Changes for page RS485-LN – RS485 to LoRaWAN Converter User Manual
Last modified by Karry Zhuang on 2025/03/06 16:34
Summary
-
Page properties (1 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 9 removed)
Details
- Page properties
-
- Content
-
... ... @@ -18,42 +18,40 @@ 18 18 19 19 ((( 20 20 ((( 21 -The Dragino RS485-LN is a (% style="color:blue" %)**RS485 to LoRaWAN Converter**(%%). It converts the RS485 signal into LoRaWAN wireless signal which simplify the IoT installation and reduce the installation/maintaining cost.21 +The Dragino RS485-LN is a RS485 to LoRaWAN Converter. It converts the RS485 signal into LoRaWAN wireless signal which simplify the IoT installation and reduce the installation/maintaining cost. 22 22 ))) 23 23 24 24 ((( 25 -RS485-LN allows user to (% style="color:blue" %)**monitor / control RS485 devices**(%%)and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.25 +RS485-LN allows user to monitor / control RS485 devices and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on. 26 26 ))) 27 27 28 28 ((( 29 - (% style="color:blue" %)**For data uplink**(%%), RS485-LN sends user-defined commands to RS485 devices and gets the return from the RS485 devices. RS485-LN will process these returns according to user-define rules to get the final payload and upload to LoRaWAN server.29 +For data uplink, RS485-LN sends user-defined commands to RS485 devices and gets the return from the RS485 devices. RS485-LN will process these returns according to user-define rules to get the final payload and upload to LoRaWAN server. 30 30 ))) 31 31 32 32 ((( 33 -(% style="color:blue" %)**For data downlink**(%%), RS485-LN runs in LoRaWAN Class C. When there downlink commands from LoRaWAN server, RS485-LN will forward the commands from LoRaWAN server to RS485 devices. 34 - 35 -(% style="color:blue" %)**Demo Dashboard for RS485-LN**(%%) connect to two energy meters: [[https:~~/~~/app.datacake.de/dashboard/d/58844a26-378d-4c5a-aaf5-b5b5b153447a>>url:https://app.datacake.de/dashboard/d/58844a26-378d-4c5a-aaf5-b5b5b153447a]] 33 +For data downlink, RS485-LN runs in LoRaWAN Class C. When there downlink commands from LoRaWAN server, RS485-LN will forward the commands from LoRaWAN server to RS485 devices. 36 36 ))) 37 37 ))) 38 38 39 39 [[image:1653267211009-519.png||height="419" width="724"]] 40 40 41 - 42 42 == 1.2 Specifications == 43 43 44 - 45 45 **Hardware System:** 46 46 47 47 * STM32L072CZT6 MCU 48 -* SX1276/78 Wireless Chip 44 +* SX1276/78 Wireless Chip 49 49 * Power Consumption (exclude RS485 device): 50 50 ** Idle: 32mA@12v 47 + 48 +* 51 51 ** 20dB Transmit: 65mA@12v 52 52 53 53 **Interface for Model:** 54 54 55 55 * RS485 56 -* Power Input 7~~ 24V DC. 54 +* Power Input 7~~ 24V DC. 57 57 58 58 **LoRa Spec:** 59 59 ... ... @@ -76,8 +76,6 @@ 76 76 * Automatic RF Sense and CAD with ultra-fast AFC. 77 77 * Packet engine up to 256 bytes with CRC. 78 78 79 - 80 - 81 81 == 1.3 Features == 82 82 83 83 * LoRaWAN Class A & Class C protocol (default Class C) ... ... @@ -89,8 +89,6 @@ 89 89 * Support Modbus protocol 90 90 * Support Interrupt uplink (Since hardware version v1.2) 91 91 92 - 93 - 94 94 == 1.4 Applications == 95 95 96 96 * Smart Buildings & Home Automation ... ... @@ -100,13 +100,10 @@ 100 100 * Smart Cities 101 101 * Smart Factory 102 102 103 - 104 - 105 105 == 1.5 Firmware Change log == 106 106 107 107 [[RS485-LN Image files – Download link and Change log>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/]] 108 108 109 - 110 110 == 1.6 Hardware Change log == 111 111 112 112 ((( ... ... @@ -114,8 +114,6 @@ 114 114 v1.2: Add External Interrupt Pin. 115 115 116 116 v1.0: Release 117 - 118 - 119 119 ))) 120 120 ))) 121 121 ... ... @@ -132,8 +132,6 @@ 132 132 ))) 133 133 134 134 [[image:1653268091319-405.png]] 135 - 136 - 