<
From version < 32.18 >
edited by Xiaoling
on 2022/06/02 15:31
To version < 22.5 >
edited by Xiaoling
on 2022/05/23 09:15
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -18,30 +18,26 @@
18 18  
19 19  (((
20 20  (((
21 -The Dragino RS485-LN is a (% style="color:blue" %)**RS485 to LoRaWAN Converter**(%%). It converts the RS485 signal into LoRaWAN wireless signal which simplify the IoT installation and reduce the installation/maintaining cost.
21 +The Dragino RS485-LN is a RS485 to LoRaWAN Converter. It converts the RS485 signal into LoRaWAN wireless signal which simplify the IoT installation and reduce the installation/maintaining cost.
22 22  )))
23 23  
24 24  (((
25 -RS485-LN allows user to (% style="color:blue" %)**monitor / control RS485 devices**(%%) and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
25 +RS485-LN allows user to monitor / control RS485 devices and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
26 26  )))
27 27  
28 28  (((
29 -(% style="color:blue" %)**For data uplink**(%%), RS485-LN sends user-defined commands to RS485 devices and gets the return from the RS485 devices. RS485-LN will process these returns according to user-define rules to get the final payload and upload to LoRaWAN server.
29 +For data uplink, RS485-LN sends user-defined commands to RS485 devices and gets the return from the RS485 devices. RS485-LN will process these returns according to user-define rules to get the final payload and upload to LoRaWAN server.
30 30  )))
31 31  
32 32  (((
33 -(% style="color:blue" %)**For data downlink**(%%), RS485-LN runs in LoRaWAN Class C. When there downlink commands from LoRaWAN server, RS485-LN will forward the commands from LoRaWAN server to RS485 devices.
34 -
35 -(% style="color:blue" %)**Demo Dashboard for RS485-LN**(%%) connect to two energy meters: [[https:~~/~~/app.datacake.de/dashboard/d/58844a26-378d-4c5a-aaf5-b5b5b153447a>>url:https://app.datacake.de/dashboard/d/58844a26-378d-4c5a-aaf5-b5b5b153447a]]
33 +For data downlink, RS485-LN runs in LoRaWAN Class C. When there downlink commands from LoRaWAN server, RS485-LN will forward the commands from LoRaWAN server to RS485 devices.
36 36  )))
37 37  )))
38 38  
39 39  [[image:1653267211009-519.png||height="419" width="724"]]
40 40  
41 -
42 42  == 1.2 Specifications ==
43 43  
44 -
45 45  **Hardware System:**
46 46  
47 47  * STM32L072CZT6 MCU
... ... @@ -48,6 +48,8 @@
48 48  * SX1276/78 Wireless Chip 
49 49  * Power Consumption (exclude RS485 device):
50 50  ** Idle: 32mA@12v
47 +
48 +*
51 51  ** 20dB Transmit: 65mA@12v
52 52  
53 53  **Interface for Model:**
... ... @@ -76,8 +76,6 @@
76 76  * Automatic RF Sense and CAD with ultra-fast AFC.
77 77  * Packet engine up to 256 bytes with CRC.
78 78  
79 -
80 -
81 81  == 1.3 Features ==
82 82  
83 83  * LoRaWAN Class A & Class C protocol (default Class C)
... ... @@ -89,8 +89,6 @@
89 89  * Support Modbus protocol
90 90  * Support Interrupt uplink (Since hardware version v1.2)
91 91  
92 -
93 -
94 94  == 1.4 Applications ==
95 95  
96 96  * Smart Buildings & Home Automation
... ... @@ -100,13 +100,10 @@
100 100  * Smart Cities
101 101  * Smart Factory
102 102  
103 -
104 -
105 105  == 1.5 Firmware Change log ==
106 106  
107 107  [[RS485-LN Image files – Download link and Change log>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/]]
108 108  
109 -
110 110  == 1.6 Hardware Change log ==
111 111  
112 112  (((
... ... @@ -114,8 +114,6 @@
114 114  v1.2: Add External Interrupt Pin.
