<
From version < 32.16 >
edited by Xiaoling
on 2022/06/02 15:30
To version < 38.3 >
edited by Xiaoling
on 2022/06/02 16:10
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -76,8 +76,6 @@
76 76  * Automatic RF Sense and CAD with ultra-fast AFC.
77 77  * Packet engine up to 256 bytes with CRC.
78 78  
79 -
80 -
81 81  == 1.3 Features ==
82 82  
83 83  * LoRaWAN Class A & Class C protocol (default Class C)
... ... @@ -89,8 +89,6 @@
89 89  * Support Modbus protocol
90 90  * Support Interrupt uplink (Since hardware version v1.2)
91 91  
92 -
93 -
94 94  == 1.4 Applications ==
95 95  
96 96  * Smart Buildings & Home Automation
... ... @@ -100,8 +100,6 @@
100 100  * Smart Cities
101 101  * Smart Factory
102 102  
103 -
104 -
105 105  == 1.5 Firmware Change log ==
106 106  
107 107  [[RS485-LN Image files – Download link and Change log>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/]]
... ... @@ -289,7 +289,6 @@
289 289  )))
290 290  )))
291 291  
292 -
293 293  === 3.3.2 Configure sensors ===
294 294  
295 295  (((
... ... @@ -311,77 +311,34 @@
311 311  === 3.3.3 Configure read commands for each sampling ===
312 312  
313 313  (((
314 -RS485-BL is a battery powered device; it will sleep most of time. And wake up on each period and read RS485 / TTL sensor data and uplink.
315 -)))
307 +During each sampling, we need confirm what commands we need to send to the RS485 sensors to read data. After the RS485 sensors send back the value, it normally include some bytes and we only need a few from them for a shorten payload.
316 316  
317 -(((
318 -During each sampling, we need to confirm what commands we need to send to the sensors to read data. After the RS485/TTL sensors send back the value, it normally includes some bytes and we only need a few from them for a shorten payload.
319 -)))
320 -
321 -(((
322 322  To save the LoRaWAN network bandwidth, we might need to read data from different sensors and combine their valid value into a short payload.
323 -)))
324 324  
325 -(((
326 326  This section describes how to achieve above goals.
327 -)))
328 328  
329 -(((
330 -During each sampling, the RS485-BL can support 15 commands to read sensors. And combine the return to one or several uplink payloads.
331 -)))
313 +During each sampling, the RS485-LN can support 15 commands to read sensors. And combine the return to one or several uplink payloads.
332 332  
333 -(((
334 -**Command from RS485-BL to Sensor:**
335 -)))
336 336  
337 -(((
338 -RS485-BL can send out pre-set max 15 strings via **AT+COMMAD1**, **ATCOMMAND2**,…, to **AT+COMMANDF** . All commands are of same grammar.
339 -)))
316 +**Each RS485 commands include two parts:**
340 340  
341 -(((
342 -**Handle return from sensors to RS485-BL**:
343 -)))
318 +~1. What commands RS485-LN will send to the RS485 sensors. There are total 15 commands from **AT+COMMAD1**, **ATCOMMAND2**,…, to **AT+COMMANDF**. All commands are of same grammar.
344 344  
345 -(((
346 -After RS485-BL send out a string to sensor, RS485-BL will wait for the return from RS485 or TTL sensor. And user can specify how to handle the return, by **AT+DATACUT or AT+SEARCH commands**
347 -)))
320 +2. How to get wanted value the from RS485 sensors returns from by 1). There are total 15 AT Commands to handle the return, commands are **AT+DATACUT1**,**AT+DATACUT2**,…, **AT+DATACUTF** corresponding to the commands from 1). All commands are of same grammar.
348 348  
349 -* (((
350 -**AT+DATACUT**
351 -)))
322 +3. Some RS485 device might has longer delay on reply, so user can use AT+CMDDL to set the timeout for getting reply after the RS485 command is sent. For example **AT+CMDDL1=1000** to send the open time to 1000ms
352 352  
353 -(((
354 -When the return value from sensor have fix length and we know which position the valid value we should get, we can use AT+DATACUT command.