137 137 ))) 138 138 139 139 = 3. Operation Mode = ... ... @@ -142,8 +142,6 @@ 142 142 143 143 ((( 144 144 The RS485-LN is configured as LoRaWAN OTAA Class C mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the RS485-LN. It will auto join the network via OTAA. 145 - 146 - 147 147 ))) 148 148 149 149 == 3.2 Example to join LoRaWAN network == ... ... @@ -152,15 +152,10 @@ 152 152 153 153 [[image:1653268155545-638.png||height="334" width="724"]] 154 154 155 - 156 156 ((( 157 -((( 158 158 The RS485-LN in this example connected to two RS485 devices for demonstration, user can connect to other RS485 devices via the same method. The connection is as below: 159 -))) 160 160 161 -((( 162 162 485A+ and 485B- of the sensor are connected to RS485A and RA485B of RS485-LN respectively. 163 -))) 164 164 165 165 [[image:1653268227651-549.png||height="592" width="720"]] 166 166 ... ... @@ -180,7 +180,6 @@ 180 180 [[image:1652953462722-299.png]] 181 181 182 182 ((( 183 -((( 184 184 User can enter this key in their LoRaWAN Server portal. Below is TTN V3 screen shot: 185 185 ))) 186 186 ... ... @@ -187,11 +187,13 @@ 187 187 ((( 188 188 Add APP EUI in the application. 189 189 ))) 190 -))) 191 191 170 + 171 + 172 + 192 192 [[image:image-20220519174512-1.png]] 193 193 194 -[[image:image-20220519174512-2.png||height="32 3" width="720"]]175 +[[image:image-20220519174512-2.png||height="328" width="731"]] 195 195 196 196 [[image:image-20220519174512-3.png||height="556" width="724"]] 197 197 ... ... @@ -207,28 +207,31 @@ 207 207 208 208 209 209 ((( 210 -**Step 2**: Power on RS485-L Nand it will auto join to the TTN V3 network. After join success, it will start to upload message to TTN V3 and user can see in the panel.191 +**Step 2**: Power on RS485-BL and it will auto join to the TTN V3 network. After join success, it will start to upload message to TTN V3 and user can see in the panel. 211 211 ))) 212 212 213 213 [[image:1652953568895-172.png||height="232" width="724"]] 214 214 215 - 216 216 == 3.3 Configure Commands to read data == 217 217 218 218 ((( 219 -((( 220 -There are plenty of RS485 devices in the market and each device has different command to read the valid data. To support these devices in flexible, RS485-LN supports flexible command set. User can use [[AT Commands>>path:#AT_COMMAND]] or LoRaWAN Downlink Command to configure what commands RS485-LN should send for each sampling and how to handle the return from RS485 devices. 199 +There are plenty of RS485 and TTL level devices in the market and each device has different command to read the valid data. To support these devices in flexible, RS485-BL supports flexible command set. User can use [[AT Commands or LoRaWAN Downlink>>path:#AT_COMMAND]] Command to configure how RS485-BL should read the sensor and how to handle the return from RS485 or TTL sensors. 221 221 ))) 222 222 223 -((( 224 -(% style="color:red" %)Note: below description and commands are for firmware version >v1.1, if you have firmware version v1.0. Please check the [[user manual v1.0>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/&file=RS485-LN_UserManual_v1.0.1.pdf]] or upgrade the firmware to v1.1 225 -))) 226 -))) 227 - 228 228 === 3.3.1 onfigure UART settings for RS485 or TTL communication === 229 229 230 - To useRS485-LNto read data from RS485 sensors,connect the RS485-LNA/B tracestothesensors.And user need tomakesureRS485-LN use the matchUART settingtoaccess thesensors.Therelatedcommandsfor UART settings are:204 +RS485-BL can connect to either RS485 sensors or TTL sensor. User need to specify what type of sensor need to connect. 