115 115  
116 116  v1.0: Release
117 -
118 -
119 119  )))
120 120  )))
121 121  
... ... @@ -132,8 +132,6 @@
132 132  )))
133 133  
134 134  [[image:1653268091319-405.png]]
135 -
136 -
137 137  )))
138 138  
139 139  = 3. Operation Mode =
... ... @@ -142,8 +142,6 @@
142 142  
143 143  (((
144 144  The RS485-LN is configured as LoRaWAN OTAA Class C mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the RS485-LN. It will auto join the network via OTAA.
145 -
146 -
147 147  )))
148 148  
149 149  == 3.2 Example to join LoRaWAN network ==
... ... @@ -152,15 +152,10 @@
152 152  
153 153  [[image:1653268155545-638.png||height="334" width="724"]]
154 154  
155 -
156 156  (((
157 -(((
158 158  The RS485-LN in this example connected to two RS485 devices for demonstration, user can connect to other RS485 devices via the same method. The connection is as below:
159 -)))
160 160  
161 -(((
162 162  485A+ and 485B- of the sensor are connected to RS485A and RA485B of RS485-LN respectively.
163 -)))
164 164  
165 165  [[image:1653268227651-549.png||height="592" width="720"]]
166 166  
... ... @@ -212,7 +212,6 @@
212 212  
213 213  [[image:1652953568895-172.png||height="232" width="724"]]
214 214  
215 -
216 216  == 3.3 Configure Commands to read data ==
217 217  
218 218  (((
... ... @@ -222,28 +222,36 @@
222 222  
223 223  (((
224 224  (% style="color:red" %)Note: below description and commands are for firmware version >v1.1, if you have firmware version v1.0. Please check the [[user manual v1.0>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/&file=RS485-LN_UserManual_v1.0.1.pdf]] or upgrade the firmware to v1.1
225 -
226 -
227 227  )))
228 228  )))
229 229  
230 230  === 3.3.1 onfigure UART settings for RS485 or TTL communication ===
231 231  
232 -To use RS485-LN to read data from RS485 sensors, connect the RS485-LN A/B traces to the sensors. And user need to make sure RS485-LN use the match UART setting to access the sensors. The related commands for UART settings are:
209 +RS485-BL can connect to either RS485 sensors or TTL sensor. User need to specify what type of sensor need to connect.
233 233  
234 -(% border="1" style="background-color:#ffffcc; color:green; width:782px" %)
235 -|(% style="width:128px" %)(((
211 +**~1. RS485-MODBUS mode:**
212 +
213 +AT+MOD=1 ~/~/ Support RS485-MODBUS type sensors. User can connect multiply RS485 , Modbus sensors to the A / B pins.
214 +
215 +**2. TTL mode:**
216 +
217 +AT+MOD=2 ~/~/ Support TTL Level sensors, User can connect one TTL Sensor to the TXD/RXD/GND pins.
218 +
219 +RS485-BL default UART settings is **9600, no parity, stop bit 1**. If the sensor has a different settings, user can change the RS485-BL setting to match.
220 +
221 +(% border="1" style="background-color:#ffffcc; color:green; width:795px" %)
222 +|(((
236 236  **AT Commands**
237 -)))|(% style="width:305px" %)(((
224 +)))|(% style="width:285px" %)(((
238 238  **Description**
239 -)))|(% style="width:346px" %)(((
226 +)))|(% style="width:347px" %)(((
240 240  **Example**
241 241  )))
242 -|(% style="width:128px" %)(((
229 +|(((
243 243  AT+BAUDR
244 -)))|(% style="width:305px" %)(((
231 +)))|(% style="width:285px" %)(((
245 245  Set the baud rate (for RS485 connection). Default Value is: 9600.
246 -)))|(% style="width:346px" %)(((
233 +)))|(% style="width:347px" %)(((
247 247  (((
248 248  AT+BAUDR=9600
249 249  )))
... ... @@ -252,12 +252,18 @@
252 252  Options: (1200,2400,4800,14400,19200,115200)
253 253  )))
254 254  )))
255 -|(% style="width:128px" %)(((
242 +|(((
256 256  AT+PARITY
257 -)))|(% style="width:305px" %)(((
244 +)))|(% style="width:285px" %)(((
245 +(((
258 258  Set UART parity (for RS485 connection)
259 -)))|(% style="width:346px" %)(((
247 +)))
248 +
260 260  (((
250 +Default Value is: no parity.
