Changes for page RS485-LN – RS485 to LoRaWAN Converter User Manual
Last modified by Xiaoling on 2025/04/23 15:56
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 15 removed)
- 1652954654347-831.png
- 1653266934636-343.png
- 1653267211009-519.png
- 1653268091319-405.png
- 1653268155545-638.png
- 1653268227651-549.png
- 1653269403619-508.png
- 1653269438444-278.png
- 1653269551753-223.png
- 1653269568276-930.png
- 1653269593172-426.png
- 1653269618463-608.png
- 1653269759169-150.png
- 1653269916228-732.png
- 1653270130359-810.png
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 -RS485-L N– RS485 to LoRaWAN Converter1 +RS485-BL – Waterproof RS485 to LoRaWAN Converter - Content
-
... ... @@ -1,11 +1,12 @@ 1 1 (% style="text-align:center" %) 2 -[[image:165 3266934636-343.png||height="385" width="385"]]2 +[[image:1652947681187-144.png||height="385" width="385"]] 3 3 4 4 5 5 6 -**RS485-LN – RS485 to LoRaWAN Converter User Manual** 7 7 7 +**RS485-BL – Waterproof RS485 to LoRaWAN Converter User Manual** 8 8 9 + 9 9 **Table of Contents:** 10 10 11 11 ... ... @@ -14,30 +14,42 @@ 14 14 15 15 = 1.Introduction = 16 16 17 -== 1.1 What is RS485-L NRS485 to LoRaWAN Converter ==18 +== 1.1 What is RS485-BL RS485 to LoRaWAN Converter == 18 18 19 19 ((( 21 + 22 +))) 23 + 20 20 ((( 21 -The Dragino RS485-L Nis a **RS485 to LoRaWAN Converter**.It converts the RS485 signalintoLoRaWANwirelesssignalwhich simplify theIoTinstallationandreducetheinstallation/maintainingcost.25 +The Dragino RS485-BL is a **RS485 / UART to LoRaWAN Converter** for Internet of Things solutions. User can connect RS485 or UART sensor to RS485-BL converter, and configure RS485-BL to periodically read sensor data and upload via LoRaWAN network to IoT server. 22 22 ))) 23 23 24 24 ((( 25 -RS485-L Nallows user to **monitor/controlRS485devices**andreachextremelylongranges.Itprovidesultra-longrangespread spectrum communicationandhighinterference immunitywhilstminimizing currentconsumption.It targetsprofessionalwirelesssensornetwork applicationssuch asirrigationsystems,smartmetering, smartcities,smartphonedetection, building automation, and so on.29 +RS485-BL can interface to RS485 sensor, 3.3v/5v UART sensor or interrupt sensor. RS485-BL provides **a 3.3v output** and** a 5v output** to power external sensors. Both output voltages are controllable to minimize the total system power consumption. 26 26 ))) 27 27 28 28 ((( 29 - **For data uplink**,RS485-LNsendsuser-definedcommandstoRS485devicesand getstheeturnfromtheRS485devices. RS485-LN will processthesereturnsaccording to user-definerulestoget thefinalpayload and upload to LoRaWAN server.33 +RS485-BL is IP67 **waterproof** and powered by **8500mAh Li-SOCI2 battery**, it is designed for long term use for several years. 30 30 ))) 31 31 32 32 ((( 33 -**For data downlink**, RS485-LN runs in LoRaWAN Class C. When there downlink commands from LoRaWAN server, RS485-LN will forward the commands from LoRaWAN server to RS485 devices. 37 +RS485-BL runs standard **LoRaWAN 1.0.3 in Class A**. It can reach long transfer range and easy to integrate with LoRaWAN compatible gateway and IoT server. 38 +))) 34 34 35 -**Demo Dashboard for RS485-LN** connect to two energy meters: [[https:~~/~~/app.datacake.de/dashboard/d/58844a26-378d-4c5a-aaf5-b5b5b153447a>>url:https://app.datacake.de/dashboard/d/58844a26-378d-4c5a-aaf5-b5b5b153447a]] 40 +((( 41 +For data uplink, RS485-BL sends user-defined commands to RS485 devices and gets the return from the RS485 devices. RS485-BL will process these returns data according to user-define rules to get the final payload and upload to LoRaWAN server. 