231 231 206 +**~1. RS485-MODBUS mode:** 207 + 208 +AT+MOD=1 ~/~/ Support RS485-MODBUS type sensors. User can connect multiply RS485 , Modbus sensors to the A / B pins. 209 + 210 +**2. TTL mode:** 211 + 212 +AT+MOD=2 ~/~/ Support TTL Level sensors, User can connect one TTL Sensor to the TXD/RXD/GND pins. 213 + 214 +RS485-BL default UART settings is **9600, no parity, stop bit 1**. If the sensor has a different settings, user can change the RS485-BL setting to match. 215 + 232 232 (% border="1" style="background-color:#ffffcc; color:green; width:795px" %) 233 233 |((( 234 234 **AT Commands** ... ... @@ -253,7 +253,13 @@ 253 253 |((( 254 254 AT+PARITY 255 255 )))|(% style="width:285px" %)((( 240 +((( 256 256 Set UART parity (for RS485 connection) 242 +))) 243 + 244 +((( 245 +Default Value is: no parity. 246 +))) 257 257 )))|(% style="width:347px" %)((( 258 258 ((( 259 259 AT+PARITY=0 ... ... @@ -271,7 +271,7 @@ 271 271 ))) 272 272 273 273 ((( 274 - 264 +Default Value is: 1bit. 275 275 ))) 276 276 )))|(% style="width:347px" %)((( 277 277 ((( ... ... @@ -290,10 +290,12 @@ 290 290 === 3.3.2 Configure sensors === 291 291 292 292 ((( 283 +Some sensors might need to configure before normal operation. User can configure such sensor via PC or through RS485-BL AT Commands (% style="color:#4f81bd" %)**AT+CFGDEV**. 284 +))) 285 + 293 293 ((( 294 - Some sensors might need to configurebefore normal operation. Usercan configuresuchsensorviaPC andRS485 adapter or through RS485-LN AT Commands(% style="color:#4f81bd" %)**AT+CFGDEV**(%%).Each (% style="color:#4f81bd" %)**AT+CFGDEVRS485command to sensors. This command will only run when user input it and won’t run during each sampling.287 +When user issue an (% style="color:#4f81bd" %)**AT+CFGDEV**(%%) command, Each (% style="color:#4f81bd" %)**AT+CFGDEV**(%%) equals to send a command to the RS485 or TTL sensors. This command will only run when user input it and won’t run during each sampling. 295 295 ))) 296 -))) 297 297 298 298 (% border="1" style="background-color:#ffffcc; color:green; width:806px" %) 299 299 |**AT Commands**|(% style="width:418px" %)**Description**|(% style="width:256px" %)**Example** ... ... @@ -305,6 +305,8 @@ 305 305 mm: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command 306 306 )))|(% style="width:256px" %)AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m 307 307 300 +Detail of AT+CFGDEV command see [[AT+CFGDEV detail>>path:#AT_CFGDEV]]. 301 + 308 308 === 3.3.3 Configure read commands for each sampling === 309 309 310 310 ((( ... ... @@ -386,17 +386,11 @@ 386 386 **m: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command** 387 387 ))) 388 388 389 -((( 390 390 For example, if we have a RS485 sensor. The command to get sensor value is: 01 03 0B B8 00 02 46 0A. Where 01 03 0B B8 00 02 is the Modbus command to read the register 0B B8 where stored the sensor value. The 46 0A is the CRC-16/MODBUS which calculate manually. 391 -))) 392 392 393 -((( 394 394 In the RS485-BL, we should use this command AT+COMMAND1=01 03 0B B8 00 02,1 for the same. 395 -))) 396 396 397 -((( 398 398 **AT+SEARCHx**: This command defines how to handle the return from AT+COMMANDx. 399 -))) 400 400 401 401 (% border="1" class="table-bordered" %) 402 402 |((( ... ... @@ -408,24 +408,26 @@ 408 408 409 409 ))) 410 410 411 - **Examples:**399 +Examples: 412 412 413 - ~1. For a return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49401 +1. For a return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49 414 414 415 415 If we set AT+SEARCH1=1,1E 56 34. (max 5 bytes for prefix) 416 416 417 -The valid data will be all bytes after 1E 56 34 , so it is (% style="background-color:yellow" %)**2e 30 58 5f 36 41 30 31 00 49**405 +The valid data will be all bytes after 1E 56 34 , so it is 2e 30 58 5f 36 41 30 31 00 49 418 418 419 -[[image:165 3269403619-508.png]]407 +[[image:1652954654347-831.png]] 420 420 421 -2. For a return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49 422 