251 +)))
252 +)))|(% style="width:347px" %)(((
253 +(((
261 261  AT+PARITY=0
262 262  )))
263 263  
... ... @@ -265,17 +265,17 @@
265 265  Option: 0: no parity, 1: odd parity, 2: even parity
266 266  )))
267 267  )))
268 -|(% style="width:128px" %)(((
261 +|(((
269 269  AT+STOPBIT
270 -)))|(% style="width:305px" %)(((
263 +)))|(% style="width:285px" %)(((
271 271  (((
272 272  Set serial stopbit (for RS485 connection)
273 273  )))
274 274  
275 275  (((
276 -
269 +Default Value is: 1bit.
277 277  )))
278 -)))|(% style="width:346px" %)(((
271 +)))|(% style="width:347px" %)(((
279 279  (((
280 280  AT+STOPBIT=0 for 1bit
281 281  )))
... ... @@ -289,15 +289,15 @@
289 289  )))
290 290  )))
291 291  
292 -
293 -
294 294  === 3.3.2 Configure sensors ===
295 295  
296 296  (((
288 +Some sensors might need to configure before normal operation. User can configure such sensor via PC or through RS485-BL AT Commands (% style="color:#4f81bd" %)**AT+CFGDEV**.
289 +)))
290 +
297 297  (((
298 -Some sensors might need to configure before normal operation. User can configure such sensor via PC and RS485 adapter or through RS485-LN AT Commands (% style="color:#4f81bd" %)**AT+CFGDEV**(%%). Each (% style="color:#4f81bd" %)**AT+CFGDEV **(%%)equals to send a RS485 command to sensors. This command will only run when user input it and won’t run during each sampling.
292 +When user issue an (% style="color:#4f81bd" %)**AT+CFGDEV**(%%) command, Each (% style="color:#4f81bd" %)**AT+CFGDEV**(%%) equals to send a command to the RS485 or TTL sensors. This command will only run when user input it and won’t run during each sampling.
299 299  )))
300 -)))
301 301  
302 302  (% border="1" style="background-color:#ffffcc; color:green; width:806px" %)
303 303  |**AT Commands**|(% style="width:418px" %)**Description**|(% style="width:256px" %)**Example**
... ... @@ -309,8 +309,8 @@
309 309  mm: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command
310 310  )))|(% style="width:256px" %)AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m
311 311  
305 +Detail of AT+CFGDEV command see [[AT+CFGDEV detail>>path:#AT_CFGDEV]].
312 312  
313 -
314 314  === 3.3.3 Configure read commands for each sampling ===
315 315  
316 316  (((
... ... @@ -392,17 +392,11 @@
392 392  **m: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command**
393 393  )))
394 394  
395 -(((
396 396  For example, if we have a RS485 sensor. The command to get sensor value is: 01 03 0B B8 00 02 46 0A. Where 01 03 0B B8 00 02 is the Modbus command to read the register 0B B8 where stored the sensor value. The 46 0A is the CRC-16/MODBUS which calculate manually.
397 -)))
398 398  
399 -(((
400 400  In the RS485-BL, we should use this command AT+COMMAND1=01 03 0B B8 00 02,1 for the same.
401 -)))
402 402  
403 -(((
404 404  **AT+SEARCHx**: This command defines how to handle the return from AT+COMMANDx.
405 -)))
406 406  
407 407  (% border="1" class="table-bordered" %)
408 408  |(((
... ... @@ -414,24 +414,26 @@
414 414  
415 415  )))
416 416  
417 -**Examples:**
404 +Examples:
418 418  
419 -~1. For a return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
406 +1. For a return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
420 420  
421 421  If we set AT+SEARCH1=1,1E 56 34.      (max 5 bytes for prefix)
422 422  
423 -The valid data will be all bytes after 1E 56 34 , so it is (% style="background-color:yellow" %)** 2e 30 58 5f 36 41 30 31 00 49**
410 +The valid data will be all bytes after 1E 56 34 , so it is 2e 30 58 5f 36 41 30 31 00 49
424 424  
425 -[[image:1653269403619-508.png]]
412 +[[image:1652954654347-831.png]]
426 426  
427 -2. For a return string from AT+COMMAND1:  16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
428 428  
415 +1. For a return string from AT+COMMAND1:  16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
416 +
429 429  If we set AT+SEARCH1=2, 1E 56 34+31 00 49
430 430  
431 -Device will search the bytes between 1E 56 34 and 31 00 49. So it is (% style="background-color:yellow" %)** 2e 30 58 5f 36 41 30**
419 +Device will search the bytes between 1E 56 34 and 31 00 49. So it is 2e 30 58 5f 36 41 30
432 432  
433 -[[image:1653269438444-278.png]]
421 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image014.png]]
434 434  
423 +
435 435  **AT+DATACUTx : **This command defines how to handle the return from AT+COMMANDx, max return length is 45 bytes.
