<
From version < 32.16 >
edited by Xiaoling
on 2022/06/02 15:30
To version < 22.6 >
edited by Xiaoling
on 2022/05/23 09:17
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -18,30 +18,26 @@
18 18  
19 19  (((
20 20  (((
21 -The Dragino RS485-LN is a (% style="color:blue" %)**RS485 to LoRaWAN Converter**(%%). It converts the RS485 signal into LoRaWAN wireless signal which simplify the IoT installation and reduce the installation/maintaining cost.
21 +The Dragino RS485-LN is a RS485 to LoRaWAN Converter. It converts the RS485 signal into LoRaWAN wireless signal which simplify the IoT installation and reduce the installation/maintaining cost.
22 22  )))
23 23  
24 24  (((
25 -RS485-LN allows user to (% style="color:blue" %)**monitor / control RS485 devices**(%%) and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
25 +RS485-LN allows user to monitor / control RS485 devices and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
26 26  )))
27 27  
28 28  (((
29 -(% style="color:blue" %)**For data uplink**(%%), RS485-LN sends user-defined commands to RS485 devices and gets the return from the RS485 devices. RS485-LN will process these returns according to user-define rules to get the final payload and upload to LoRaWAN server.
29 +For data uplink, RS485-LN sends user-defined commands to RS485 devices and gets the return from the RS485 devices. RS485-LN will process these returns according to user-define rules to get the final payload and upload to LoRaWAN server.
30 30  )))
31 31  
32 32  (((
33 -(% style="color:blue" %)**For data downlink**(%%), RS485-LN runs in LoRaWAN Class C. When there downlink commands from LoRaWAN server, RS485-LN will forward the commands from LoRaWAN server to RS485 devices.
34 -
35 -(% style="color:blue" %)**Demo Dashboard for RS485-LN**(%%) connect to two energy meters: [[https:~~/~~/app.datacake.de/dashboard/d/58844a26-378d-4c5a-aaf5-b5b5b153447a>>url:https://app.datacake.de/dashboard/d/58844a26-378d-4c5a-aaf5-b5b5b153447a]]
33 +For data downlink, RS485-LN runs in LoRaWAN Class C. When there downlink commands from LoRaWAN server, RS485-LN will forward the commands from LoRaWAN server to RS485 devices.
36 36  )))
37 37  )))
38 38  
39 39  [[image:1653267211009-519.png||height="419" width="724"]]
40 40  
41 -
42 42  == 1.2 Specifications ==
43 43  
44 -
45 45  **Hardware System:**
46 46  
47 47  * STM32L072CZT6 MCU
... ... @@ -48,6 +48,8 @@
48 48  * SX1276/78 Wireless Chip 
49 49  * Power Consumption (exclude RS485 device):
50 50  ** Idle: 32mA@12v
47 +
48 +*
51 51  ** 20dB Transmit: 65mA@12v
52 52  
53 53  **Interface for Model:**
... ... @@ -76,8 +76,6 @@
76 76  * Automatic RF Sense and CAD with ultra-fast AFC.
77 77  * Packet engine up to 256 bytes with CRC.
78 78  
79 -
80 -
81 81  == 1.3 Features ==
82 82  
83 83  * LoRaWAN Class A & Class C protocol (default Class C)
... ... @@ -89,8 +89,6 @@
89 89  * Support Modbus protocol
90 90  * Support Interrupt uplink (Since hardware version v1.2)
91 91  
92 -
93 -
94 94  == 1.4 Applications ==
95 95  
96 96  * Smart Buildings & Home Automation
... ... @@ -100,13 +100,10 @@
100 100  * Smart Cities
101 101  * Smart Factory
102 102  
103 -
104 -
105 105  == 1.5 Firmware Change log ==
106 106  
107 107  [[RS485-LN Image files – Download link and Change log>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/]]
108 108  
109 -
110 110  == 1.6 Hardware Change log ==
111 111  
112 112  (((
... ... @@ -114,8 +114,6 @@
114 114  v1.2: Add External Interrupt Pin.
