Changes for page RS485-LN – RS485 to LoRaWAN Converter User Manual
Last modified by Karry Zhuang on 2025/03/06 16:34
Summary
-
Page properties (1 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 1 removed)
Details
- Page properties
-
- Content
-
... ... @@ -18,30 +18,26 @@ 18 18 19 19 ((( 20 20 ((( 21 -The Dragino RS485-LN is a (% style="color:blue" %)**RS485 to LoRaWAN Converter**(%%). It converts the RS485 signal into LoRaWAN wireless signal which simplify the IoT installation and reduce the installation/maintaining cost.21 +The Dragino RS485-LN is a RS485 to LoRaWAN Converter. It converts the RS485 signal into LoRaWAN wireless signal which simplify the IoT installation and reduce the installation/maintaining cost. 22 22 ))) 23 23 24 24 ((( 25 -RS485-LN allows user to (% style="color:blue" %)**monitor / control RS485 devices**(%%)and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.25 +RS485-LN allows user to monitor / control RS485 devices and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on. 26 26 ))) 27 27 28 28 ((( 29 - (% style="color:blue" %)**For data uplink**(%%), RS485-LN sends user-defined commands to RS485 devices and gets the return from the RS485 devices. RS485-LN will process these returns according to user-define rules to get the final payload and upload to LoRaWAN server.29 +For data uplink, RS485-LN sends user-defined commands to RS485 devices and gets the return from the RS485 devices. RS485-LN will process these returns according to user-define rules to get the final payload and upload to LoRaWAN server. 30 30 ))) 31 31 32 32 ((( 33 -(% style="color:blue" %)**For data downlink**(%%), RS485-LN runs in LoRaWAN Class C. When there downlink commands from LoRaWAN server, RS485-LN will forward the commands from LoRaWAN server to RS485 devices. 34 - 35 -(% style="color:blue" %)**Demo Dashboard for RS485-LN**(%%) connect to two energy meters: [[https:~~/~~/app.datacake.de/dashboard/d/58844a26-378d-4c5a-aaf5-b5b5b153447a>>url:https://app.datacake.de/dashboard/d/58844a26-378d-4c5a-aaf5-b5b5b153447a]] 33 +For data downlink, RS485-LN runs in LoRaWAN Class C. When there downlink commands from LoRaWAN server, RS485-LN will forward the commands from LoRaWAN server to RS485 devices. 36 36 ))) 37 37 ))) 38 38 39 39 [[image:1653267211009-519.png||height="419" width="724"]] 40 40 41 - 42 42 == 1.2 Specifications == 43 43 44 - 45 45 **Hardware System:** 46 46 47 47 * STM32L072CZT6 MCU ... ... @@ -48,6 +48,8 @@ 48 48 * SX1276/78 Wireless Chip 49 49 * Power Consumption (exclude RS485 device): 50 50 ** Idle: 32mA@12v 47 + 48 +* 51 51 ** 20dB Transmit: 65mA@12v 52 52 53 53 **Interface for Model:** ... ... @@ -76,8 +76,6 @@ 76 76 * Automatic RF Sense and CAD with ultra-fast AFC. 77 77 * Packet engine up to 256 bytes with CRC. 78 78 79 - 80 - 81 81 == 1.3 Features == 82 82 83 83 * LoRaWAN Class A & Class C protocol (default Class C) ... ... @@ -89,8 +89,6 @@ 89 89 * Support Modbus protocol 90 90 * Support Interrupt uplink (Since hardware version v1.2) 91 91 92 - 93 - 94 94 == 1.4 Applications == 95 95 96 96 * Smart Buildings & Home Automation ... ... @@ -100,13 +100,10 @@ 100 100 * Smart Cities 101 101 * Smart Factory 102 102 103 - 104 - 105 105 == 1.5 Firmware Change log == 106 106 107 107 [[RS485-LN Image files – Download link and Change log>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/]] 108 108 109 - 110 110 == 1.6 Hardware Change log == 111 111 112 112 ((( ... ... @@ -114,8 +114,6 @@ 114 114 v1.2: Add External Interrupt Pin. 115 115 116 116 v1.0: Release 117 - 118 - 119 119 ))) 120 120 ))) 121 121 ... ... @@ -132,8 +132,6 @@ 132 132 ))) 133 133 134 134 [[image:1653268091319-405.png]] 135 - 136 - 137 137 ))) 138 138 139 139 = 3. Operation Mode = ... ... @@ -142,8 +142,6 @@ 142 142 143 143 ((( 144 144 The RS485-LN is configured as LoRaWAN OTAA Class C mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the RS485-LN. It will auto join the network via OTAA. 145 - 146 - 147 147 ))) 148 148 149 149 == 3.2 Example to join LoRaWAN network == ... ... @@ -152,15 +152,10 @@ 152 152 153 153 [[image:1653268155545-638.png||height="334" width="724"]] 154 154 155 - 156 156 ((( 157 -((( 158 158 The RS485-LN in this example connected to two RS485 devices for demonstration, user can connect to other RS485 devices via the same method. The connection is as below: 159 -))) 160 160 161 -((( 162 162 485A+ and 485B- of the sensor are connected to RS485A and RA485B of RS485-LN respectively. 163 -))) 164 164 165 165 [[image:1653268227651-549.png||height="592" width="720"]] 166 166 ... ... @@ -212,7 +212,6 @@ 212 212 213 213 [[image:1652953568895-172.png||height="232" width="724"]] 214 214 215 - 216 216 == 3.3 Configure Commands to read data == 217 217 218 218 ((( ... ... @@ -222,8 +222,6 @@ 222 222 223 223 ((( 224 224 (% style="color:red" %)Note: below description and commands are for firmware version >v1.1, if you have firmware version v1.0. Please check the [[user manual v1.0>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/&file=RS485-LN_UserManual_v1.0.1.pdf]] or upgrade the firmware to v1.1 225 - 226 - 227 227 ))) 228 228 ))) 229 229 ... ... @@ -231,19 +231,19 @@ 231 231 232 232 To use RS485-LN to read data from RS485 sensors, connect the RS485-LN A/B traces to the sensors. And user need to make sure RS485-LN use the match UART setting to access the sensors. The related commands for UART settings are: 233 233 234 -(% border="1" style="background-color:#ffffcc; color:green; width:7 82px" %)235 -|( % style="width:128px" %)(((211 +(% border="1" style="background-color:#ffffcc; color:green; width:795px" %) 212 +|((( 236 236 **AT Commands** 237 -)))|(% style="width: 305px" %)(((214 +)))|(% style="width:285px" %)((( 238 238 **Description** 239 -)))|(% style="width:34 6px" %)(((216 +)))|(% style="width:347px" %)((( 240 240 **Example** 241 241 ))) 242 -|( % style="width:128px" %)(((219 +|((( 243 243 AT+BAUDR 244 -)))|(% style="width: 305px" %)(((221 +)))|(% style="width:285px" %)((( 245 245 Set the baud rate (for RS485 connection). Default Value is: 9600. 246 -)))|(% style="width:34 6px" %)(((223 +)))|(% style="width:347px" %)((( 247 247 ((( 248 248 AT+BAUDR=9600 249 249 ))) ... ... @@ -252,11 +252,11 @@ 252 252 Options: (1200,2400,4800,14400,19200,115200) 253 253 ))) 254 254 ))) 255 -|( % style="width:128px" %)(((232 +|((( 256 256 AT+PARITY 257 -)))|(% style="width: 305px" %)(((234 +)))|(% style="width:285px" %)((( 258 258 Set UART parity (for RS485 connection) 259 -)))|(% style="width:34 6px" %)(((236 +)))|(% style="width:347px" %)((( 260 260 ((( 261 261 AT+PARITY=0 262 262 ))) ... ... @@ -265,9 +265,9 @@ 265 265 Option: 0: no parity, 1: odd parity, 2: even parity 266 266 ))) 267 267 ))) 268 -|( % style="width:128px" %)(((245 +|((( 269 269 AT+STOPBIT 270 -)))|(% style="width: 305px" %)(((247 +)))|(% style="width:285px" %)((( 271 271 ((( 272 272 Set serial stopbit (for RS485 connection) 273 273 ))) ... ... @@ -275,7 +275,7 @@ 275 275 ((( 276 276 277 277 ))) 278 -)))|(% style="width:34 6px" %)(((255 +)))|(% style="width:347px" %)((( 279 279 ((( 280 280 AT+STOPBIT=0 for 1bit 281 281 ))) ... ... @@ -289,7 +289,6 @@ 