36 36 ))) 43 + 44 +((( 45 +For data downlink, RS485-BL runs in LoRaWAN Class A. When there is downlink commands from LoRaWAN server, RS485-BL will forward the commands from LoRaWAN server to RS485 devices. 37 37 ))) 38 38 39 -[[image:1653267211009-519.png||height="419" width="724"]] 48 +((( 49 +Each RS485-BL pre-load with a set of unique keys for LoRaWAN registration, register these keys to LoRaWAN server and it will auto connect after power on. 50 +))) 40 40 52 +[[image:1652953304999-717.png||height="424" width="733"]] 53 + 41 41 == 1.2 Specifications == 42 42 43 43 **Hardware System:** ... ... @@ -45,15 +45,19 @@ 45 45 * STM32L072CZT6 MCU 46 46 * SX1276/78 Wireless Chip 47 47 * Power Consumption (exclude RS485 device): 48 -** Idle: 32mA@12v61 +** Idle: 6uA@3.3v 49 49 50 50 * 51 -** 20dB Transmit: 65mA@12v64 +** 20dB Transmit: 130mA@3.3v 52 52 53 53 **Interface for Model:** 54 54 55 -* RS485 56 -* Power Input 7~~ 24V DC. 68 +* 1 x RS485 Interface 69 +* 1 x TTL Serial , 3.3v or 5v. 70 +* 1 x I2C Interface, 3.3v or 5v. 71 +* 1 x one wire interface 72 +* 1 x Interrupt Interface 73 +* 1 x Controllable 5V output, max 57 57 58 58 **LoRa Spec:** 59 59 ... ... @@ -62,30 +62,27 @@ 62 62 ** Band 2 (LF): 410 ~~ 528 Mhz 63 63 * 168 dB maximum link budget. 64 64 * +20 dBm - 100 mW constant RF output vs. 65 -* +14 dBm high efficiency PA. 66 66 * Programmable bit rate up to 300 kbps. 67 67 * High sensitivity: down to -148 dBm. 68 68 * Bullet-proof front end: IIP3 = -12.5 dBm. 69 69 * Excellent blocking immunity. 70 -* Low RX current of 10.3 mA, 200 nA register retention. 71 71 * Fully integrated synthesizer with a resolution of 61 Hz. 72 -* FSK, GFSK, MSK, GMSK,LoRaTMand OOKmodulation.87 +* LoRa modulation. 73 73 * Built-in bit synchronizer for clock recovery. 74 74 * Preamble detection. 75 75 * 127 dB Dynamic Range RSSI. 76 -* Automatic RF Sense and CAD with ultra-fast AFC. 77 -* Packet engine up to 256 bytes with CRC. 91 +* Automatic RF Sense and CAD with ultra-fast AFC. 78 78 79 79 == 1.3 Features == 80 80 81 -* LoRaWAN Class A & Class C protocol (default Class C)95 +* LoRaWAN Class A & Class C protocol (default Class A) 82 82 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865/RU864 83 83 * AT Commands to change parameters 84 -* Remote configure parameters via LoRa Downlink 98 +* Remote configure parameters via LoRaWAN Downlink 85 85 * Firmware upgradable via program port 86 86 * Support multiply RS485 devices by flexible rules 87 87 * Support Modbus protocol 88 -* Support Interrupt uplink (Since hardware version v1.2)102 +* Support Interrupt uplink 89 89 90 90 == 1.4 Applications == 91 91 ... ... @@ -98,39 +98,53 @@ 98 98 99 99 == 1.5 Firmware Change log == 100 100 101 -[[RS485-L NImage files – Download link and Change log>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/]]115 +[[RS485-BL Image files – Download link and Change log>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/RS485-BL/Firmware/||style="background-color: rgb(255, 255, 255);"]] 102 102 103 103 == 1.6 Hardware Change log == 104 104 105 105 ((( 120 +v1.4 121 +))) 122 + 106 106 ((( 107 -v1.2: Add External Interrupt Pin. 124 +~1. Change Power IC to TPS22916 125 +))) 108 108 109 -v1.0: Release 127 + 128 +((( 129 +v1.3 110 110 ))) 131 + 132 +((( 133 +~1. Change JP3 from KF350-8P to KF350-11P, Add one extra interface for I2C and one extra interface for one-wire 111 111 ))) 112 112 113 -= 2. Power ON Device = 114 114 115 115 ((( 116 -The RS485-LN can be powered by 7 ~~ 24V DC power source. Connection as below 138 +v1.2 139 +))) 117 117 118 -* Power Source VIN to RS485-LN VIN+ 119 -* Power Source GND to RS485-LN VIN- 120 - 121 121 ((( 122 - Oncethere ispower,theRS485-LN will beon.142 +Release version 123 123 ))) 124 124 125 -[[image:1653268091319-405.png]] 145 += 2. Pin mapping and Power ON Device = 146 + 147 +((( 148 +The RS485-BL is powered on by 8500mAh battery. To save battery life, RS485-BL is shipped with power off. User can put the jumper to power on RS485-BL. 126 126 ))) 127 127 151 +[[image:1652953055962-143.png||height="387" width="728"]] 152 + 153 + 154 +The Left TXD and RXD are TTL interface for external sensor. TTL level is controlled by 3.3/5v Jumper. 