115 115  
116 116  v1.0: Release
117 -
118 -
119 119  )))
120 120  )))
121 121  
... ... @@ -132,8 +132,6 @@
132 132  )))
133 133  
134 134  [[image:1653268091319-405.png]]
135 -
136 -
137 137  )))
138 138  
139 139  = 3. Operation Mode =
... ... @@ -142,8 +142,6 @@
142 142  
143 143  (((
144 144  The RS485-LN is configured as LoRaWAN OTAA Class C mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the RS485-LN. It will auto join the network via OTAA.
145 -
146 -
147 147  )))
148 148  
149 149  == 3.2 Example to join LoRaWAN network ==
... ... @@ -152,15 +152,10 @@
152 152  
153 153  [[image:1653268155545-638.png||height="334" width="724"]]
154 154  
155 -
156 156  (((
157 -(((
158 158  The RS485-LN in this example connected to two RS485 devices for demonstration, user can connect to other RS485 devices via the same method. The connection is as below:
159 -)))
160 160  
161 -(((
162 162  485A+ and 485B- of the sensor are connected to RS485A and RA485B of RS485-LN respectively.
163 -)))
164 164  
165 165  [[image:1653268227651-549.png||height="592" width="720"]]
166 166  
... ... @@ -212,7 +212,6 @@
212 212  
213 213  [[image:1652953568895-172.png||height="232" width="724"]]
214 214  
215 -
216 216  == 3.3 Configure Commands to read data ==
217 217  
218 218  (((
... ... @@ -222,8 +222,6 @@
222 222  
223 223  (((
224 224  (% style="color:red" %)Note: below description and commands are for firmware version >v1.1, if you have firmware version v1.0. Please check the [[user manual v1.0>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/&file=RS485-LN_UserManual_v1.0.1.pdf]] or upgrade the firmware to v1.1
225 -
226 -
227 227  )))
228 228  )))
229 229  
... ... @@ -231,19 +231,19 @@
231 231  
232 232  To use RS485-LN to read data from RS485 sensors, connect the RS485-LN A/B traces to the sensors. And user need to make sure RS485-LN use the match UART setting to access the sensors. The related commands for UART settings are:
233 233  
234 -(% border="1" style="background-color:#ffffcc; color:green; width:782px" %)
235 -|(% style="width:128px" %)(((
211 +(% border="1" style="background-color:#ffffcc; color:green; width:795px" %)
212 +|(((
236 236  **AT Commands**
237 -)))|(% style="width:305px" %)(((
214 +)))|(% style="width:285px" %)(((
238 238  **Description**
239 -)))|(% style="width:346px" %)(((
216 +)))|(% style="width:347px" %)(((
240 240  **Example**
241 241  )))
242 -|(% style="width:128px" %)(((
219 +|(((
243 243  AT+BAUDR
244 -)))|(% style="width:305px" %)(((
221 +)))|(% style="width:285px" %)(((
245 245  Set the baud rate (for RS485 connection). Default Value is: 9600.
246 -)))|(% style="width:346px" %)(((
223 +)))|(% style="width:347px" %)(((
247 247  (((
248 248  AT+BAUDR=9600
249 249  )))
... ... @@ -252,11 +252,11 @@
252 252  Options: (1200,2400,4800,14400,19200,115200)
253 253  )))
254 254  )))
255 -|(% style="width:128px" %)(((
232 +|(((
256 256  AT+PARITY
257 -)))|(% style="width:305px" %)(((
234 +)))|(% style="width:285px" %)(((
258 258  Set UART parity (for RS485 connection)
259 -)))|(% style="width:346px" %)(((
236 +)))|(% style="width:347px" %)(((
260 260  (((
261 261  AT+PARITY=0
262 262  )))
... ... @@ -265,9 +265,9 @@
265 265  Option: 0: no parity, 1: odd parity, 2: even parity
266 266  )))
267 267  )))
268 -|(% style="width:128px" %)(((
245 +|(((
269 269  AT+STOPBIT
270 -)))|(% style="width:305px" %)(((
247 +)))|(% style="width:285px" %)(((
271 271  (((
272 272  Set serial stopbit (for RS485 connection)
273 273  )))
... ... @@ -275,7 +275,7 @@
275 275  (((
276 276  
277 277  )))
278 -)))|(% style="width:346px" %)(((
255 +)))|(% style="width:347px" %)(((
279 279  (((
280 280  AT+STOPBIT=0 for 1bit
281 281  )))
... ... @@ -289,14 +289,15 @@
289 289  )))
290 290  )))
291 291  
292 -
293 293  === 3.3.2 Configure sensors ===
294 294  
295 295  (((
272 +Some sensors might need to configure before normal operation. User can configure such sensor via PC or through RS485-BL AT Commands (% style="color:#4f81bd" %)**AT+CFGDEV**.