422 410 +1. For a return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49 411 + 423 423 If we set AT+SEARCH1=2, 1E 56 34+31 00 49 424 424 425 -Device will search the bytes between 1E 56 34 and 31 00 49. So it is (% style="background-color:yellow" %)**2e 30 58 5f 36 41 30**414 +Device will search the bytes between 1E 56 34 and 31 00 49. So it is 2e 30 58 5f 36 41 30 426 426 427 -[[image: 1653269438444-278.png]]416 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image014.png]] 428 428 418 + 429 429 **AT+DATACUTx : **This command defines how to handle the return from AT+COMMANDx, max return length is 45 bytes. 430 430 431 431 |((( ... ... @@ -440,95 +440,94 @@ 440 440 441 441 * Grab bytes: 442 442 443 -[[image: 1653269551753-223.png||height="311" width="717"]]433 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image015.png]] 444 444 445 445 * Grab a section. 446 446 447 -[[image: 1653269568276-930.png||height="325" width="718"]]437 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image016.png]] 448 448 449 449 * Grab different sections. 450 450 451 -[[image: 1653269593172-426.png||height="303" width="725"]]441 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image017.png]] 452 452 453 -(% style="color:red" %)**Note:** 454 454 444 +Note: 445 + 455 455 AT+SEARCHx and AT+DATACUTx can be used together, if both commands are set, RS485-BL will first process AT+SEARCHx on the return string and get a temporary string, and then process AT+DATACUTx on this temporary string to get the final payload. In this case, AT+DATACUTx need to set to format AT+DATACUTx=0,xx,xx where the return bytes set to 0. 456 456 457 457 Example: 458 458 459 - (% style="color:red" %)AT+COMMAND1=11 01 1E D0,0450 +AT+COMMAND1=11 01 1E D0,0 460 460 461 - (% style="color:red" %)AT+SEARCH1=1,1E 56 34452 +AT+SEARCH1=1,1E 56 34 462 462 463 - (% style="color:red" %)AT+DATACUT1=0,2,1~~5454 +AT+DATACUT1=0,2,1~~5 464 464 465 - (% style="color:red" %)Return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49456 +Return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49 466 466 467 - (% style="color:red" %)String after SEARCH command: 2e 30 58 5f 36 41 30 31 00 49458 +String after SEARCH command: 2e 30 58 5f 36 41 30 31 00 49 468 468 469 - (% style="color:red" %)Valid payload after DataCUT command: 2e 30 58 5f 36460 +Valid payload after DataCUT command: 2e 30 58 5f 36 470 470 471 -[[image: 1653269618463-608.png]]462 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image018.png]] 472 472 473 -=== 3.3.4 Compose the uplink payload === 474 474 475 -((( 465 + 466 + 467 +1. 468 +11. 469 +111. Compose the uplink payload 470 + 476 476 Through AT+COMMANDx and AT+DATACUTx we got valid value from each RS485 commands, Assume these valid value are RETURN1, RETURN2, .., to RETURNx. The next step is how to compose the LoRa Uplink Payload by these RETURNs. The command is **AT+DATAUP.** 477 -))) 478 478 479 -((( 480 -(% style="color:#4f81bd" %)**Examples: AT+DATAUP=0** 481 -))) 482 482 483 -((( 484 -Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**A SIGNLE UPLINK**. 485 -))) 474 +**Examples: AT+DATAUP=0** 486 486 487 -((( 476 +Compose the uplink payload with value returns in sequence and send with **A SIGNLE UPLINK**. 477 + 488 488 Final Payload is 489 -))) 490 490 491 -((( 492 -(% style="color:#4f81bd" %)**Battery Info+PAYVER + VALID Value from RETURN1 + Valid Value from RETURN2 + … + RETURNx** 493 -))) 480 +Battery Info+PAYVER + VALID Value from RETURN1 + Valid Value from RETURN2 + … + RETURNx 494 494 495 -((( 496 496 Where PAYVER is defined by AT+PAYVER, below is an example screen shot. 497 -))) 498 498 499 -[[image: 1653269759169-150.png||height="513" width="716"]]484 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image019.png]] 500 500 501 -(% style="color:#4f81bd" %)**Examples: AT+DATAUP=1** 502 502 503 -Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**Multiply UPLINKs**. 