155 + 128 128 = 3. Operation Mode = 129 129 130 130 == 3.1 How it works? == 131 131 132 132 ((( 133 -The RS485-L Nis configured as LoRaWAN OTAA ClassCmode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the RS485-LN. It will auto join the network via OTAA.161 +The RS485-BL is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the RS485-BL. It will auto join the network via OTAA. 134 134 ))) 135 135 136 136 == 3.2 Example to join LoRaWAN network == ... ... @@ -137,43 +137,28 @@ 137 137 138 138 Here shows an example for how to join the TTN V3 Network. Below is the network structure, we use [[LG308>>url:http://www.dragino.com/products/lora-lorawan-gateway/item/140-lg308.html]] as LoRaWAN gateway here. 139 139 140 -[[image:165 3268155545-638.png||height="334" width="724"]]168 +[[image:1652953414711-647.png||height="337" width="723"]] 141 141 142 -((( 143 -The RS485-LN in this example connected to two RS485 devices for demonstration, user can connect to other RS485 devices via the same method. The connection is as below: 170 +The RS485-BL in this example connected to two RS485 devices for demonstration, user can connect to other RS485 devices via the same method. 144 144 145 - 485A+and485B-ofthe sensor areconnected toRS485A andRA485BofRS485-LNrespectively.172 +The LG308 is already set to connect to [[TTN V3 network >>url:https://www.thethingsnetwork.org/]]. So what we need to now is only configure the TTN V3: 146 146 147 - [[image:1653268227651-549.png||height="592"width="720"]]174 +**Step 1**: Create a device in TTN V3 with the OTAA keys from RS485-BL. 148 148 149 -((( 150 -The LG308 is already set to connect to [[TTN V3 network >>path:eu1.cloud.thethings.network/]]. So what we need to now is only configure the TTN V3: 151 -))) 176 +Each RS485-BL is shipped with a sticker with unique device EUI: 152 152 153 -((( 154 -**Step 1**: Create a device in TTN V3 with the OTAA keys from RS485-LN. 155 -))) 156 - 157 -((( 158 -Each RS485-LN is shipped with a sticker with unique device EUI: 159 -))) 160 -))) 161 - 162 162 [[image:1652953462722-299.png]] 163 163 164 -((( 165 -((( 166 166 User can enter this key in their LoRaWAN Server portal. Below is TTN V3 screen shot: 167 -))) 168 168 169 -((( 170 170 Add APP EUI in the application. 171 -))) 172 -))) 173 173 184 + 185 + 186 + 174 174 [[image:image-20220519174512-1.png]] 175 175 176 -[[image:image-20220519174512-2.png||height="32 3" width="720"]]189 +[[image:image-20220519174512-2.png||height="328" width="731"]] 177 177 178 178 [[image:image-20220519174512-3.png||height="556" width="724"]] 179 179 ... ... @@ -189,176 +189,147 @@ 189 189 190 190 191 191 ((( 192 -**Step 2**: Power on RS485-L Nand it will auto join to the TTN V3 network. After join success, it will start to upload message to TTN V3 and user can see in the panel.205 +**Step 2**: Power on RS485-BL and it will auto join to the TTN V3 network. After join success, it will start to upload message to TTN V3 and user can see in the panel. 