<
From version < 32.14 >
edited by Xiaoling
on 2022/06/02 15:26
To version < 22.2 >
edited by Xiaoling
on 2022/05/23 09:11
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -18,42 +18,40 @@
18 18  
19 19  (((
20 20  (((
21 -The Dragino RS485-LN is a (% style="color:blue" %)**RS485 to LoRaWAN Converter**(%%). It converts the RS485 signal into LoRaWAN wireless signal which simplify the IoT installation and reduce the installation/maintaining cost.
21 +The Dragino RS485-LN is a RS485 to LoRaWAN Converter. It converts the RS485 signal into LoRaWAN wireless signal which simplify the IoT installation and reduce the installation/maintaining cost.
22 22  )))
23 23  
24 24  (((
25 -RS485-LN allows user to (% style="color:blue" %)**monitor / control RS485 devices**(%%) and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
25 +RS485-LN allows user to monitor / control RS485 devices and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
26 26  )))
27 27  
28 28  (((
29 -(% style="color:blue" %)**For data uplink**(%%), RS485-LN sends user-defined commands to RS485 devices and gets the return from the RS485 devices. RS485-LN will process these returns according to user-define rules to get the final payload and upload to LoRaWAN server.
29 +For data uplink, RS485-LN sends user-defined commands to RS485 devices and gets the return from the RS485 devices. RS485-LN will process these returns according to user-define rules to get the final payload and upload to LoRaWAN server.
30 30  )))
31 31  
32 32  (((
33 -(% style="color:blue" %)**For data downlink**(%%), RS485-LN runs in LoRaWAN Class C. When there downlink commands from LoRaWAN server, RS485-LN will forward the commands from LoRaWAN server to RS485 devices.
34 -
35 -(% style="color:blue" %)**Demo Dashboard for RS485-LN**(%%) connect to two energy meters: [[https:~~/~~/app.datacake.de/dashboard/d/58844a26-378d-4c5a-aaf5-b5b5b153447a>>url:https://app.datacake.de/dashboard/d/58844a26-378d-4c5a-aaf5-b5b5b153447a]]
33 +For data downlink, RS485-LN runs in LoRaWAN Class C. When there downlink commands from LoRaWAN server, RS485-LN will forward the commands from LoRaWAN server to RS485 devices.
36 36  )))
37 37  )))
38 38  
39 39  [[image:1653267211009-519.png||height="419" width="724"]]
40 40  
41 -
42 42  == 1.2 Specifications ==
43 43  
44 -
45 45  **Hardware System:**
46 46  
47 47  * STM32L072CZT6 MCU
48 -* SX1276/78 Wireless Chip 
44 +* SX1276/78 Wireless Chip
49 49  * Power Consumption (exclude RS485 device):
50 50  ** Idle: 32mA@12v
47 +
48 +*
51 51  ** 20dB Transmit: 65mA@12v
52 52  
53 53  **Interface for Model:**
54 54  
55 55  * RS485
56 -* Power Input 7~~ 24V DC. 
54 +* Power Input 7~~ 24V DC.
57 57  
58 58  **LoRa Spec:**
59 59  
... ... @@ -76,8 +76,6 @@
76 76  * Automatic RF Sense and CAD with ultra-fast AFC.
77 77  * Packet engine up to 256 bytes with CRC.
78 78  
79 -
80 -
81 81  == 1.3 Features ==
82 82  
83 83  * LoRaWAN Class A & Class C protocol (default Class C)
... ... @@ -89,8 +89,6 @@
89 89  * Support Modbus protocol
90 90  * Support Interrupt uplink (Since hardware version v1.2)
91 91  
92 -
93 -
94 94  == 1.4 Applications ==
95 95  
96 96  * Smart Buildings & Home Automation
... ... @@ -100,13 +100,10 @@
100 100  * Smart Cities
101 101  * Smart Factory
102 102  
103 -
104 -
105 105  == 1.5 Firmware Change log ==
106 106  
107 107  [[RS485-LN Image files – Download link and Change log>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/]]
108 108  
109 -
110 110  == 1.6 Hardware Change log ==
111 111  
112 112  (((
... ... @@ -114,8 +114,6 @@
114 114  v1.2: Add External Interrupt Pin.
