<
From version < 32.16 >
edited by Xiaoling
on 2022/06/02 15:30
To version < 30.1 >
edited by Xiaoling
on 2022/05/23 09:38
>
Change comment: Uploaded new attachment "1653269916228-732.png", version {1}

Summary

Details

Page properties
Content
... ... @@ -18,30 +18,26 @@
18 18  
19 19  (((
20 20  (((
21 -The Dragino RS485-LN is a (% style="color:blue" %)**RS485 to LoRaWAN Converter**(%%). It converts the RS485 signal into LoRaWAN wireless signal which simplify the IoT installation and reduce the installation/maintaining cost.
21 +The Dragino RS485-LN is a RS485 to LoRaWAN Converter. It converts the RS485 signal into LoRaWAN wireless signal which simplify the IoT installation and reduce the installation/maintaining cost.
22 22  )))
23 23  
24 24  (((
25 -RS485-LN allows user to (% style="color:blue" %)**monitor / control RS485 devices**(%%) and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
25 +RS485-LN allows user to monitor / control RS485 devices and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
26 26  )))
27 27  
28 28  (((
29 -(% style="color:blue" %)**For data uplink**(%%), RS485-LN sends user-defined commands to RS485 devices and gets the return from the RS485 devices. RS485-LN will process these returns according to user-define rules to get the final payload and upload to LoRaWAN server.
29 +For data uplink, RS485-LN sends user-defined commands to RS485 devices and gets the return from the RS485 devices. RS485-LN will process these returns according to user-define rules to get the final payload and upload to LoRaWAN server.
30 30  )))
31 31  
32 32  (((
33 -(% style="color:blue" %)**For data downlink**(%%), RS485-LN runs in LoRaWAN Class C. When there downlink commands from LoRaWAN server, RS485-LN will forward the commands from LoRaWAN server to RS485 devices.
34 -
35 -(% style="color:blue" %)**Demo Dashboard for RS485-LN**(%%) connect to two energy meters: [[https:~~/~~/app.datacake.de/dashboard/d/58844a26-378d-4c5a-aaf5-b5b5b153447a>>url:https://app.datacake.de/dashboard/d/58844a26-378d-4c5a-aaf5-b5b5b153447a]]
33 +For data downlink, RS485-LN runs in LoRaWAN Class C. When there downlink commands from LoRaWAN server, RS485-LN will forward the commands from LoRaWAN server to RS485 devices.
36 36  )))
37 37  )))
38 38  
39 39  [[image:1653267211009-519.png||height="419" width="724"]]
40 40  
41 -
42 42  == 1.2 Specifications ==
43 43  
44 -
45 45  **Hardware System:**
46 46  
47 47  * STM32L072CZT6 MCU
... ... @@ -48,6 +48,8 @@
48 48  * SX1276/78 Wireless Chip 
49 49  * Power Consumption (exclude RS485 device):
50 50  ** Idle: 32mA@12v
47 +
48 +*
51 51  ** 20dB Transmit: 65mA@12v
52 52  
53 53  **Interface for Model:**
... ... @@ -76,8 +76,6 @@
76 76  * Automatic RF Sense and CAD with ultra-fast AFC.
77 77  * Packet engine up to 256 bytes with CRC.
78 78  
79 -
80 -
81 81  == 1.3 Features ==
82 82  
83 83  * LoRaWAN Class A & Class C protocol (default Class C)
... ... @@ -89,8 +89,6 @@
89 89  * Support Modbus protocol
90 90  * Support Interrupt uplink (Since hardware version v1.2)
91 91  
92 -
93 -
94 94  == 1.4 Applications ==
95 95  
96 96  * Smart Buildings & Home Automation
... ... @@ -100,13 +100,10 @@
100 100  * Smart Cities
101 101  * Smart Factory
102 102  
103 -
104 -
105 105  == 1.5 Firmware Change log ==
106 106  
107 107  [[RS485-LN Image files – Download link and Change log>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/]]
108 108  
109 -
110 110  == 1.6 Hardware Change log ==
111 111  
112 112  (((
... ... @@ -114,8 +114,6 @@
114 114  v1.2: Add External Interrupt Pin.