289 289 ))) 290 290 ))) 291 291 292 - 293 293 === 3.3.2 Configure sensors === 294 294 295 295 ((( ... ... @@ -308,8 +308,6 @@ 308 308 mm: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command 309 309 )))|(% style="width:256px" %)AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m 310 310 311 - 312 - 313 313 === 3.3.3 Configure read commands for each sampling === 314 314 315 315 ((( ... ... @@ -503,37 +503,41 @@ 503 503 504 504 [[image:1653269759169-150.png||height="513" width="716"]] 505 505 506 -(% style="color:#4f81bd" %)**Examples: AT+DATAUP=1** 507 507 508 -Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**Multiply UPLINKs**. 509 509 482 +**Examples: AT+DATAUP=1** 483 + 484 +Compose the uplink payload with value returns in sequence and send with **Multiply UPLINKs**. 485 + 510 510 Final Payload is 511 511 512 - (% style="color:#4f81bd" %)**Battery Info+PAYVER + PAYLOAD COUNT + PAYLOAD# + DATA**488 +Battery Info+PAYVER + PAYLOAD COUNT + PAYLOAD# + DATA 513 513 514 514 1. Battery Info (2 bytes): Battery voltage 515 515 1. PAYVER (1 byte): Defined by AT+PAYVER 516 516 1. PAYLOAD COUNT (1 byte): Total how many uplinks of this sampling. 517 517 1. PAYLOAD# (1 byte): Number of this uplink. (from 0,1,2,3…,to PAYLOAD COUNT) 518 -1. DATA: Valid value: max 6 bytes(US915 version here, Notice*!) for each uplink so each uplink <= 11 bytes. For the last uplink, DATA will might less than 6 bytes 494 +1. DATA: Valid value: max 6 bytes(US915 version here, [[Notice*!>>path:#max_byte]]) for each uplink so each uplink <= 11 bytes. For the last uplink, DATA will might less than 6 bytes 519 519 520 -[[image: 1653269916228-732.png||height="433" width="711"]]496 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]] 521 521 522 522 523 523 So totally there will be 3 uplinks for this sampling, each uplink includes 6 bytes DATA 524 524 525 -DATA1=RETURN1 Valid Value = (% style="background-color:green; color:white" %)20 20 0a 33 90 41501 +DATA1=RETURN1 Valid Value = 20 20 0a 33 90 41 526 526 527 -DATA2=1^^st^^ ~~ 6^^th^^ byte of Valid value of RETURN10= (%style="background-color:green; color:white" %)02 aa 05 81 0a 20503 +DATA2=1^^st^^ ~~ 6^^th^^ byte of Valid value of RETURN10= 02 aa 05 81 0a 20 528 528 529 -DATA3=7^^th^^ ~~ 11^^th^^ bytes of Valid value of RETURN10 = (%style="background-color:green; color:white" %)20 20 20 2d 30505 +DATA3=7^^th^^ ~~ 11^^th^^ bytes of Valid value of RETURN10 = 20 20 20 2d 30 530 530 507 + 508 + 531 531 Below are the uplink payloads: 532 532 533 -[[image: 1653270130359-810.png]]511 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image021.png]] 534 534 535 535 536 - (% style="color:red" %)**Notice: the Max bytes is according to the max support bytes in different Frequency Bands for lowest SF. As below:**514 +Notice: the Max bytes is according to the max support bytes in different Frequency Bands for lowest SF. As below: 537 537 538 538 ~* For AU915/AS923 bands, if UplinkDwell time=0, max 51 bytes for each uplink ( so 51 -5 = 46 max valid date) 539 539 ... ... @@ -543,8 +543,12 @@ 543 543 544 544 ~* For all other bands: max 51 bytes for each uplink ( so 51 -5 = 46 max valid date). 545 545 546 -=== 3.3.5 Uplink on demand === 547 547 525 + 526 +1. 527 +11. 528 +111. Uplink on demand 529 + 548 548 Except uplink periodically, RS485-BL is able to uplink on demand. The server sends downlink command to RS485-BL and RS485 will uplink data base on the command. 549 549 550 550 Downlink control command:
- 1653270130359-810.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -197.8 KB - Content