115 115  
116 116  v1.0: Release
117 -
118 -
119 119  )))
120 120  )))
121 121  
... ... @@ -132,8 +132,6 @@
132 132  )))
133 133  
134 134  [[image:1653268091319-405.png]]
135 -
136 -
137 137  )))
138 138  
139 139  = 3. Operation Mode =
... ... @@ -142,8 +142,6 @@
142 142  
143 143  (((
144 144  The RS485-LN is configured as LoRaWAN OTAA Class C mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the RS485-LN. It will auto join the network via OTAA.
145 -
146 -
147 147  )))
148 148  
149 149  == 3.2 Example to join LoRaWAN network ==
... ... @@ -152,15 +152,10 @@
152 152  
153 153  [[image:1653268155545-638.png||height="334" width="724"]]
154 154  
155 -
156 156  (((
157 -(((
158 158  The RS485-LN in this example connected to two RS485 devices for demonstration, user can connect to other RS485 devices via the same method. The connection is as below:
159 -)))
160 160  
161 -(((
162 162  485A+ and 485B- of the sensor are connected to RS485A and RA485B of RS485-LN respectively.
163 -)))
164 164  
165 165  [[image:1653268227651-549.png||height="592" width="720"]]
166 166  
... ... @@ -180,7 +180,6 @@
180 180  [[image:1652953462722-299.png]]
181 181  
182 182  (((
183 -(((
184 184  User can enter this key in their LoRaWAN Server portal. Below is TTN V3 screen shot:
185 185  )))
186 186  
... ... @@ -187,11 +187,13 @@
187 187  (((
188 188  Add APP EUI in the application.
189 189  )))
190 -)))
191 191  
170 +
171 +
172 +
192 192  [[image:image-20220519174512-1.png]]
193 193  
194 -[[image:image-20220519174512-2.png||height="323" width="720"]]
175 +[[image:image-20220519174512-2.png||height="328" width="731"]]
195 195  
196 196  [[image:image-20220519174512-3.png||height="556" width="724"]]
197 197  
... ... @@ -207,28 +207,31 @@
207 207  
208 208  
209 209  (((
210 -**Step 2**: Power on RS485-LN and it will auto join to the TTN V3 network. After join success, it will start to upload message to TTN V3 and user can see in the panel.
191 +**Step 2**: Power on RS485-BL and it will auto join to the TTN V3 network. After join success, it will start to upload message to TTN V3 and user can see in the panel.
211 211  )))
212 212  
213 213  [[image:1652953568895-172.png||height="232" width="724"]]
214 214  
215 -
216 216  == 3.3 Configure Commands to read data ==
217 217  
218 218  (((
219 -(((
220 -There are plenty of RS485 devices in the market and each device has different command to read the valid data. To support these devices in flexible, RS485-LN supports flexible command set. User can use [[AT Commands>>path:#AT_COMMAND]] or LoRaWAN Downlink Command to configure what commands RS485-LN should send for each sampling and how to handle the return from RS485 devices.
199 +There are plenty of RS485 and TTL level devices in the market and each device has different command to read the valid data. To support these devices in flexible, RS485-BL supports flexible command set. User can use [[AT Commands or LoRaWAN Downlink>>path:#AT_COMMAND]] Command to configure how RS485-BL should read the sensor and how to handle the return from RS485 or TTL sensors.
221 221  )))
222 222  
223 -(((
224 -(% style="color:red" %)Note: below description and commands are for firmware version >v1.1, if you have firmware version v1.0. Please check the [[user manual v1.0>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/&file=RS485-LN_UserManual_v1.0.1.pdf]] or upgrade the firmware to v1.1
225 -)))
226 -)))
227 -
228 228  === 3.3.1 onfigure UART settings for RS485 or TTL communication ===
229 229  
230 -To use RS485-LN to read data from RS485 sensors, connect the RS485-LN A/B traces to the sensors. And user need to make sure RS485-LN use the match UART setting to access the sensors. The related commands for UART settings are:
204 +RS485-BL can connect to either RS485 sensors or TTL sensor. User need to specify what type of sensor need to connect.
231 231  
206 +**~1. RS485-MODBUS mode:**
207 +
208 +AT+MOD=1 ~/~/ Support RS485-MODBUS type sensors. User can connect multiply RS485 , Modbus sensors to the A / B pins.