273 +)))
274 +
296 296  (((
297 -Some sensors might need to configure before normal operation. User can configure such sensor via PC and RS485 adapter or through RS485-LN AT Commands (% style="color:#4f81bd" %)**AT+CFGDEV**(%%). Each (% style="color:#4f81bd" %)**AT+CFGDEV **(%%)equals to send a RS485 command to sensors. This command will only run when user input it and won’t run during each sampling.
276 +When user issue an (% style="color:#4f81bd" %)**AT+CFGDEV**(%%) command, Each (% style="color:#4f81bd" %)**AT+CFGDEV**(%%) equals to send a command to the RS485 or TTL sensors. This command will only run when user input it and won’t run during each sampling.
298 298  )))
299 -)))
300 300  
301 301  (% border="1" style="background-color:#ffffcc; color:green; width:806px" %)
302 302  |**AT Commands**|(% style="width:418px" %)**Description**|(% style="width:256px" %)**Example**
... ... @@ -308,6 +308,8 @@
308 308  mm: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command
309 309  )))|(% style="width:256px" %)AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m
310 310  
289 +Detail of AT+CFGDEV command see [[AT+CFGDEV detail>>path:#AT_CFGDEV]].
290 +
311 311  === 3.3.3 Configure read commands for each sampling ===
312 312  
313 313  (((
... ... @@ -389,17 +389,11 @@
389 389  **m: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command**
390 390  )))
391 391  
392 -(((
393 393  For example, if we have a RS485 sensor. The command to get sensor value is: 01 03 0B B8 00 02 46 0A. Where 01 03 0B B8 00 02 is the Modbus command to read the register 0B B8 where stored the sensor value. The 46 0A is the CRC-16/MODBUS which calculate manually.
394 -)))
395 395  
396 -(((
397 397  In the RS485-BL, we should use this command AT+COMMAND1=01 03 0B B8 00 02,1 for the same.
398 -)))
399 399  
400 -(((
401 401  **AT+SEARCHx**: This command defines how to handle the return from AT+COMMANDx.
402 -)))
403 403  
404 404  (% border="1" class="table-bordered" %)
405 405  |(((
... ... @@ -411,24 +411,26 @@
411 411  
412 412  )))
413 413  
414 -**Examples:**
388 +Examples:
415 415  
416 -~1. For a return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
390 +1. For a return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
417 417  
418 418  If we set AT+SEARCH1=1,1E 56 34.      (max 5 bytes for prefix)
419 419  
420 -The valid data will be all bytes after 1E 56 34 , so it is (% style="background-color:yellow" %)** 2e 30 58 5f 36 41 30 31 00 49**
394 +The valid data will be all bytes after 1E 56 34 , so it is 2e 30 58 5f 36 41 30 31 00 49
421 421  
422 -[[image:1653269403619-508.png]]
396 +[[image:1652954654347-831.png]]
423 423  
424 -2. For a return string from AT+COMMAND1:  16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
425 425  
399 +1. For a return string from AT+COMMAND1:  16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
400 +
426 426  If we set AT+SEARCH1=2, 1E 56 34+31 00 49
427 427  
428 -Device will search the bytes between 1E 56 34 and 31 00 49. So it is (% style="background-color:yellow" %)** 2e 30 58 5f 36 41 30**
403 +Device will search the bytes between 1E 56 34 and 31 00 49. So it is 2e 30 58 5f 36 41 30
429 429  
430 -[[image:1653269438444-278.png]]
405 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image014.png]]
431 431  
407 +
432 432  **AT+DATACUTx : **This command defines how to handle the return from AT+COMMANDx, max return length is 45 bytes.