115 115  
116 116  v1.0: Release
117 -
118 -
119 119  )))
120 120  )))
121 121  
... ... @@ -132,8 +132,6 @@
132 132  )))
133 133  
134 134  [[image:1653268091319-405.png]]
135 -
136 -
137 137  )))
138 138  
139 139  = 3. Operation Mode =
... ... @@ -142,8 +142,6 @@
142 142  
143 143  (((
144 144  The RS485-LN is configured as LoRaWAN OTAA Class C mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the RS485-LN. It will auto join the network via OTAA.
145 -
146 -
147 147  )))
148 148  
149 149  == 3.2 Example to join LoRaWAN network ==
... ... @@ -152,15 +152,10 @@
152 152  
153 153  [[image:1653268155545-638.png||height="334" width="724"]]
154 154  
155 -
156 156  (((
157 -(((
158 158  The RS485-LN in this example connected to two RS485 devices for demonstration, user can connect to other RS485 devices via the same method. The connection is as below:
159 -)))
160 160  
161 -(((
162 162  485A+ and 485B- of the sensor are connected to RS485A and RA485B of RS485-LN respectively.
163 -)))
164 164  
165 165  [[image:1653268227651-549.png||height="592" width="720"]]
166 166  
... ... @@ -212,7 +212,6 @@
212 212  
213 213  [[image:1652953568895-172.png||height="232" width="724"]]
214 214  
215 -
216 216  == 3.3 Configure Commands to read data ==
217 217  
218 218  (((
... ... @@ -222,8 +222,6 @@
222 222  
223 223  (((
224 224  (% style="color:red" %)Note: below description and commands are for firmware version >v1.1, if you have firmware version v1.0. Please check the [[user manual v1.0>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/&file=RS485-LN_UserManual_v1.0.1.pdf]] or upgrade the firmware to v1.1
225 -
226 -
227 227  )))
228 228  )))
229 229  
... ... @@ -231,19 +231,19 @@
231 231  
232 232  To use RS485-LN to read data from RS485 sensors, connect the RS485-LN A/B traces to the sensors. And user need to make sure RS485-LN use the match UART setting to access the sensors. The related commands for UART settings are:
233 233  
234 -(% border="1" style="background-color:#ffffcc; color:green; width:782px" %)
235 -|(% style="width:128px" %)(((
211 +(% border="1" style="background-color:#ffffcc; color:green; width:795px" %)
212 +|(((
236 236  **AT Commands**
237 -)))|(% style="width:305px" %)(((
214 +)))|(% style="width:285px" %)(((
238 238  **Description**
239 -)))|(% style="width:346px" %)(((
216 +)))|(% style="width:347px" %)(((
240 240  **Example**
241 241  )))
242 -|(% style="width:128px" %)(((
219 +|(((
243 243  AT+BAUDR
244 -)))|(% style="width:305px" %)(((
221 +)))|(% style="width:285px" %)(((
245 245  Set the baud rate (for RS485 connection). Default Value is: 9600.
246 -)))|(% style="width:346px" %)(((
223 +)))|(% style="width:347px" %)(((
247 247  (((
248 248  AT+BAUDR=9600
249 249  )))
... ... @@ -252,11 +252,11 @@
252 252  Options: (1200,2400,4800,14400,19200,115200)
253 253  )))
254 254  )))
255 -|(% style="width:128px" %)(((
232 +|(((
256 256  AT+PARITY
257 -)))|(% style="width:305px" %)(((
234 +)))|(% style="width:285px" %)(((
258 258  Set UART parity (for RS485 connection)
259 -)))|(% style="width:346px" %)(((
236 +)))|(% style="width:347px" %)(((
260 260  (((
261 261  AT+PARITY=0
262 262  )))
... ... @@ -265,9 +265,9 @@
265 265  Option: 0: no parity, 1: odd parity, 2: even parity
266 266  )))
267 267  )))
268 -|(% style="width:128px" %)(((
245 +|(((
269 269  AT+STOPBIT
270 -)))|(% style="width:305px" %)(((
247 +)))|(% style="width:285px" %)(((
271 271  (((
272 272  Set serial stopbit (for RS485 connection)
273 273  )))
... ... @@ -275,7 +275,7 @@
275 275  (((
276 276  
277 277  )))
278 -)))|(% style="width:346px" %)(((
255 +)))|(% style="width:347px" %)(((
279 279  (((
280 280  AT+STOPBIT=0 for 1bit
281 281  )))
... ... @@ -289,7 +289,6 @@
289 289  )))
290 290  )))
291 291  
292 -
293 293  === 3.3.2 Configure sensors ===
294 294  
295 295  (((
... ... @@ -501,37 +501,41 @@
501 501  
502 502  [[image:1653269759169-150.png||height="513" width="716"]]
503 503  
504 -(% style="color:#4f81bd" %)**Examples: AT+DATAUP=1**
505 505  
506 -Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**Multiply UPLINKs**.