209 +
210 +**2. TTL mode:**
211 +
212 +AT+MOD=2 ~/~/ Support TTL Level sensors, User can connect one TTL Sensor to the TXD/RXD/GND pins.
213 +
214 +RS485-BL default UART settings is **9600, no parity, stop bit 1**. If the sensor has a different settings, user can change the RS485-BL setting to match.
215 +
232 232  (% border="1" style="background-color:#ffffcc; color:green; width:795px" %)
233 233  |(((
234 234  **AT Commands**
... ... @@ -253,7 +253,13 @@
253 253  |(((
254 254  AT+PARITY
255 255  )))|(% style="width:285px" %)(((
240 +(((
256 256  Set UART parity (for RS485 connection)
242 +)))
243 +
244 +(((
245 +Default Value is: no parity.
246 +)))
257 257  )))|(% style="width:347px" %)(((
258 258  (((
259 259  AT+PARITY=0
... ... @@ -271,7 +271,7 @@
271 271  )))
272 272  
273 273  (((
274 -
264 +Default Value is: 1bit.
275 275  )))
276 276  )))|(% style="width:347px" %)(((
277 277  (((
... ... @@ -290,10 +290,12 @@
290 290  === 3.3.2 Configure sensors ===
291 291  
292 292  (((
283 +Some sensors might need to configure before normal operation. User can configure such sensor via PC or through RS485-BL AT Commands (% style="color:#4f81bd" %)**AT+CFGDEV**.
284 +)))
285 +
293 293  (((
294 -Some sensors might need to configure before normal operation. User can configure such sensor via PC and RS485 adapter or through RS485-LN AT Commands (% style="color:#4f81bd" %)**AT+CFGDEV**(%%). Each (% style="color:#4f81bd" %)**AT+CFGDEV **(%%)equals to send a RS485 command to sensors. This command will only run when user input it and won’t run during each sampling.
287 +When user issue an (% style="color:#4f81bd" %)**AT+CFGDEV**(%%) command, Each (% style="color:#4f81bd" %)**AT+CFGDEV**(%%) equals to send a command to the RS485 or TTL sensors. This command will only run when user input it and won’t run during each sampling.
295 295  )))
296 -)))
297 297  
298 298  (% border="1" style="background-color:#ffffcc; color:green; width:806px" %)
299 299  |**AT Commands**|(% style="width:418px" %)**Description**|(% style="width:256px" %)**Example**
... ... @@ -305,6 +305,8 @@
305 305  mm: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command
306 306  )))|(% style="width:256px" %)AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m
307 307  
300 +Detail of AT+CFGDEV command see [[AT+CFGDEV detail>>path:#AT_CFGDEV]].
301 +
308 308  === 3.3.3 Configure read commands for each sampling ===
309 309  
310 310  (((
... ... @@ -386,17 +386,11 @@
386 386  **m: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command**
387 387  )))
388 388  
389 -(((
390 390  For example, if we have a RS485 sensor. The command to get sensor value is: 01 03 0B B8 00 02 46 0A. Where 01 03 0B B8 00 02 is the Modbus command to read the register 0B B8 where stored the sensor value. The 46 0A is the CRC-16/MODBUS which calculate manually.
391 -)))
392 392  
393 -(((
394 394  In the RS485-BL, we should use this command AT+COMMAND1=01 03 0B B8 00 02,1 for the same.
395 -)))
396 396  
397 -(((
398 398  **AT+SEARCHx**: This command defines how to handle the return from AT+COMMANDx.