193 193 ))) 194 194 195 195 [[image:1652953568895-172.png||height="232" width="724"]] 196 196 197 -== 3.3 Configure Commands to read data == 198 198 199 -((( 200 -((( 201 -There are plenty of RS485 devices in the market and each device has different command to read the valid data. To support these devices in flexible, RS485-LN supports flexible command set. User can use [[AT Commands>>path:#AT_COMMAND]] or LoRaWAN Downlink Command to configure what commands RS485-LN should send for each sampling and how to handle the return from RS485 devices. 202 -))) 203 203 204 -((( 205 -(% style="color:red" %)Note: below description and commands are for firmware version >v1.1, if you have firmware version v1.0. Please check the [[user manual v1.0>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/&file=RS485-LN_UserManual_v1.0.1.pdf]] or upgrade the firmware to v1.1 206 -))) 207 -))) 208 208 209 -=== 3.3.1 onfigure UART settings for RS485 or TTL communication === 213 +1. 214 +11. Configure Commands to read data 210 210 211 -T ouse RS485-LNtoread datafromRS485sensors,connectthe RS485-LNA/B tracestothe sensors.Anduserneedtomakesure RS485-LNuse thematch UARTsettingto accessthesensors. TherelatedcommandsforUART settingsare:216 +There are plenty of RS485 and TTL level devices in the market and each device has different command to read the valid data. To support these devices in flexible, RS485-BL supports flexible command set. User can use [[AT Commands or LoRaWAN Downlink>>path:#AT_COMMAND]] Command to configure how RS485-BL should read the sensor and how to handle the return from RS485 or TTL sensors. 212 212 213 -(% border="1" style="background-color:#ffffcc; color:green; width:795px" %) 214 -|((( 215 -**AT Commands** 216 -)))|(% style="width:285px" %)((( 217 -**Description** 218 -)))|(% style="width:347px" %)((( 219 -**Example** 220 -))) 221 -|((( 222 -AT+BAUDR 223 -)))|(% style="width:285px" %)((( 224 -Set the baud rate (for RS485 connection). Default Value is: 9600. 225 -)))|(% style="width:347px" %)((( 226 -((( 218 + 219 +1. 220 +11. 221 +111. Configure UART settings for RS485 or TTL communication 222 + 223 +RS485-BL can connect to either RS485 sensors or TTL sensor. User need to specify what type of sensor need to connect. 224 + 225 +1. RS485-MODBUS mode: 226 + 227 +AT+MOD=1 ~/~/ Support RS485-MODBUS type sensors. User can connect multiply RS485 , Modbus sensors to the A / B pins. 228 + 229 + 230 +1. TTL mode: 231 + 232 +AT+MOD=2 ~/~/ Support TTL Level sensors, User can connect one TTL Sensor to the TXD/RXD/GND pins. 233 + 234 + 235 +RS485-BL default UART settings is **9600, no parity, stop bit 1**. If the sensor has a different settings, user can change the RS485-BL setting to match. 236 + 237 + 238 +|**AT Commands**|**Description**|**Example** 239 +|AT+BAUDR|Set the baud rate (for RS485 connection). Default Value is: 9600.|((( 227 227 AT+BAUDR=9600 228 -))) 229 229 230 -((( 231 231 Options: (1200,2400,4800,14400,19200,115200) 232 232 ))) 233 -))) 234 -|((( 235 -AT+PARITY 236 -)))|(% style="width:285px" %)((( 244 +|AT+PARITY|((( 237 237 Set UART parity (for RS485 connection) 238 -)))|(% style="width:347px" %)((( 239 -((( 246 + 247 +Default Value is: no parity. 248 +)))|((( 240 240 AT+PARITY=0 241 -))) 242 242 243 -((( 244 244 Option: 0: no parity, 1: odd parity, 2: even parity 245 245 ))) 246 -))) 247 -|((( 248 -AT+STOPBIT 249 -)))|(% style="width:285px" %)((( 250 -((( 253 +|AT+STOPBIT|((( 251 251 Set serial stopbit (for RS485 connection) 252 -))) 253 253 254 -((( 255 - 256 -))) 257 -)))|(% style="width:347px" %)((( 258 -((( 256 +Default Value is: 1bit. 257 +)))|((( 259 259 AT+STOPBIT=0 for 1bit 260 -))) 261 261 262 -((( 263 263 AT+STOPBIT=1 for 1.5 bit 264 -))) 265 265 266 -((( 267 267 AT+STOPBIT=2 for 2 bits 268 268 ))) 269 -))) 270 270 271 -=== 3.3.2 Configure sensors === 272 272 273 -((( 274 -((( 275 -Some sensors might need to configure before normal operation. User can configure such sensor via PC and RS485 adapter or through RS485-LN AT Commands (% style="color:#4f81bd" %)**AT+CFGDEV**(%%). Each (% style="color:#4f81bd" %)**AT+CFGDEV **(%%)equals to send a RS485 command to sensors. This command will only run when user input it and won’t run during each sampling. 