436 436  
437 437  |(((
... ... @@ -446,95 +446,94 @@
446 446  
447 447  * Grab bytes:
448 448  
449 -[[image:1653269551753-223.png||height="311" width="717"]]
438 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image015.png]]
450 450  
451 451  * Grab a section.
452 452  
453 -[[image:1653269568276-930.png||height="325" width="718"]]
442 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image016.png]]
454 454  
455 455  * Grab different sections.
456 456  
457 -[[image:1653269593172-426.png||height="303" width="725"]]
446 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image017.png]]
458 458  
459 -(% style="color:red" %)**Note:**
460 460  
449 +Note:
450 +
461 461  AT+SEARCHx and AT+DATACUTx can be used together, if both commands are set, RS485-BL will first process AT+SEARCHx on the return string and get a temporary string, and then process AT+DATACUTx on this temporary string to get the final payload. In this case, AT+DATACUTx need to set to format AT+DATACUTx=0,xx,xx where the return bytes set to 0.
462 462  
463 463  Example:
464 464  
465 -(% style="color:red" %)AT+COMMAND1=11 01 1E D0,0
455 +AT+COMMAND1=11 01 1E D0,0
466 466  
467 -(% style="color:red" %)AT+SEARCH1=1,1E 56 34
457 +AT+SEARCH1=1,1E 56 34
468 468  
469 -(% style="color:red" %)AT+DATACUT1=0,2,1~~5
459 +AT+DATACUT1=0,2,1~~5
470 470  
471 -(% style="color:red" %)Return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
461 +Return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
472 472  
473 -(% style="color:red" %)String after SEARCH command: 2e 30 58 5f 36 41 30 31 00 49
463 +String after SEARCH command: 2e 30 58 5f 36 41 30 31 00 49
474 474  
475 -(% style="color:red" %)Valid payload after DataCUT command: 2e 30 58 5f 36
465 +Valid payload after DataCUT command: 2e 30 58 5f 36
476 476  
477 -[[image:1653269618463-608.png]]
467 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image018.png]]
478 478  
479 -=== 3.3.4 Compose the uplink payload ===
480 480  
481 -(((
470 +
471 +
472 +1.
473 +11.
474 +111. Compose the uplink payload
475 +
482 482  Through AT+COMMANDx and AT+DATACUTx we got valid value from each RS485 commands, Assume these valid value are RETURN1, RETURN2, .., to RETURNx. The next step is how to compose the LoRa Uplink Payload by these RETURNs. The command is **AT+DATAUP.**
483 -)))
484 484  
485 -(((
486 -(% style="color:#4f81bd" %)**Examples: AT+DATAUP=0**
487 -)))
488 488  
489 -(((
490 -Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**A SIGNLE UPLINK**.
491 -)))
479 +**Examples: AT+DATAUP=0**
492 492  
493 -(((
481 +Compose the uplink payload with value returns in sequence and send with **A SIGNLE UPLINK**.
482 +
494 494  Final Payload is
495 -)))
496 496  
497 -(((
498 -(% style="color:#4f81bd" %)**Battery Info+PAYVER + VALID Value from RETURN1 + Valid Value from RETURN2 + … + RETURNx**
499 -)))
485 +Battery Info+PAYVER + VALID Value from RETURN1 + Valid Value from RETURN2 + … + RETURNx
500 500  
501 -(((
502 502  Where PAYVER is defined by AT+PAYVER, below is an example screen shot.