504 504 488 +**Examples: AT+DATAUP=1** 489 + 490 +Compose the uplink payload with value returns in sequence and send with **Multiply UPLINKs**. 491 + 505 505 Final Payload is 506 506 507 - (% style="color:#4f81bd" %)**Battery Info+PAYVER + PAYLOAD COUNT + PAYLOAD# + DATA**494 +Battery Info+PAYVER + PAYLOAD COUNT + PAYLOAD# + DATA 508 508 509 509 1. Battery Info (2 bytes): Battery voltage 510 510 1. PAYVER (1 byte): Defined by AT+PAYVER 511 511 1. PAYLOAD COUNT (1 byte): Total how many uplinks of this sampling. 512 512 1. PAYLOAD# (1 byte): Number of this uplink. (from 0,1,2,3…,to PAYLOAD COUNT) 513 -1. DATA: Valid value: max 6 bytes(US915 version here, Notice*!) for each uplink so each uplink <= 11 bytes. For the last uplink, DATA will might less than 6 bytes 500 +1. DATA: Valid value: max 6 bytes(US915 version here, [[Notice*!>>path:#max_byte]]) for each uplink so each uplink <= 11 bytes. For the last uplink, DATA will might less than 6 bytes 514 514 515 -[[image: 1653269916228-732.png||height="433" width="711"]]502 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]] 516 516 517 517 518 518 So totally there will be 3 uplinks for this sampling, each uplink includes 6 bytes DATA 519 519 520 -DATA1=RETURN1 Valid Value = (% style="background-color:green; color:white" %)20 20 0a 33 90 41507 +DATA1=RETURN1 Valid Value = 20 20 0a 33 90 41 521 521 522 -DATA2=1^^st^^ ~~ 6^^th^^ byte of Valid value of RETURN10= (%style="background-color:green; color:white" %)02 aa 05 81 0a 20509 +DATA2=1^^st^^ ~~ 6^^th^^ byte of Valid value of RETURN10= 02 aa 05 81 0a 20 523 523 524 -DATA3=7^^th^^ ~~ 11^^th^^ bytes of Valid value of RETURN10 = (%style="background-color:green; color:white" %)20 20 20 2d 30511 +DATA3=7^^th^^ ~~ 11^^th^^ bytes of Valid value of RETURN10 = 20 20 20 2d 30 525 525 513 + 514 + 526 526 Below are the uplink payloads: 527 527 528 -[[image: 1653270130359-810.png]]517 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image021.png]] 529 529 530 530 531 - (% style="color:red" %)**Notice: the Max bytes is according to the max support bytes in different Frequency Bands for lowest SF. As below:**520 +Notice: the Max bytes is according to the max support bytes in different Frequency Bands for lowest SF. As below: 532 532 533 533 ~* For AU915/AS923 bands, if UplinkDwell time=0, max 51 bytes for each uplink ( so 51 -5 = 46 max valid date) 534 534 ... ... @@ -538,8 +538,12 @@ 538 538 539 539 ~* For all other bands: max 51 bytes for each uplink ( so 51 -5 = 46 max valid date). 540 540 541 -=== 3.3.5 Uplink on demand === 542 542 531 + 532 +1. 533 +11. 534 +111. Uplink on demand 535 + 543 543 Except uplink periodically, RS485-BL is able to uplink on demand. The server sends downlink command to RS485-BL and RS485 will uplink data base on the command. 544 544 545 545 Downlink control command:
- 1653269403619-508.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -27.8 KB - Content
- 1653269438444-278.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -26.6 KB - Content
- 1653269551753-223.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -138.7 KB - Content
- 1653269568276-930.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -131.4 KB - Content
- 1653269593172-426.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -142.6 KB - Content
- 1653269618463-608.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -27.7 KB - Content
- 1653269759169-150.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -294.0 KB - Content
- 1653269916228-732.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -143.3 KB - Content
- 1653270130359-810.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -197.8 KB - Content