276 -))) 277 -))) 278 278 279 -(% border="1" style="background-color:#ffffcc; color:green; width:806px" %) 280 -|**AT Commands**|(% style="width:418px" %)**Description**|(% style="width:256px" %)**Example** 281 -|AT+CFGDEV|(% style="width:418px" %)((( 267 + 268 +1. 269 +11. 270 +111. Configure sensors 271 + 272 +Some sensors might need to configure before normal operation. User can configure such sensor via PC or through RS485-BL AT Commands AT+CFGDEV. 273 + 274 + 275 +When user issue an AT+CFGDEV command, Each AT+CFGDEV equals to send a command to the RS485 or TTL sensors. This command will only run when user input it and won’t run during each sampling. 276 + 277 +|**AT Commands**|**Description**|**Example** 278 +|AT+CFGDEV|((( 282 282 This command is used to configure the RS485/TTL devices; they won’t be used during sampling. 283 283 284 -AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx, 281 +AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m 285 285 286 -m m: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command287 -)))| (% style="width:256px" %)AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m283 +m: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command 284 +)))|AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m 288 288 289 - ===3.3.3 Configurereadcommandsforeach sampling ===286 +Detail of AT+CFGDEV command see [[AT+CFGDEV detail>>path:#AT_CFGDEV]]. 290 290 291 -((( 288 + 289 + 290 + 291 + 292 +1. 293 +11. 294 +111. Configure read commands for each sampling 295 + 292 292 RS485-BL is a battery powered device; it will sleep most of time. And wake up on each period and read RS485 / TTL sensor data and uplink. 293 -))) 294 294 295 - (((298 + 296 296 During each sampling, we need to confirm what commands we need to send to the sensors to read data. After the RS485/TTL sensors send back the value, it normally includes some bytes and we only need a few from them for a shorten payload. 297 -))) 298 298 299 - (((301 + 300 300 To save the LoRaWAN network bandwidth, we might need to read data from different sensors and combine their valid value into a short payload. 301 -))) 302 302 303 - (((304 + 304 304 This section describes how to achieve above goals. 305 -))) 306 306 307 - (((307 + 308 308 During each sampling, the RS485-BL can support 15 commands to read sensors. And combine the return to one or several uplink payloads. 309 -))) 310 310 311 - (((310 + 312 312 **Command from RS485-BL to Sensor:** 313 -))) 314 314 315 -((( 316 316 RS485-BL can send out pre-set max 15 strings via **AT+COMMAD1**, **ATCOMMAND2**,…, to **AT+COMMANDF** . All commands are of same grammar. 317 -))) 318 318 319 - (((315 + 320 320 **Handle return from sensors to RS485-BL**: 321 -))) 322 322 323 -((( 324 324 After RS485-BL send out a string to sensor, RS485-BL will wait for the return from RS485 or TTL sensor. And user can specify how to handle the return, by **AT+DATACUT or AT+SEARCH commands** 325 -))) 326 326 327 -* ((( 328 -**AT+DATACUT** 329 -))) 330 330 331 -((( 321 +* **AT+DATACUT** 322 + 332 332 When the return value from sensor have fix length and we know which position the valid value we should get, we can use AT+DATACUT command. 