355 -)))
356 356  
357 -* (((
358 -**AT+SEARCH**
359 -)))
360 -
361 -(((
362 -When the return value from sensor is dynamic length and we are not sure which bytes the valid data is, instead, we know what value the valid value following. We can use AT+SEARCH to search the valid value in the return string.
363 -)))
364 -
365 -(((
366 -**Define wait timeout:**
367 -)))
368 -
369 -(((
370 -Some RS485 device might has longer delay on reply, so user can use AT+CMDDL to set the timeout for getting reply after the RS485 command is sent. For example, AT+CMDDL1=1000 to send the open time to 1000ms
371 -)))
372 -
373 -(((
374 374  After we got the valid value from each RS485 commands, we need to combine them together with the command **AT+DATAUP**.
375 -)))
376 376  
377 -**Examples:**
378 378  
379 379  Below are examples for the how above AT Commands works.
380 380  
381 -**AT+COMMANDx : **This command will be sent to RS485/TTL devices during each sampling, Max command length is 14 bytes. The grammar is:
382 382  
383 -(% border="1" class="table-bordered" %)
384 -|(((
331 +**AT+COMMANDx : **This command will be sent to RS485 devices during each sampling, Max command length is 14 bytes. The grammar is:
332 +
333 +(% border="1" style="background-color:#4bacc6; color:white; width:499px" %)
334 +|(% style="width:496px" %)(((
385 385  **AT+COMMANDx=xx xx xx xx xx xx xx xx xx xx xx xx,m**
386 386  
387 387  **xx xx xx xx xx xx xx xx xx xx xx xx: The RS485 command to be sent**
... ... @@ -389,49 +389,15 @@
389 389  **m: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command**
390 390  )))
391 391  
392 -(((
393 393  For example, if we have a RS485 sensor. The command to get sensor value is: 01 03 0B B8 00 02 46 0A. Where 01 03 0B B8 00 02 is the Modbus command to read the register 0B B8 where stored the sensor value. The 46 0A is the CRC-16/MODBUS which calculate manually.
394 -)))
395 395  
396 -(((
397 -In the RS485-BL, we should use this command AT+COMMAND1=01 03 0B B8 00 02,1 for the same.
398 -)))
344 +In the RS485-LN, we should use this command AT+COMMAND1=01 03 0B B8 00 02,1 for the same.
399 399  
400 -(((
401 -**AT+SEARCHx**: This command defines how to handle the return from AT+COMMANDx.
402 -)))
403 403  
404 -(% border="1" class="table-bordered" %)
405 -|(((
406 -**AT+SEARCHx=aa,xx xx xx xx xx**
407 -
408 -* **aa: 1: prefix match mode; 2: prefix and suffix match mode**
409 -* **xx xx xx xx xx: match string. Max 5 bytes for prefix and 5 bytes for suffix**
410 -
411 -
412 -)))
413 -
414 -**Examples:**
415 -
416 -~1. For a return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
417 -
418 -If we set AT+SEARCH1=1,1E 56 34.      (max 5 bytes for prefix)
419 -
420 -The valid data will be all bytes after 1E 56 34 , so it is (% style="background-color:yellow" %)** 2e 30 58 5f 36 41 30 31 00 49**
421 -
422 -[[image:1653269403619-508.png]]
423 -
424 -2. For a return string from AT+COMMAND1:  16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
425 -
426 -If we set AT+SEARCH1=2, 1E 56 34+31 00 49
427 -
428 -Device will search the bytes between 1E 56 34 and 31 00 49. So it is (% style="background-color:yellow" %)** 2e 30 58 5f 36 41 30**
429 -
430 -[[image:1653269438444-278.png]]
431 -
432 432  **AT+DATACUTx : **This command defines how to handle the return from AT+COMMANDx, max return length is 45 bytes.
433 433  
434 -|(((
349 +(% border="1" style="background-color:#4bacc6; color:white; width:725px" %)
350 +|(% style="width:722px" %)(((
435 435  **AT+DATACUTx=a,b,c**
436 436  
437 437  * **a: length for the return of AT+COMMAND**
... ... @@ -439,48 +439,37 @@
439 439  * **c: define the position for valid value.  **
440 440  )))
441 441  
442 -Examples:
358 +**Examples:**
443 443  
444 444  * Grab bytes:
445 445  
446 -[[image:1653269551753-223.png||height="311" width="717"]]
362 +[[image:image-20220602153621-1.png]]
447 447  
364 +
448 448  * Grab a section.
