<
From version < 32.13 >
edited by Xiaoling
on 2022/06/02 15:26
To version < 22.5 >
edited by Xiaoling
on 2022/05/23 09:15
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -18,30 +18,26 @@
18 18  
19 19  (((
20 20  (((
21 -The Dragino RS485-LN is a (% style="color:blue" %)**RS485 to LoRaWAN Converter**(%%). It converts the RS485 signal into LoRaWAN wireless signal which simplify the IoT installation and reduce the installation/maintaining cost.
21 +The Dragino RS485-LN is a RS485 to LoRaWAN Converter. It converts the RS485 signal into LoRaWAN wireless signal which simplify the IoT installation and reduce the installation/maintaining cost.
22 22  )))
23 23  
24 24  (((
25 -RS485-LN allows user to (% style="color:blue" %)**monitor / control RS485 devices**(%%) and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
25 +RS485-LN allows user to monitor / control RS485 devices and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
26 26  )))
27 27  
28 28  (((
29 -(% style="color:blue" %)**For data uplink**(%%), RS485-LN sends user-defined commands to RS485 devices and gets the return from the RS485 devices. RS485-LN will process these returns according to user-define rules to get the final payload and upload to LoRaWAN server.
29 +For data uplink, RS485-LN sends user-defined commands to RS485 devices and gets the return from the RS485 devices. RS485-LN will process these returns according to user-define rules to get the final payload and upload to LoRaWAN server.
30 30  )))
31 31  
32 32  (((
33 -(% style="color:blue" %)**For data downlink**(%%), RS485-LN runs in LoRaWAN Class C. When there downlink commands from LoRaWAN server, RS485-LN will forward the commands from LoRaWAN server to RS485 devices.
34 -
35 -(% style="color:blue" %)**Demo Dashboard for RS485-LN**(%%) connect to two energy meters: [[https:~~/~~/app.datacake.de/dashboard/d/58844a26-378d-4c5a-aaf5-b5b5b153447a>>url:https://app.datacake.de/dashboard/d/58844a26-378d-4c5a-aaf5-b5b5b153447a]]
33 +For data downlink, RS485-LN runs in LoRaWAN Class C. When there downlink commands from LoRaWAN server, RS485-LN will forward the commands from LoRaWAN server to RS485 devices.
36 36  )))
37 37  )))
38 38  
39 39  [[image:1653267211009-519.png||height="419" width="724"]]
40 40  
41 -
42 42  == 1.2 Specifications ==
43 43  
44 -
45 45  **Hardware System:**
46 46  
47 47  * STM32L072CZT6 MCU
... ... @@ -48,6 +48,8 @@
48 48  * SX1276/78 Wireless Chip 
49 49  * Power Consumption (exclude RS485 device):
50 50  ** Idle: 32mA@12v
47 +
48 +*
51 51  ** 20dB Transmit: 65mA@12v
52 52  
53 53  **Interface for Model:**
... ... @@ -76,8 +76,6 @@
76 76  * Automatic RF Sense and CAD with ultra-fast AFC.
77 77  * Packet engine up to 256 bytes with CRC.
78 78  
79 -
80 -
81 81  == 1.3 Features ==
82 82  
83 83  * LoRaWAN Class A & Class C protocol (default Class C)
... ... @@ -89,8 +89,6 @@
89 89  * Support Modbus protocol
90 90  * Support Interrupt uplink (Since hardware version v1.2)
91 91  
92 -
93 -
94 94  == 1.4 Applications ==
95 95  
96 96  * Smart Buildings & Home Automation
... ... @@ -100,13 +100,10 @@
100 100  * Smart Cities
101 101  * Smart Factory
102 102  
103 -
104 -
105 105  == 1.5 Firmware Change log ==
106 106  
107 107  [[RS485-LN Image files – Download link and Change log>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/]]
108 108  
109 -
110 110  == 1.6 Hardware Change log ==
111 111  
112 112  (((
... ... @@ -114,8 +114,6 @@
114 114  v1.2: Add External Interrupt Pin.