503 -)))
504 504  
505 -[[image:1653269759169-150.png||height="513" width="716"]]
489 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image019.png]]
506 506  
507 -(% style="color:#4f81bd" %)**Examples: AT+DATAUP=1**
508 508  
509 -Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**Multiply UPLINKs**.
510 510  
493 +**Examples: AT+DATAUP=1**
494 +
495 +Compose the uplink payload with value returns in sequence and send with **Multiply UPLINKs**.
496 +
511 511  Final Payload is
512 512  
513 -(% style="color:#4f81bd" %)**Battery Info+PAYVER + PAYLOAD COUNT + PAYLOAD# + DATA**
499 +Battery Info+PAYVER + PAYLOAD COUNT + PAYLOAD# + DATA
514 514  
515 515  1. Battery Info (2 bytes): Battery voltage
516 516  1. PAYVER (1 byte): Defined by AT+PAYVER
517 517  1. PAYLOAD COUNT (1 byte): Total how many uplinks of this sampling.
518 518  1. PAYLOAD# (1 byte): Number of this uplink. (from 0,1,2,3…,to PAYLOAD COUNT)
519 -1. DATA: Valid value: max 6 bytes(US915 version here, Notice*!) for each uplink so each uplink <= 11 bytes. For the last uplink, DATA will might less than 6 bytes
505 +1. DATA: Valid value: max 6 bytes(US915 version here, [[Notice*!>>path:#max_byte]]) for each uplink so each uplink <= 11 bytes. For the last uplink, DATA will might less than 6 bytes
520 520  
521 -[[image:1653269916228-732.png||height="433" width="711"]]
507 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
522 522  
523 523  
524 524  So totally there will be 3 uplinks for this sampling, each uplink includes 6 bytes DATA
525 525  
526 -DATA1=RETURN1 Valid Value = (% style="background-color:green; color:white" %)20 20 0a 33 90 41
512 +DATA1=RETURN1 Valid Value = 20 20 0a 33 90 41
527 527  
528 -DATA2=1^^st^^ ~~ 6^^th^^ byte of Valid value of RETURN10=(% style="background-color:green; color:white" %) 02 aa 05 81 0a 20
514 +DATA2=1^^st^^ ~~ 6^^th^^ byte of Valid value of RETURN10= 02 aa 05 81 0a 20
529 529  
530 -DATA3=7^^th^^ ~~ 11^^th^^ bytes of Valid value of RETURN10 = (% style="background-color:green; color:white" %)20 20 20 2d 30
516 +DATA3=7^^th^^ ~~ 11^^th^^ bytes of Valid value of RETURN10 = 20 20 20 2d 30
531 531  
518 +
519 +
532 532  Below are the uplink payloads:
533 533  
534 -[[image:1653270130359-810.png]]
522 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image021.png]]
535 535  
536 536  
537 -(% style="color:red" %)**Notice: the Max bytes is according to the max support bytes in different Frequency Bands for lowest SF. As below:**
525 +Notice: the Max bytes is according to the max support bytes in different Frequency Bands for lowest SF. As below:
538 538  
539 539   ~* For AU915/AS923 bands, if UplinkDwell time=0, max 51 bytes for each uplink ( so 51 -5 = 46 max valid date)
540 540  
... ... @@ -544,8 +544,12 @@
544 544  
545 545   ~* For all other bands: max 51 bytes for each uplink  ( so 51 -5 = 46 max valid date).
546 546  
547 -=== 3.3.5 Uplink on demand ===
548 548  
536 +
537 +1.
538 +11.
539 +111. Uplink on demand
540 +
549 549  Except uplink periodically, RS485-BL is able to uplink on demand. The server sends downlink command to RS485-BL and RS485 will uplink data base on the command.
550 550  
551 551  Downlink control command:
... ... @@ -556,8 +556,8 @@
556 556  
557 557  
558 558  
559 -1.
560 -11.
551 +1.
552 +11.
561 561  111. Uplink on Interrupt
562 562  
563 563  Put the interrupt sensor between 3.3v_out and GPIO ext.[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image022.png]]
... ... @@ -571,7 +571,7 @@
571 571  AT+INTMOD=3  Interrupt trigger by rising edge.
572 572  
573 573  
574 -1.
566 +1.