449 449  
450 -[[image:1653269568276-930.png||height="325" width="718"]]
367 +[[image:image-20220602153621-2.png]]
451 451  
369 +
452 452  * Grab different sections.
453 453  
454 -[[image:1653269593172-426.png||height="303" width="725"]]
372 +[[image:image-20220602153621-3.png]]
455 455  
456 -(% style="color:red" %)**Note:**
374 +
375 +)))
457 457  
458 -AT+SEARCHx and AT+DATACUTx can be used together, if both commands are set, RS485-BL will first process AT+SEARCHx on the return string and get a temporary string, and then process AT+DATACUTx on this temporary string to get the final payload. In this case, AT+DATACUTx need to set to format AT+DATACUTx=0,xx,xx where the return bytes set to 0.
459 -
460 -Example:
461 -
462 -(% style="color:red" %)AT+COMMAND1=11 01 1E D0,0
463 -
464 -(% style="color:red" %)AT+SEARCH1=1,1E 56 34
465 -
466 -(% style="color:red" %)AT+DATACUT1=0,2,1~~5
467 -
468 -(% style="color:red" %)Return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
469 -
470 -(% style="color:red" %)String after SEARCH command: 2e 30 58 5f 36 41 30 31 00 49
471 -
472 -(% style="color:red" %)Valid payload after DataCUT command: 2e 30 58 5f 36
473 -
474 -[[image:1653269618463-608.png]]
475 -
476 476  === 3.3.4 Compose the uplink payload ===
477 477  
478 478  (((
479 479  Through AT+COMMANDx and AT+DATACUTx we got valid value from each RS485 commands, Assume these valid value are RETURN1, RETURN2, .., to RETURNx. The next step is how to compose the LoRa Uplink Payload by these RETURNs. The command is **AT+DATAUP.**
381 +
382 +
480 480  )))
481 481  
482 482  (((
483 -(% style="color:#4f81bd" %)**Examples: AT+DATAUP=0**
386 +(% style="color:#037691" %)**Examples: AT+DATAUP=0**
387 +
388 +
484 484  )))
485 485  
486 486  (((
... ... @@ -501,8 +501,10 @@
501 501  
502 502  [[image:1653269759169-150.png||height="513" width="716"]]
503 503  
504 -(% style="color:#4f81bd" %)**Examples: AT+DATAUP=1**
505 505  
410 +(% style="color:#037691" %)**Examples: AT+DATAUP=1**
411 +
412 +
506 506  Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**Multiply UPLINKs**.
507 507  
508 508  Final Payload is
... ... @@ -509,66 +509,61 @@
509 509  
510 510  (% style="color:#4f81bd" %)**Battery Info+PAYVER + PAYLOAD COUNT + PAYLOAD# + DATA**
511 511  
512 -1. Battery Info (2 bytes): Battery voltage
513 -1. PAYVER (1 byte): Defined by AT+PAYVER
514 -1. PAYLOAD COUNT (1 byte): Total how many uplinks of this sampling.
515 -1. PAYLOAD# (1 byte): Number of this uplink. (from 0,1,2,3…,to PAYLOAD COUNT)
516 -1. DATA: Valid value: max 6 bytes(US915 version here, Notice*!) for each uplink so each uplink <= 11 bytes. For the last uplink, DATA will might less than 6 bytes
419 +1. PAYVER: Defined by AT+PAYVER
420 +1. PAYLOAD COUNT: Total how many uplinks of this sampling.