115 115  
116 116  v1.0: Release
117 -
118 -
119 119  )))
120 120  )))
121 121  
... ... @@ -132,8 +132,6 @@
132 132  )))
133 133  
134 134  [[image:1653268091319-405.png]]
135 -
136 -
137 137  )))
138 138  
139 139  = 3. Operation Mode =
... ... @@ -142,8 +142,6 @@
142 142  
143 143  (((
144 144  The RS485-LN is configured as LoRaWAN OTAA Class C mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the RS485-LN. It will auto join the network via OTAA.
145 -
146 -
147 147  )))
148 148  
149 149  == 3.2 Example to join LoRaWAN network ==
... ... @@ -152,15 +152,10 @@
152 152  
153 153  [[image:1653268155545-638.png||height="334" width="724"]]
154 154  
155 -
156 156  (((
157 -(((
158 158  The RS485-LN in this example connected to two RS485 devices for demonstration, user can connect to other RS485 devices via the same method. The connection is as below:
159 -)))
160 160  
161 -(((
162 162  485A+ and 485B- of the sensor are connected to RS485A and RA485B of RS485-LN respectively.
163 -)))
164 164  
165 165  [[image:1653268227651-549.png||height="592" width="720"]]
166 166  
... ... @@ -226,8 +226,18 @@
226 226  
227 227  === 3.3.1 onfigure UART settings for RS485 or TTL communication ===
228 228  
229 -To use RS485-LN to read data from RS485 sensors, connect the RS485-LN A/B traces to the sensors. And user need to make sure RS485-LN use the match UART setting to access the sensors. The related commands for UART settings are:
209 +RS485-BL can connect to either RS485 sensors or TTL sensor. User need to specify what type of sensor need to connect.
230 230  
211 +**~1. RS485-MODBUS mode:**
212 +
213 +AT+MOD=1 ~/~/ Support RS485-MODBUS type sensors. User can connect multiply RS485 , Modbus sensors to the A / B pins.
214 +
215 +**2. TTL mode:**
216 +
217 +AT+MOD=2 ~/~/ Support TTL Level sensors, User can connect one TTL Sensor to the TXD/RXD/GND pins.
218 +
219 +RS485-BL default UART settings is **9600, no parity, stop bit 1**. If the sensor has a different settings, user can change the RS485-BL setting to match.
220 +
231 231  (% border="1" style="background-color:#ffffcc; color:green; width:795px" %)
232 232  |(((
233 233  **AT Commands**
... ... @@ -252,7 +252,13 @@
252 252  |(((
253 253  AT+PARITY
254 254  )))|(% style="width:285px" %)(((
245 +(((
255 255  Set UART parity (for RS485 connection)
247 +)))
248 +
249 +(((
250 +Default Value is: no parity.
251 +)))
256 256  )))|(% style="width:347px" %)(((
257 257  (((
258 258  AT+PARITY=0
... ... @@ -270,7 +270,7 @@
270 270  )))
271 271  
272 272  (((
273 -
269 +Default Value is: 1bit.
274 274  )))
275 275  )))|(% style="width:347px" %)(((
276 276  (((
... ... @@ -289,10 +289,12 @@
289 289  === 3.3.2 Configure sensors ===
290 290  
291 291  (((
288 +Some sensors might need to configure before normal operation. User can configure such sensor via PC or through RS485-BL AT Commands (% style="color:#4f81bd" %)**AT+CFGDEV**.
289 +)))
290 +
292 292  (((
293 -Some sensors might need to configure before normal operation. User can configure such sensor via PC and RS485 adapter or through RS485-LN AT Commands (% style="color:#4f81bd" %)**AT+CFGDEV**(%%). Each (% style="color:#4f81bd" %)**AT+CFGDEV **(%%)equals to send a RS485 command to sensors. This command will only run when user input it and won’t run during each sampling.