333 -))) 334 334 335 -* ((( 336 -**AT+SEARCH** 337 -))) 338 338 339 -((( 326 +* **AT+SEARCH** 327 + 340 340 When the return value from sensor is dynamic length and we are not sure which bytes the valid data is, instead, we know what value the valid value following. We can use AT+SEARCH to search the valid value in the return string. 341 -))) 342 342 343 - (((330 + 344 344 **Define wait timeout:** 345 -))) 346 346 347 -((( 348 348 Some RS485 device might has longer delay on reply, so user can use AT+CMDDL to set the timeout for getting reply after the RS485 command is sent. For example, AT+CMDDL1=1000 to send the open time to 1000ms 349 -))) 350 350 351 - (((335 + 352 352 After we got the valid value from each RS485 commands, we need to combine them together with the command **AT+DATAUP**. 353 -))) 354 354 338 + 355 355 **Examples:** 356 356 357 357 Below are examples for the how above AT Commands works. 358 358 343 + 359 359 **AT+COMMANDx : **This command will be sent to RS485/TTL devices during each sampling, Max command length is 14 bytes. The grammar is: 360 360 361 -(% border="1" class="table-bordered" %) 362 362 |((( 363 363 **AT+COMMANDx=xx xx xx xx xx xx xx xx xx xx xx xx,m** 364 364 ... ... @@ -367,19 +367,13 @@ 367 367 **m: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command** 368 368 ))) 369 369 370 -((( 371 371 For example, if we have a RS485 sensor. The command to get sensor value is: 01 03 0B B8 00 02 46 0A. Where 01 03 0B B8 00 02 is the Modbus command to read the register 0B B8 where stored the sensor value. The 46 0A is the CRC-16/MODBUS which calculate manually. 372 -))) 373 373 374 -((( 375 375 In the RS485-BL, we should use this command AT+COMMAND1=01 03 0B B8 00 02,1 for the same. 376 -))) 377 377 378 - (((358 + 379 379 **AT+SEARCHx**: This command defines how to handle the return from AT+COMMANDx. 380 -))) 381 381 382 -(% border="1" class="table-bordered" %) 383 383 |((( 384 384 **AT+SEARCHx=aa,xx xx xx xx xx** 385 385 ... ... @@ -389,24 +389,26 @@ 389 389 390 390 ))) 391 391 392 - **Examples:**370 +Examples: 393 393 394 - ~1. For a return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49372 +1. For a return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49 395 395 396 396 If we set AT+SEARCH1=1,1E 56 34. (max 5 bytes for prefix) 397 397 398 -The valid data will be all bytes after 1E 56 34 , so it is (% style="background-color:yellow" %)**2e 30 58 5f 36 41 30 31 00 49**376 +The valid data will be all bytes after 1E 56 34 , so it is 2e 30 58 5f 36 41 30 31 00 49 399 399 400 -[[image: 1653269403619-508.png]]378 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image013.png]] 401 401 402 -2. For a return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49 403 403 381 +1. For a return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49 382 + 404 404 If we set AT+SEARCH1=2, 1E 56 34+31 00 49 405 405 406 -Device will search the bytes between 1E 56 34 and 31 00 49. So it is (% style="background-color:yellow" %)**2e 30 58 5f 36 41 30**385 +Device will search the bytes between 1E 56 34 and 31 00 49. So it is 2e 30 58 5f 36 41 30 407 407 408 -[[image: 1653269438444-278.png]]387 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image014.png]] 409 409 389 + 410 410 **AT+DATACUTx : **This command defines how to handle the return from AT+COMMANDx, max return length is 45 bytes. 411 411 412 412 |((( ... ... @@ -421,95 +421,94 @@ 421 421 422 422 * Grab bytes: 423 423 424 -[[image: 1653269551753-223.png||height="311" width="717"]]404 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image015.png]] 425 425 426 426 * Grab a section. 