421 +1. PAYLOAD#: Number of this uplink. (from 0,1,2,3…,to PAYLOAD COUNT)
422 +1. DATA: Valid value: max 8 bytes for each uplink so each uplink <= 11 bytes. For the last uplink, DATA will might less than 8 bytes
517 517  
518 -[[image:1653269916228-732.png||height="433" width="711"]]
424 +[[image:image-20220602155039-4.png]]
519 519  
520 520  
521 -So totally there will be 3 uplinks for this sampling, each uplink includes 6 bytes DATA
427 +So totally there will be 3 uplinks for this sampling, each uplink include 8 bytes DATA
522 522  
523 -DATA1=RETURN1 Valid Value = (% style="background-color:green; color:white" %)20 20 0a 33 90 41
429 +DATA1=RETURN1 Valid Value + the first two of Valid value of RETURN10= **20 20 0a 33 90 41 02 aa**
524 524  
525 -DATA2=1^^st^^ ~~ 6^^th^^ byte of Valid value of RETURN10=(% style="background-color:green; color:white" %) 02 aa 05 81 0a 20
431 +DATA2=3^^rd^^ ~~ 10^^th^^ byte of Valid value of RETURN10= **05 81 0a 20 20 20 20 2d**
526 526  
527 -DATA3=7^^th^^ ~~ 11^^th^^ bytes of Valid value of RETURN10 = (% style="background-color:green; color:white" %)20 20 20 2d 30
433 +DATA3=the rest of Valid value of RETURN10= **30**
528 528  
529 -Below are the uplink payloads:
530 530  
531 -[[image:1653270130359-810.png]]
436 +(% style="color:red" %)Notice: In firmware v1.3, the Max bytes has been changed according to the max bytes in different Frequency Bands for lowest SF. As below:
532 532  
438 + ~* For AU915/AS923 bands, if UplinkDwell time=0, max 51 bytes for each uplink.
533 533  
534 -(% style="color:red" %)**Notice: the Max bytes is according to the max support bytes in different Frequency Bands for lowest SF. As below:**
440 + * For AU915/AS923 bands, if UplinkDwell time=0, max 11 bytes for each uplink.
535 535  
536 - ~* For AU915/AS923 bands, if UplinkDwell time=0, max 51 bytes for each uplink ( so 51 -5 = 46 max valid date)
442 + * For US915 band, max 11 bytes for each uplink.
537 537  
538 - * For AU915/AS923 bands, if UplinkDwell time=1, max 11 bytes for each uplink ( so 11 -5 = 6 max valid date).
444 + ~* For all other bands: max 51 bytes for each uplink.
539 539  
540 - * For US915 band, max 11 bytes for each uplink ( so 11 -5 = 6 max valid date).
541 541  
542 - ~* For all other bands: max 51 bytes for each uplink  ( so 51 -5 = 46 max valid date).
447 +Below are the uplink payloads:
543 543  
449 +[[image:1654157178836-407.png]]
450 +
451 +
544 544  === 3.3.5 Uplink on demand ===
545 545  
546 -Except uplink periodically, RS485-BL is able to uplink on demand. The server sends downlink command to RS485-BL and RS485 will uplink data base on the command.
454 +Except uplink periodically, RS485-LN is able to uplink on demand. The server send downlink command to RS485-LN and RS485 will uplink data base on the command.
547 547  
548 548  Downlink control command:
549 549  
550 -[[0x08 command>>path:#downlink_08]]: Poll an uplink with current command set in RS485-BL.
458 +**0x08 command**: Poll an uplink with current command set in RS485-LN.
551 551  
552 -[[0xA8 command>>path:#downlink_A8]]: Send a command to RS485-BL and uplink the output from sensors.
460 +**0xA8 command**: Send a command to RS485-LN and uplink the output from sensors.
553 553  
554 554  
555 555  
556 -1.
557 -11.
558 -111. Uplink on Interrupt
464 +=== 3.3.6 Uplink on Interrupt ===
559 559  
560 -Put the interrupt sensor between 3.3v_out and GPIO ext.[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image022.png]]
466 +RS485-LN support external Interrupt uplink since hardware v1.2 release.
561 561  
562 -AT+INTMOD=0  Disable Interrupt
468 +[[image:1654157342174-798.png]]
563 563  
564 -AT+INTMOD=1  Interrupt trigger by rising or falling edge.
470 +Connect the Interrupt pin to RS485-LN INT port and connect the GND pin to V- port. When there is a high voltage (Max 24v) on INT pin. Device will send an uplink packet.
565 565  
566 -AT+INTMOD=2  Interrupt trigger by falling edge. ( Default Value)
567 567  
568 -AT+INTMOD=3  Interrupt trigger by rising edge.