399 -)))
400 400  
401 401  (% border="1" class="table-bordered" %)
402 402  |(((
... ... @@ -408,24 +408,26 @@
408 408  
409 409  )))
410 410  
411 -**Examples:**
399 +Examples:
412 412  
413 -~1. For a return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
401 +1. For a return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
414 414  
415 415  If we set AT+SEARCH1=1,1E 56 34.      (max 5 bytes for prefix)
416 416  
417 -The valid data will be all bytes after 1E 56 34 , so it is (% style="background-color:yellow" %)** 2e 30 58 5f 36 41 30 31 00 49**
405 +The valid data will be all bytes after 1E 56 34 , so it is 2e 30 58 5f 36 41 30 31 00 49
418 418  
419 -[[image:1653269403619-508.png]]
407 +[[image:1652954654347-831.png]]
420 420  
421 -2. For a return string from AT+COMMAND1:  16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
422 422  
410 +1. For a return string from AT+COMMAND1:  16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
411 +
423 423  If we set AT+SEARCH1=2, 1E 56 34+31 00 49
424 424  
425 -Device will search the bytes between 1E 56 34 and 31 00 49. So it is (% style="background-color:yellow" %)** 2e 30 58 5f 36 41 30**
414 +Device will search the bytes between 1E 56 34 and 31 00 49. So it is 2e 30 58 5f 36 41 30
426 426  
427 -[[image:1653269438444-278.png]]
416 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image014.png]]
428 428  
418 +
429 429  **AT+DATACUTx : **This command defines how to handle the return from AT+COMMANDx, max return length is 45 bytes.
430 430  
431 431  |(((
... ... @@ -440,95 +440,94 @@
440 440  
441 441  * Grab bytes:
442 442  
443 -[[image:1653269551753-223.png||height="311" width="717"]]
433 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image015.png]]
444 444  
445 445  * Grab a section.
446 446  
447 -[[image:1653269568276-930.png||height="325" width="718"]]
437 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image016.png]]
448 448  
449 449  * Grab different sections.
450 450  
451 -[[image:1653269593172-426.png||height="303" width="725"]]
441 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image017.png]]
452 452  
453 -(% style="color:red" %)**Note:**
454 454  
444 +Note:
445 +
455 455  AT+SEARCHx and AT+DATACUTx can be used together, if both commands are set, RS485-BL will first process AT+SEARCHx on the return string and get a temporary string, and then process AT+DATACUTx on this temporary string to get the final payload. In this case, AT+DATACUTx need to set to format AT+DATACUTx=0,xx,xx where the return bytes set to 0.
456 456  
457 457  Example:
458 458  
459 -(% style="color:red" %)AT+COMMAND1=11 01 1E D0,0
450 +AT+COMMAND1=11 01 1E D0,0
460 460  
461 -(% style="color:red" %)AT+SEARCH1=1,1E 56 34
452 +AT+SEARCH1=1,1E 56 34
462 462  
463 -(% style="color:red" %)AT+DATACUT1=0,2,1~~5
454 +AT+DATACUT1=0,2,1~~5
464 464  
465 -(% style="color:red" %)Return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
456 +Return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
466 466  
467 -(% style="color:red" %)String after SEARCH command: 2e 30 58 5f 36 41 30 31 00 49
458 +String after SEARCH command: 2e 30 58 5f 36 41 30 31 00 49
468 468  
469 -(% style="color:red" %)Valid payload after DataCUT command: 2e 30 58 5f 36
460 +Valid payload after DataCUT command: 2e 30 58 5f 36
470 470  
471 -[[image:1653269618463-608.png]]
462 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image018.png]]
472 472  
473 -=== 3.3.4 Compose the uplink payload ===
474 474  
475 -(((
465 +
466 +
467 +1.
468 +11.
469 +111. Compose the uplink payload
470 +
476 476  Through AT+COMMANDx and AT+DATACUTx we got valid value from each RS485 commands, Assume these valid value are RETURN1, RETURN2, .., to RETURNx. The next step is how to compose the LoRa Uplink Payload by these RETURNs. The command is **AT+DATAUP.**
477 -)))
478 478  
479 -(((
480 -(% style="color:#4f81bd" %)**Examples: AT+DATAUP=0**
481 -)))
482 482  
483 -(((
484 -Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**A SIGNLE UPLINK**.
485 -)))
474 +**Examples: AT+DATAUP=0**
486 486  
487 -(((
476 +Compose the uplink payload with value returns in sequence and send with **A SIGNLE UPLINK**.
477 +
488 488  Final Payload is
489 -)))
490 490  
491 -(((
492 -(% style="color:#4f81bd" %)**Battery Info+PAYVER + VALID Value from RETURN1 + Valid Value from RETURN2 + … + RETURNx**
493 -)))
480 +Battery Info+PAYVER + VALID Value from RETURN1 + Valid Value from RETURN2 + … + RETURNx
494 494  
495 -(((
496 496  Where PAYVER is defined by AT+PAYVER, below is an example screen shot.
