery Info+PAYVER + VALID Value from RETURN1 + Valid Value from RETURN2 + … + RETURNx**
474 -)))
451 +Battery Info+PAYVER + VALID Value from RETURN1 + Valid Value from RETURN2 + … + RETURNx
475 475  
476 -(((
477 477  Where PAYVER is defined by AT+PAYVER, below is an example screen shot.
478 -)))
479 479  
480 -[[image:1653269759169-150.png||height="513" width="716"]]
455 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image019.png]]
481 481  
482 -(% style="color:#4f81bd" %)**Examples: AT+DATAUP=1**
483 483  
484 -Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**Multiply UPLINKs**.
485 485  
459 +**Examples: AT+DATAUP=1**
460 +
461 +Compose the uplink payload with value returns in sequence and send with **Multiply UPLINKs**.
462 +
486 486  Final Payload is
487 487  
488 -(% style="color:#4f81bd" %)**Battery Info+PAYVER + PAYLOAD COUNT + PAYLOAD# + DATA**
465 +Battery Info+PAYVER + PAYLOAD COUNT + PAYLOAD# + DATA
489 489  
490 490  1. Battery Info (2 bytes): Battery voltage
491 491  1. PAYVER (1 byte): Defined by AT+PAYVER
492 492  1. PAYLOAD COUNT (1 byte): Total how many uplinks of this sampling.
493 493  1. PAYLOAD# (1 byte): Number of this uplink. (from 0,1,2,3…,to PAYLOAD COUNT)
494 -1. DATA: Valid value: max 6 bytes(US915 version here, Notice*!) for each uplink so each uplink <= 11 bytes. For the last uplink, DATA will might less than 6 bytes
471 +1. DATA: Valid value: max 6 bytes(US915 version here, [[Notice*!>>path:#max_byte]]) for each uplink so each uplink <= 11 bytes. For the last uplink, DATA will might less than 6 bytes
495 495  
496 -[[image:1653269916228-732.png||height="433" width="711"]]
473 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
497 497  
498 498  
499 499  So totally there will be 3 uplinks for this sampling, each uplink includes 6 bytes DATA
500 500  
501 -DATA1=RETURN1 Valid Value = (% style="background-color:green; color:white" %)20 20 0a 33 90 41
478 +DATA1=RETURN1 Valid Value = 20 20 0a 33 90 41
502 502  
503 -DATA2=1^^st^^ ~~ 6^^th^^ byte of Valid value of RETURN10=(% style="background-color:green; color:white" %) 02 aa 05 81 0a 20
480 +DATA2=1^^st^^ ~~ 6^^th^^ byte of Valid value of RETURN10= 02 aa 05 81 0a 20
504 504  
505 -DATA3=7^^th^^ ~~ 11^^th^^ bytes of Valid value of RETURN10 = (% style="background-color:green; color:white" %)20 20 20 2d 30
482 +DATA3=7^^th^^ ~~ 11^^th^^ bytes of Valid value of RETURN10 = 20 20 20 2d 30
506 506  
484 +
485 +
507 507  Below are the uplink payloads:
508 508  
509 -[[image:1653270130359-810.png]]
488 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image021.png]]
510 510  
511 511  
512 -(% style="color:red" %)**Notice: the Max bytes is according to the max support bytes in different Frequency Bands for lowest SF. As below:**
491 +Notice: the Max bytes is according to the max support bytes in different Frequency Bands for lowest SF. As below:
513 513  
514 514   ~* For AU915/AS923 bands, if UplinkDwell time=0, max 51 bytes for each uplink ( so 51 -5 = 46 max valid date)
515 515  
... ... @@ -519,8 +519,12 @@
519 519  
520 520   ~* For all other bands: max 51 bytes for each uplink  ( so 51 -5 = 46 max valid date).
521 521  
522 -=== 3.3.5 Uplink on demand ===
523 523  
502 +
503 +1.
504 +11.
505 +111. Uplink on demand
506 +
524 524  Except uplink periodically, RS485-BL is able to uplink on demand. The server sends downlink command to RS485-BL and RS485 will uplink data base on the command.
525 525  
526 526  Downlink control command:
1652954654347-831.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -138.7 KB
Content
1653266934636-343.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -176.5 KB
Content
1653267211009-519.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -138.7 KB
Content
1653268091319-405.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -399.3 KB
Content
1653268155545-638.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -113.7 KB
Content
1653268227651-549.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -1.3 MB
Content
1653269403619-508.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -27.8 KB
Content
1653269438444-278.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -26.6 KB
Content
1653269551753-223.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -138.7 KB
Content
1653269568276-930.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -131.4 KB
Content
1653269593172-426.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -142.6 KB
Content
1653269618463-608.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -27.7 KB
Content
1653269759169-150.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -294.0 KB
Content
1653269916228-732.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -143.3 KB
Content
1653270130359-810.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -197.8 KB
Content