569 -
570 -
571 -1.
473 +1.
572 572  11. Uplink Payload
573 573  
574 574  |**Size(bytes)**|**2**|**1**|**Length depends on the return from the commands**
... ... @@ -630,15 +630,15 @@
630 630  
631 631  * **Sensor Related Commands**: These commands are special designed for RS485-BL.  User can see these commands below:
632 632  
633 -1.
634 -11.
535 +1.
536 +11.
635 635  111. Common Commands:
636 636  
637 637  They should be available for each of Dragino Sensors, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: [[http:~~/~~/wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands>>url:http://wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands]]
638 638  
639 639  
640 -1.
641 -11.
542 +1.
543 +11.
642 642  111. Sensor related commands:
643 643  
644 644  ==== Choose Device Type (RS485 or TTL) ====
... ... @@ -944,13 +944,13 @@
944 944  
945 945  
946 946  
947 -1.
849 +1.
948 948  11. Buttons
949 949  
950 950  |**Button**|**Feature**
951 951  |**RST**|Reboot RS485-BL
952 952  
953 -1.
855 +1.
954 954  11. +3V3 Output
955 955  
956 956  RS485-BL has a Controllable +3V3 output, user can use this output to power external sensor.
... ... @@ -968,7 +968,7 @@
968 968  By default, the AT+3V3T=0. This is a special case, means the +3V3 output is always on at any time
969 969  
970 970  
971 -1.
873 +1.
972 972  11. +5V Output
973 973  
974 974  RS485-BL has a Controllable +5V output, user can use this output to power external sensor.
... ... @@ -988,13 +988,13 @@
988 988  
989 989  
990 990  
991 -1.
893 +1.
992 992  11. LEDs
993 993  
994 994  |**LEDs**|**Feature**
995 995  |**LED1**|Blink when device transmit a packet.
996 996  
997 -1.
899 +1.
998 998  11. Switch Jumper
999 999  
1000 1000  |**Switch Jumper**|**Feature**
... ... @@ -1040,7 +1040,7 @@
1040 1040  
1041 1041  
1042 1042  
1043 -1.
945 +1.
1044 1044  11. Common AT Command Sequence
1045 1045  111. Multi-channel ABP mode (Use with SX1301/LG308)
1046 1046  
... ... @@ -1059,8 +1059,8 @@
1059 1059  
1060 1060  ATZ
1061 1061  
1062 -1.
1063 -11.
964 +1.
965 +11.
1064 1064  111. Single-channel ABP mode (Use with LG01/LG02)
1065 1065  
1066 1066  AT+FDR   Reset Parameters to Factory Default, Keys Reserve
... ... @@ -1135,7 +1135,7 @@
1135 1135  [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image035.png]] [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image036.png]]
1136 1136  
1137 1137  
1138 -1.
1040 +1.
1139 1139  11. How to change the LoRa Frequency Bands/Region?
1140 1140  
1141 1141  User can follow the introduction for [[how to upgrade image>>path:#upgrade_image]]. When download the images, choose the required image file for download.
... ... @@ -1142,7 +1142,7 @@
1142 1142  
1143 1143  
1144 1144  
1145 -1.
1047 +1.
1146 1146  11. How many RS485-Slave can RS485-BL connects?
1147 1147  
1148 1148  The RS485-BL can support max 32 RS485 devices. Each uplink command of RS485-BL can support max 16 different RS485 command. So RS485-BL can support max 16 RS485 devices pre-program in the device for uplink. For other devices no pre-program, user can use the [[downlink message (type code 0xA8) to poll their info>>path:#downlink_A8]].
... ... @@ -1159,7 +1159,7 @@
1159 1159  
1160 1160  
1161 1161  
1162 -1.
1064 +1.
1163 1163  11. Why I can’t join TTN V3 in US915 /AU915 bands?
1164 1164  
1165 1165  It might about the channels mapping. Please see for detail.
1654157178836-407.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +179.9 KB
Content
1654157342174-798.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +31.9 KB
Content
image-20220602153621-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +23.4 KB
Content
image-20220602153621-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +22.2 KB
Content
image-20220602153621-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +22.3 KB
Content
image-20220602155039-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +24.6 KB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0