575 575  11. Uplink Payload
576 576  
577 577  |**Size(bytes)**|**2**|**1**|**Length depends on the return from the commands**
... ... @@ -633,15 +633,15 @@
633 633  
634 634  * **Sensor Related Commands**: These commands are special designed for RS485-BL.  User can see these commands below:
635 635  
636 -1.
637 -11.
628 +1.
629 +11.
638 638  111. Common Commands:
639 639  
640 640  They should be available for each of Dragino Sensors, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: [[http:~~/~~/wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands>>url:http://wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands]]
641 641  
642 642  
643 -1.
644 -11.
635 +1.
636 +11.
645 645  111. Sensor related commands:
646 646  
647 647  ==== Choose Device Type (RS485 or TTL) ====
... ... @@ -947,13 +947,13 @@
947 947  
948 948  
949 949  
950 -1.
942 +1.
951 951  11. Buttons
952 952  
953 953  |**Button**|**Feature**
954 954  |**RST**|Reboot RS485-BL
955 955  
956 -1.
948 +1.
957 957  11. +3V3 Output
958 958  
959 959  RS485-BL has a Controllable +3V3 output, user can use this output to power external sensor.
... ... @@ -971,7 +971,7 @@
971 971  By default, the AT+3V3T=0. This is a special case, means the +3V3 output is always on at any time
972 972  
973 973  
974 -1.
966 +1.
975 975  11. +5V Output
976 976  
977 977  RS485-BL has a Controllable +5V output, user can use this output to power external sensor.
... ... @@ -991,13 +991,13 @@
991 991  
992 992  
993 993  
994 -1.
986 +1.
995 995  11. LEDs
996 996  
997 997  |**LEDs**|**Feature**
998 998  |**LED1**|Blink when device transmit a packet.
999 999  
1000 -1.
992 +1.
1001 1001  11. Switch Jumper
1002 1002  
1003 1003  |**Switch Jumper**|**Feature**
... ... @@ -1043,7 +1043,7 @@
1043 1043  
1044 1044  
1045 1045  
1046 -1.
1038 +1.
1047 1047  11. Common AT Command Sequence
1048 1048  111. Multi-channel ABP mode (Use with SX1301/LG308)
1049 1049  
... ... @@ -1062,8 +1062,8 @@
1062 1062  
1063 1063  ATZ
1064 1064  
1065 -1.
1066 -11.
1057 +1.
1058 +11.
1067 1067  111. Single-channel ABP mode (Use with LG01/LG02)
1068 1068  
1069 1069  AT+FDR   Reset Parameters to Factory Default, Keys Reserve
... ... @@ -1138,7 +1138,7 @@
1138 1138  [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image035.png]] [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image036.png]]
1139 1139  
1140 1140  
1141 -1.
1133 +1.
1142 1142  11. How to change the LoRa Frequency Bands/Region?
1143 1143  
1144 1144  User can follow the introduction for [[how to upgrade image>>path:#upgrade_image]]. When download the images, choose the required image file for download.
... ... @@ -1145,7 +1145,7 @@
1145 1145  
1146 1146  
1147 1147  
1148 -1.
1140 +1.
1149 1149  11. How many RS485-Slave can RS485-BL connects?
1150 1150  
1151 1151  The RS485-BL can support max 32 RS485 devices. Each uplink command of RS485-BL can support max 16 different RS485 command. So RS485-BL can support max 16 RS485 devices pre-program in the device for uplink. For other devices no pre-program, user can use the [[downlink message (type code 0xA8) to poll their info>>path:#downlink_A8]].
... ... @@ -1162,7 +1162,7 @@
1162 1162  
1163 1163  
1164 1164  
1165 -1.
1157 +1.
1166 1166  11. Why I can’t join TTN V3 in US915 /AU915 bands?
1167 1167  
1168 1168  It might about the channels mapping. Please see for detail.
1653269403619-508.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -27.8 KB
Content
1653269438444-278.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -26.6 KB
Content
1653269551753-223.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -138.7 KB
Content
1653269568276-930.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -131.4 KB
Content
1653269593172-426.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -142.6 KB
Content
1653269618463-608.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -27.7 KB
Content
1653269759169-150.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -294.0 KB
Content
1653269916228-732.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -143.3 KB
Content
1653270130359-810.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -197.8 KB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0