433 433  
434 434  |(((
... ... @@ -443,95 +443,94 @@
443 443  
444 444  * Grab bytes:
445 445  
446 -[[image:1653269551753-223.png||height="311" width="717"]]
422 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image015.png]]
447 447  
448 448  * Grab a section.
449 449  
450 -[[image:1653269568276-930.png||height="325" width="718"]]
426 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image016.png]]
451 451  
452 452  * Grab different sections.
453 453  
454 -[[image:1653269593172-426.png||height="303" width="725"]]
430 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image017.png]]
455 455  
456 -(% style="color:red" %)**Note:**
457 457  
433 +Note:
434 +
458 458  AT+SEARCHx and AT+DATACUTx can be used together, if both commands are set, RS485-BL will first process AT+SEARCHx on the return string and get a temporary string, and then process AT+DATACUTx on this temporary string to get the final payload. In this case, AT+DATACUTx need to set to format AT+DATACUTx=0,xx,xx where the return bytes set to 0.
459 459  
460 460  Example:
461 461  
462 -(% style="color:red" %)AT+COMMAND1=11 01 1E D0,0
439 +AT+COMMAND1=11 01 1E D0,0
463 463  
464 -(% style="color:red" %)AT+SEARCH1=1,1E 56 34
441 +AT+SEARCH1=1,1E 56 34
465 465  
466 -(% style="color:red" %)AT+DATACUT1=0,2,1~~5
443 +AT+DATACUT1=0,2,1~~5
467 467  
468 -(% style="color:red" %)Return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
445 +Return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
469 469  
470 -(% style="color:red" %)String after SEARCH command: 2e 30 58 5f 36 41 30 31 00 49
447 +String after SEARCH command: 2e 30 58 5f 36 41 30 31 00 49
471 471  
472 -(% style="color:red" %)Valid payload after DataCUT command: 2e 30 58 5f 36
449 +Valid payload after DataCUT command: 2e 30 58 5f 36
473 473  
474 -[[image:1653269618463-608.png]]
451 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image018.png]]
475 475  
476 -=== 3.3.4 Compose the uplink payload ===
477 477  
478 -(((
454 +
455 +
456 +1.
457 +11.
458 +111. Compose the uplink payload
459 +
479 479  Through AT+COMMANDx and AT+DATACUTx we got valid value from each RS485 commands, Assume these valid value are RETURN1, RETURN2, .., to RETURNx. The next step is how to compose the LoRa Uplink Payload by these RETURNs. The command is **AT+DATAUP.**
480 -)))
481 481  
482 -(((
483 -(% style="color:#4f81bd" %)**Examples: AT+DATAUP=0**
484 -)))
485 485  
486 -(((
487 -Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**A SIGNLE UPLINK**.
488 -)))
463 +**Examples: AT+DATAUP=0**
489 489  
490 -(((
465 +Compose the uplink payload with value returns in sequence and send with **A SIGNLE UPLINK**.
466 +
491 491  Final Payload is
492 -)))
493 493  
494 -(((
495 -(% style="color:#4f81bd" %)**Battery Info+PAYVER + VALID Value from RETURN1 + Valid Value from RETURN2 + … + RETURNx**
496 -)))
469 +Battery Info+PAYVER + VALID Value from RETURN1 + Valid Value from RETURN2 + … + RETURNx
497 497  
498 -(((
499 499  Where PAYVER is defined by AT+PAYVER, below is an example screen shot.
500 -)))
501 501  
502 -[[image:1653269759169-150.png||height="513" width="716"]]
473 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image019.png]]
503 503  
504 -(% style="color:#4f81bd" %)**Examples: AT+DATAUP=1**
505 505  
506 -Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**Multiply UPLINKs**.
507 507  
477 +**Examples: AT+DATAUP=1**
478 +
479 +Compose the uplink payload with value returns in sequence and send with **Multiply UPLINKs**.