427 427 428 -[[image: 1653269568276-930.png||height="325" width="718"]]408 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image016.png]] 429 429 430 430 * Grab different sections. 431 431 432 -[[image: 1653269593172-426.png||height="303" width="725"]]412 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image017.png]] 433 433 434 -(% style="color:red" %)**Note:** 435 435 415 +Note: 416 + 436 436 AT+SEARCHx and AT+DATACUTx can be used together, if both commands are set, RS485-BL will first process AT+SEARCHx on the return string and get a temporary string, and then process AT+DATACUTx on this temporary string to get the final payload. In this case, AT+DATACUTx need to set to format AT+DATACUTx=0,xx,xx where the return bytes set to 0. 437 437 438 438 Example: 439 439 440 - (% style="color:red" %)AT+COMMAND1=11 01 1E D0,0421 +AT+COMMAND1=11 01 1E D0,0 441 441 442 - (% style="color:red" %)AT+SEARCH1=1,1E 56 34423 +AT+SEARCH1=1,1E 56 34 443 443 444 - (% style="color:red" %)AT+DATACUT1=0,2,1~~5425 +AT+DATACUT1=0,2,1~~5 445 445 446 - (% style="color:red" %)Return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49427 +Return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49 447 447 448 - (% style="color:red" %)String after SEARCH command: 2e 30 58 5f 36 41 30 31 00 49429 +String after SEARCH command: 2e 30 58 5f 36 41 30 31 00 49 449 449 450 - (% style="color:red" %)Valid payload after DataCUT command: 2e 30 58 5f 36431 +Valid payload after DataCUT command: 2e 30 58 5f 36 451 451 452 -[[image: 1653269618463-608.png]]433 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image018.png]] 453 453 454 -=== 3.3.4 Compose the uplink payload === 455 455 456 -((( 436 + 437 + 438 +1. 439 +11. 440 +111. Compose the uplink payload 441 + 457 457 Through AT+COMMANDx and AT+DATACUTx we got valid value from each RS485 commands, Assume these valid value are RETURN1, RETURN2, .., to RETURNx. The next step is how to compose the LoRa Uplink Payload by these RETURNs. The command is **AT+DATAUP.** 458 -))) 459 459 460 -((( 461 -(% style="color:#4f81bd" %)**Examples: AT+DATAUP=0** 462 -))) 463 463 464 -((( 465 -Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**A SIGNLE UPLINK**. 466 -))) 445 +**Examples: AT+DATAUP=0** 467 467 468 -((( 447 +Compose the uplink payload with value returns in sequence and send with **A SIGNLE UPLINK**. 448 + 469 469 Final Payload is 470 -))) 471 471 472 -((( 473 -(% style="color:#4f81bd" %)**Battery Info+PAYVER + VALID Value from RETURN1 + Valid Value from RETURN2 + … + RETURNx** 474 -))) 451 +Battery Info+PAYVER + VALID Value from RETURN1 + Valid Value from RETURN2 + … + RETURNx 475 475 476 -((( 477 477 Where PAYVER is defined by AT+PAYVER, below is an example screen shot. 478 -))) 479 479 480 -[[image: 1653269759169-150.png||height="513" width="716"]]455 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image019.png]] 481 481 482 -(% style="color:#4f81bd" %)**Examples: AT+DATAUP=1** 483 483 484 -Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**Multiply UPLINKs**. 485 485 459 +**Examples: AT+DATAUP=1** 460 + 461 +Compose the uplink payload with value returns in sequence and send with **Multiply UPLINKs**. 462 + 486 486 Final Payload is 487 487 488 - (% style="color:#4f81bd" %)**Battery Info+PAYVER + PAYLOAD COUNT + PAYLOAD# + DATA**465 +Battery Info+PAYVER + PAYLOAD COUNT + PAYLOAD# + DATA 489 489 490 490 1. Battery Info (2 bytes): Battery voltage 491 491 1. PAYVER (1 byte): Defined by AT+PAYVER 492 492 1. PAYLOAD COUNT (1 byte): Total how many uplinks of this sampling. 