292 +When user issue an (% style="color:#4f81bd" %)**AT+CFGDEV**(%%) command, Each (% style="color:#4f81bd" %)**AT+CFGDEV**(%%) equals to send a command to the RS485 or TTL sensors. This command will only run when user input it and won’t run during each sampling.
294 294  )))
295 -)))
296 296  
297 297  (% border="1" style="background-color:#ffffcc; color:green; width:806px" %)
298 298  |**AT Commands**|(% style="width:418px" %)**Description**|(% style="width:256px" %)**Example**
... ... @@ -304,6 +304,8 @@
304 304  mm: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command
305 305  )))|(% style="width:256px" %)AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m
306 306  
305 +Detail of AT+CFGDEV command see [[AT+CFGDEV detail>>path:#AT_CFGDEV]].
306 +
307 307  === 3.3.3 Configure read commands for each sampling ===
308 308  
309 309  (((
... ... @@ -385,17 +385,11 @@
385 385  **m: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command**
386 386  )))
387 387  
388 -(((
389 389  For example, if we have a RS485 sensor. The command to get sensor value is: 01 03 0B B8 00 02 46 0A. Where 01 03 0B B8 00 02 is the Modbus command to read the register 0B B8 where stored the sensor value. The 46 0A is the CRC-16/MODBUS which calculate manually.
390 -)))
391 391  
392 -(((
393 393  In the RS485-BL, we should use this command AT+COMMAND1=01 03 0B B8 00 02,1 for the same.
394 -)))
395 395  
396 -(((
397 397  **AT+SEARCHx**: This command defines how to handle the return from AT+COMMANDx.
398 -)))
399 399  
400 400  (% border="1" class="table-bordered" %)
401 401  |(((
... ... @@ -407,24 +407,26 @@
407 407  
408 408  )))
409 409  
410 -**Examples:**
404 +Examples:
411 411  
412 -~1. For a return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
406 +1. For a return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
413 413  
414 414  If we set AT+SEARCH1=1,1E 56 34.      (max 5 bytes for prefix)
415 415  
416 -The valid data will be all bytes after 1E 56 34 , so it is (% style="background-color:yellow" %)** 2e 30 58 5f 36 41 30 31 00 49**
410 +The valid data will be all bytes after 1E 56 34 , so it is 2e 30 58 5f 36 41 30 31 00 49
417 417  
418 -[[image:1653269403619-508.png]]
412 +[[image:1652954654347-831.png]]
419 419  
420 -2. For a return string from AT+COMMAND1:  16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
421 421  
415 +1. For a return string from AT+COMMAND1:  16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
416 +
422 422  If we set AT+SEARCH1=2, 1E 56 34+31 00 49
423 423  
424 -Device will search the bytes between 1E 56 34 and 31 00 49. So it is (% style="background-color:yellow" %)** 2e 30 58 5f 36 41 30**
419 +Device will search the bytes between 1E 56 34 and 31 00 49. So it is 2e 30 58 5f 36 41 30
425 425  
426 -[[image:1653269438444-278.png]]
421 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image014.png]]
427 427  
423 +
428 428  **AT+DATACUTx : **This command defines how to handle the return from AT+COMMANDx, max return length is 45 bytes.
429 429  
430 430  |(((
... ... @@ -439,95 +439,94 @@
439 439  
440 440  * Grab bytes:
441 441  
442 -[[image:1653269551753-223.png||height="311" width="717"]]
438 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image015.png]]
443 443  
444 444  * Grab a section.
445 445  
446 -[[image:1653269568276-930.png||height="325" width="718"]]
442 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image016.png]]
447 447  
448 448  * Grab different sections.
449 449  
450 -[[image:1653269593172-426.png||height="303" width="725"]]
446 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image017.png]]
451 451  
452 -(% style="color:red" %)**Note:**
453 453  
449 +Note:
450 +
454 454  AT+SEARCHx and AT+DATACUTx can be used together, if both commands are set, RS485-BL will first process AT+SEARCHx on the return string and get a temporary string, and then process AT+DATACUTx on this temporary string to get the final payload. In this case, AT+DATACUTx need to set to format AT+DATACUTx=0,xx,xx where the return bytes set to 0.