480 +
508 508  Final Payload is
509 509  
510 -(% style="color:#4f81bd" %)**Battery Info+PAYVER + PAYLOAD COUNT + PAYLOAD# + DATA**
483 +Battery Info+PAYVER + PAYLOAD COUNT + PAYLOAD# + DATA
511 511  
512 512  1. Battery Info (2 bytes): Battery voltage
513 513  1. PAYVER (1 byte): Defined by AT+PAYVER
514 514  1. PAYLOAD COUNT (1 byte): Total how many uplinks of this sampling.
515 515  1. PAYLOAD# (1 byte): Number of this uplink. (from 0,1,2,3…,to PAYLOAD COUNT)
516 -1. DATA: Valid value: max 6 bytes(US915 version here, Notice*!) for each uplink so each uplink <= 11 bytes. For the last uplink, DATA will might less than 6 bytes
489 +1. DATA: Valid value: max 6 bytes(US915 version here, [[Notice*!>>path:#max_byte]]) for each uplink so each uplink <= 11 bytes. For the last uplink, DATA will might less than 6 bytes
517 517  
518 -[[image:1653269916228-732.png||height="433" width="711"]]
491 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
519 519  
520 520  
521 521  So totally there will be 3 uplinks for this sampling, each uplink includes 6 bytes DATA
522 522  
523 -DATA1=RETURN1 Valid Value = (% style="background-color:green; color:white" %)20 20 0a 33 90 41
496 +DATA1=RETURN1 Valid Value = 20 20 0a 33 90 41
524 524  
525 -DATA2=1^^st^^ ~~ 6^^th^^ byte of Valid value of RETURN10=(% style="background-color:green; color:white" %) 02 aa 05 81 0a 20
498 +DATA2=1^^st^^ ~~ 6^^th^^ byte of Valid value of RETURN10= 02 aa 05 81 0a 20
526 526  
527 -DATA3=7^^th^^ ~~ 11^^th^^ bytes of Valid value of RETURN10 = (% style="background-color:green; color:white" %)20 20 20 2d 30
500 +DATA3=7^^th^^ ~~ 11^^th^^ bytes of Valid value of RETURN10 = 20 20 20 2d 30
528 528  
502 +
503 +
529 529  Below are the uplink payloads:
530 530  
531 -[[image:1653270130359-810.png]]
506 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image021.png]]
532 532  
533 533  
534 -(% style="color:red" %)**Notice: the Max bytes is according to the max support bytes in different Frequency Bands for lowest SF. As below:**
509 +Notice: the Max bytes is according to the max support bytes in different Frequency Bands for lowest SF. As below:
535 535  
536 536   ~* For AU915/AS923 bands, if UplinkDwell time=0, max 51 bytes for each uplink ( so 51 -5 = 46 max valid date)
537 537  
... ... @@ -541,8 +541,12 @@
541 541  
542 542   ~* For all other bands: max 51 bytes for each uplink  ( so 51 -5 = 46 max valid date).
543 543  
544 -=== 3.3.5 Uplink on demand ===
545 545  
520 +
521 +1.
522 +11.
523 +111. Uplink on demand
524 +
546 546  Except uplink periodically, RS485-BL is able to uplink on demand. The server sends downlink command to RS485-BL and RS485 will uplink data base on the command.
547 547  
548 548  Downlink control command:
... ... @@ -553,8 +553,8 @@
553 553  
554 554  
555 555  
556 -1.
557 -11.
535 +1.
536 +11.
558 558  111. Uplink on Interrupt
559 559  
560 560  Put the interrupt sensor between 3.3v_out and GPIO ext.[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image022.png]]
... ... @@ -568,7 +568,7 @@
568 568  AT+INTMOD=3  Interrupt trigger by rising edge.
569 569  
570 570  
571 -1.
550 +1.
572 572  11. Uplink Payload
573 573  
574 574  |**Size(bytes)**|**2**|**1**|**Length depends on the return from the commands**
... ... @@ -630,15 +630,15 @@
630 630  
631 631  * **Sensor Related Commands**: These commands are special designed for RS485-BL.  User can see these commands below:
632 632  
633 -1.