493 493 1. PAYLOAD# (1 byte): Number of this uplink. (from 0,1,2,3…,to PAYLOAD COUNT) 494 -1. DATA: Valid value: max 6 bytes(US915 version here, Notice*!) for each uplink so each uplink <= 11 bytes. For the last uplink, DATA will might less than 6 bytes 471 +1. DATA: Valid value: max 6 bytes(US915 version here, [[Notice*!>>path:#max_byte]]) for each uplink so each uplink <= 11 bytes. For the last uplink, DATA will might less than 6 bytes 495 495 496 -[[image: 1653269916228-732.png||height="433" width="711"]]473 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]] 497 497 498 498 499 499 So totally there will be 3 uplinks for this sampling, each uplink includes 6 bytes DATA 500 500 501 -DATA1=RETURN1 Valid Value = (% style="background-color:green; color:white" %)20 20 0a 33 90 41478 +DATA1=RETURN1 Valid Value = 20 20 0a 33 90 41 502 502 503 -DATA2=1^^st^^ ~~ 6^^th^^ byte of Valid value of RETURN10= (%style="background-color:green; color:white" %)02 aa 05 81 0a 20480 +DATA2=1^^st^^ ~~ 6^^th^^ byte of Valid value of RETURN10= 02 aa 05 81 0a 20 504 504 505 -DATA3=7^^th^^ ~~ 11^^th^^ bytes of Valid value of RETURN10 = (%style="background-color:green; color:white" %)20 20 20 2d 30482 +DATA3=7^^th^^ ~~ 11^^th^^ bytes of Valid value of RETURN10 = 20 20 20 2d 30 506 506 484 + 485 + 507 507 Below are the uplink payloads: 508 508 509 -[[image: 1653270130359-810.png]]488 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image021.png]] 510 510 511 511 512 - (% style="color:red" %)**Notice: the Max bytes is according to the max support bytes in different Frequency Bands for lowest SF. As below:**491 +Notice: the Max bytes is according to the max support bytes in different Frequency Bands for lowest SF. As below: 513 513 514 514 ~* For AU915/AS923 bands, if UplinkDwell time=0, max 51 bytes for each uplink ( so 51 -5 = 46 max valid date) 515 515 ... ... @@ -519,8 +519,12 @@ 519 519 520 520 ~* For all other bands: max 51 bytes for each uplink ( so 51 -5 = 46 max valid date). 521 521 522 -=== 3.3.5 Uplink on demand === 523 523 502 + 503 +1. 504 +11. 505 +111. Uplink on demand 506 + 524 524 Except uplink periodically, RS485-BL is able to uplink on demand. The server sends downlink command to RS485-BL and RS485 will uplink data base on the command. 525 525 526 526 Downlink control command:
- 1652954654347-831.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -138.7 KB - Content
- 1653266934636-343.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -176.5 KB - Content
- 1653267211009-519.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -138.7 KB - Content
- 1653268091319-405.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -399.3 KB - Content
- 1653268155545-638.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -113.7 KB - Content
- 1653268227651-549.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -1.3 MB - Content
- 1653269403619-508.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -27.8 KB - Content
- 1653269438444-278.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -26.6 KB - Content
- 1653269551753-223.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -138.7 KB - Content
- 1653269568276-930.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -131.4 KB - Content
- 1653269593172-426.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -142.6 KB - Content
- 1653269618463-608.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -27.7 KB - Content
- 1653269759169-150.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -294.0 KB - Content
- 1653269916228-732.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -143.3 KB - Content
- 1653270130359-810.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -197.8 KB - Content