497 -)))
498 498  
499 -[[image:1653269759169-150.png||height="513" width="716"]]
484 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image019.png]]
500 500  
501 -(% style="color:#4f81bd" %)**Examples: AT+DATAUP=1**
502 502  
503 -Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**Multiply UPLINKs**.
504 504  
488 +**Examples: AT+DATAUP=1**
489 +
490 +Compose the uplink payload with value returns in sequence and send with **Multiply UPLINKs**.
491 +
505 505  Final Payload is
506 506  
507 -(% style="color:#4f81bd" %)**Battery Info+PAYVER + PAYLOAD COUNT + PAYLOAD# + DATA**
494 +Battery Info+PAYVER + PAYLOAD COUNT + PAYLOAD# + DATA
508 508  
509 509  1. Battery Info (2 bytes): Battery voltage
510 510  1. PAYVER (1 byte): Defined by AT+PAYVER
511 511  1. PAYLOAD COUNT (1 byte): Total how many uplinks of this sampling.
512 512  1. PAYLOAD# (1 byte): Number of this uplink. (from 0,1,2,3…,to PAYLOAD COUNT)
513 -1. DATA: Valid value: max 6 bytes(US915 version here, Notice*!) for each uplink so each uplink <= 11 bytes. For the last uplink, DATA will might less than 6 bytes
500 +1. DATA: Valid value: max 6 bytes(US915 version here, [[Notice*!>>path:#max_byte]]) for each uplink so each uplink <= 11 bytes. For the last uplink, DATA will might less than 6 bytes
514 514  
515 -[[image:1653269916228-732.png||height="433" width="711"]]
502 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
516 516  
517 517  
518 518  So totally there will be 3 uplinks for this sampling, each uplink includes 6 bytes DATA
519 519  
520 -DATA1=RETURN1 Valid Value = (% style="background-color:green; color:white" %)20 20 0a 33 90 41
507 +DATA1=RETURN1 Valid Value = 20 20 0a 33 90 41
521 521  
522 -DATA2=1^^st^^ ~~ 6^^th^^ byte of Valid value of RETURN10=(% style="background-color:green; color:white" %) 02 aa 05 81 0a 20
509 +DATA2=1^^st^^ ~~ 6^^th^^ byte of Valid value of RETURN10= 02 aa 05 81 0a 20
523 523  
524 -DATA3=7^^th^^ ~~ 11^^th^^ bytes of Valid value of RETURN10 = (% style="background-color:green; color:white" %)20 20 20 2d 30
511 +DATA3=7^^th^^ ~~ 11^^th^^ bytes of Valid value of RETURN10 = 20 20 20 2d 30
525 525  
513 +
514 +
526 526  Below are the uplink payloads:
527 527  
528 -[[image:1653270130359-810.png]]
517 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image021.png]]
529 529  
530 530  
531 -(% style="color:red" %)**Notice: the Max bytes is according to the max support bytes in different Frequency Bands for lowest SF. As below:**
520 +Notice: the Max bytes is according to the max support bytes in different Frequency Bands for lowest SF. As below:
532 532  
533 533   ~* For AU915/AS923 bands, if UplinkDwell time=0, max 51 bytes for each uplink ( so 51 -5 = 46 max valid date)
534 534  
... ... @@ -538,8 +538,12 @@
538 538  
539 539   ~* For all other bands: max 51 bytes for each uplink  ( so 51 -5 = 46 max valid date).
540 540  
541 -=== 3.3.5 Uplink on demand ===
542 542  
531 +
532 +1.
533 +11.
534 +111. Uplink on demand
535 +
543 543  Except uplink periodically, RS485-BL is able to uplink on demand. The server sends downlink command to RS485-BL and RS485 will uplink data base on the command.
544 544  
545 545  Downlink control command:
1653269403619-508.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -27.8 KB
Content
1653269438444-278.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -26.6 KB
Content
1653269551753-223.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -138.7 KB
Content
1653269568276-930.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -131.4 KB
Content
1653269593172-426.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -142.6 KB
Content
1653269618463-608.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -27.7 KB
Content
1653269759169-150.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -294.0 KB
Content
1653269916228-732.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -143.3 KB
Content
1653270130359-810.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -197.8 KB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0