507 507  
482 +**Examples: AT+DATAUP=1**
483 +
484 +Compose the uplink payload with value returns in sequence and send with **Multiply UPLINKs**.
485 +
508 508  Final Payload is
509 509  
510 -(% style="color:#4f81bd" %)**Battery Info+PAYVER + PAYLOAD COUNT + PAYLOAD# + DATA**
488 +Battery Info+PAYVER + PAYLOAD COUNT + PAYLOAD# + DATA
511 511  
512 512  1. Battery Info (2 bytes): Battery voltage
513 513  1. PAYVER (1 byte): Defined by AT+PAYVER
514 514  1. PAYLOAD COUNT (1 byte): Total how many uplinks of this sampling.
515 515  1. PAYLOAD# (1 byte): Number of this uplink. (from 0,1,2,3…,to PAYLOAD COUNT)
516 -1. DATA: Valid value: max 6 bytes(US915 version here, Notice*!) for each uplink so each uplink <= 11 bytes. For the last uplink, DATA will might less than 6 bytes
494 +1. DATA: Valid value: max 6 bytes(US915 version here, [[Notice*!>>path:#max_byte]]) for each uplink so each uplink <= 11 bytes. For the last uplink, DATA will might less than 6 bytes
517 517  
518 -[[image:1653269916228-732.png||height="433" width="711"]]
496 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
519 519  
520 520  
521 521  So totally there will be 3 uplinks for this sampling, each uplink includes 6 bytes DATA
522 522  
523 -DATA1=RETURN1 Valid Value = (% style="background-color:green; color:white" %)20 20 0a 33 90 41
501 +DATA1=RETURN1 Valid Value = 20 20 0a 33 90 41
524 524  
525 -DATA2=1^^st^^ ~~ 6^^th^^ byte of Valid value of RETURN10=(% style="background-color:green; color:white" %) 02 aa 05 81 0a 20
503 +DATA2=1^^st^^ ~~ 6^^th^^ byte of Valid value of RETURN10= 02 aa 05 81 0a 20
526 526  
527 -DATA3=7^^th^^ ~~ 11^^th^^ bytes of Valid value of RETURN10 = (% style="background-color:green; color:white" %)20 20 20 2d 30
505 +DATA3=7^^th^^ ~~ 11^^th^^ bytes of Valid value of RETURN10 = 20 20 20 2d 30
528 528  
507 +
508 +
529 529  Below are the uplink payloads:
530 530  
531 -[[image:1653270130359-810.png]]
511 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image021.png]]
532 532  
533 533  
534 -(% style="color:red" %)**Notice: the Max bytes is according to the max support bytes in different Frequency Bands for lowest SF. As below:**
514 +Notice: the Max bytes is according to the max support bytes in different Frequency Bands for lowest SF. As below:
535 535  
536 536   ~* For AU915/AS923 bands, if UplinkDwell time=0, max 51 bytes for each uplink ( so 51 -5 = 46 max valid date)
537 537  
... ... @@ -541,8 +541,12 @@
541 541  
542 542   ~* For all other bands: max 51 bytes for each uplink  ( so 51 -5 = 46 max valid date).
543 543  
544 -=== 3.3.5 Uplink on demand ===
545 545  
525 +
526 +1.
527 +11.
528 +111. Uplink on demand
529 +
546 546  Except uplink periodically, RS485-BL is able to uplink on demand. The server sends downlink command to RS485-BL and RS485 will uplink data base on the command.
547 547  
548 548  Downlink control command:
1653270130359-810.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -197.8 KB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0