634 -11.
612 +1.
613 +11.
635 635  111. Common Commands:
636 636  
637 637  They should be available for each of Dragino Sensors, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: [[http:~~/~~/wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands>>url:http://wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands]]
638 638  
639 639  
640 -1.
641 -11.
619 +1.
620 +11.
642 642  111. Sensor related commands:
643 643  
644 644  ==== Choose Device Type (RS485 or TTL) ====
... ... @@ -944,13 +944,13 @@
944 944  
945 945  
946 946  
947 -1.
926 +1.
948 948  11. Buttons
949 949  
950 950  |**Button**|**Feature**
951 951  |**RST**|Reboot RS485-BL
952 952  
953 -1.
932 +1.
954 954  11. +3V3 Output
955 955  
956 956  RS485-BL has a Controllable +3V3 output, user can use this output to power external sensor.
... ... @@ -968,7 +968,7 @@
968 968  By default, the AT+3V3T=0. This is a special case, means the +3V3 output is always on at any time
969 969  
970 970  
971 -1.
950 +1.
972 972  11. +5V Output
973 973  
974 974  RS485-BL has a Controllable +5V output, user can use this output to power external sensor.
... ... @@ -988,13 +988,13 @@
988 988  
989 989  
990 990  
991 -1.
970 +1.
992 992  11. LEDs
993 993  
994 994  |**LEDs**|**Feature**
995 995  |**LED1**|Blink when device transmit a packet.
996 996  
997 -1.
976 +1.
998 998  11. Switch Jumper
999 999  
1000 1000  |**Switch Jumper**|**Feature**
... ... @@ -1040,7 +1040,7 @@
1040 1040  
1041 1041  
1042 1042  
1043 -1.
1022 +1.
1044 1044  11. Common AT Command Sequence
1045 1045  111. Multi-channel ABP mode (Use with SX1301/LG308)
1046 1046  
... ... @@ -1059,8 +1059,8 @@
1059 1059  
1060 1060  ATZ
1061 1061  
1062 -1.
1063 -11.
1041 +1.
1042 +11.
1064 1064  111. Single-channel ABP mode (Use with LG01/LG02)
1065 1065  
1066 1066  AT+FDR   Reset Parameters to Factory Default, Keys Reserve
... ... @@ -1135,7 +1135,7 @@
1135 1135  [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image035.png]] [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image036.png]]
1136 1136  
1137 1137  
1138 -1.
1117 +1.
1139 1139  11. How to change the LoRa Frequency Bands/Region?
1140 1140  
1141 1141  User can follow the introduction for [[how to upgrade image>>path:#upgrade_image]]. When download the images, choose the required image file for download.
... ... @@ -1142,7 +1142,7 @@
1142 1142  
1143 1143  
1144 1144  
1145 -1.
1124 +1.
1146 1146  11. How many RS485-Slave can RS485-BL connects?
1147 1147  
1148 1148  The RS485-BL can support max 32 RS485 devices. Each uplink command of RS485-BL can support max 16 different RS485 command. So RS485-BL can support max 16 RS485 devices pre-program in the device for uplink. For other devices no pre-program, user can use the [[downlink message (type code 0xA8) to poll their info>>path:#downlink_A8]].
... ... @@ -1159,7 +1159,7 @@
1159 1159  
1160 1160  
1161 1161  
1162 -1.
1141 +1.
1163 1163  11. Why I can’t join TTN V3 in US915 /AU915 bands?
1164 1164  
1165 1165  It might about the channels mapping. Please see for detail.
1653269403619-508.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -27.8 KB
Content
1653269438444-278.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -26.6 KB
Content
1653269551753-223.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -138.7 KB
Content
1653269568276-930.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -131.4 KB
Content
1653269593172-426.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -142.6 KB
Content
1653269618463-608.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -27.7 KB
Content
1653269759169-150.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -294.0 KB
Content
1653269916228-732.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -143.3 KB
Content
1653270130359-810.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -197.8 KB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0