455 455  
456 456  Example:
457 457  
458 -(% style="color:red" %)AT+COMMAND1=11 01 1E D0,0
455 +AT+COMMAND1=11 01 1E D0,0
459 459  
460 -(% style="color:red" %)AT+SEARCH1=1,1E 56 34
457 +AT+SEARCH1=1,1E 56 34
461 461  
462 -(% style="color:red" %)AT+DATACUT1=0,2,1~~5
459 +AT+DATACUT1=0,2,1~~5
463 463  
464 -(% style="color:red" %)Return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
461 +Return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
465 465  
466 -(% style="color:red" %)String after SEARCH command: 2e 30 58 5f 36 41 30 31 00 49
463 +String after SEARCH command: 2e 30 58 5f 36 41 30 31 00 49
467 467  
468 -(% style="color:red" %)Valid payload after DataCUT command: 2e 30 58 5f 36
465 +Valid payload after DataCUT command: 2e 30 58 5f 36
469 469  
470 -[[image:1653269618463-608.png]]
467 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image018.png]]
471 471  
472 -=== 3.3.4 Compose the uplink payload ===
473 473  
474 -(((
470 +
471 +
472 +1.
473 +11.
474 +111. Compose the uplink payload
475 +
475 475  Through AT+COMMANDx and AT+DATACUTx we got valid value from each RS485 commands, Assume these valid value are RETURN1, RETURN2, .., to RETURNx. The next step is how to compose the LoRa Uplink Payload by these RETURNs. The command is **AT+DATAUP.**
476 -)))
477 477  
478 -(((
479 -(% style="color:#4f81bd" %)**Examples: AT+DATAUP=0**
480 -)))
481 481  
482 -(((
483 -Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**A SIGNLE UPLINK**.
484 -)))
479 +**Examples: AT+DATAUP=0**
485 485  
486 -(((
481 +Compose the uplink payload with value returns in sequence and send with **A SIGNLE UPLINK**.
482 +
487 487  Final Payload is
488 -)))
489 489  
490 -(((
491 -(% style="color:#4f81bd" %)**Battery Info+PAYVER + VALID Value from RETURN1 + Valid Value from RETURN2 + … + RETURNx**
492 -)))
485 +Battery Info+PAYVER + VALID Value from RETURN1 + Valid Value from RETURN2 + … + RETURNx
493 493  
494 -(((
495 495  Where PAYVER is defined by AT+PAYVER, below is an example screen shot.
496 -)))
497 497  
498 -[[image:1653269759169-150.png||height="513" width="716"]]
489 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image019.png]]
499 499  
500 -(% style="color:#4f81bd" %)**Examples: AT+DATAUP=1**
501 501  
502 -Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**Multiply UPLINKs**.
503 503  
493 +**Examples: AT+DATAUP=1**
494 +
495 +Compose the uplink payload with value returns in sequence and send with **Multiply UPLINKs**.
496 +
504 504  Final Payload is
505 505  
506 -(% style="color:#4f81bd" %)**Battery Info+PAYVER + PAYLOAD COUNT + PAYLOAD# + DATA**
499 +Battery Info+PAYVER + PAYLOAD COUNT + PAYLOAD# + DATA
507 507  
508 508  1. Battery Info (2 bytes): Battery voltage
509 509  1. PAYVER (1 byte): Defined by AT+PAYVER
510 510  1. PAYLOAD COUNT (1 byte): Total how many uplinks of this sampling.
511 511  1. PAYLOAD# (1 byte): Number of this uplink. (from 0,1,2,3…,to PAYLOAD COUNT)
512 -1. DATA: Valid value: max 6 bytes(US915 version here, Notice*!) for each uplink so each uplink <= 11 bytes. For the last uplink, DATA will might less than 6 bytes
505 +1. DATA: Valid value: max 6 bytes(US915 version here, [[Notice*!>>path:#max_byte]]) for each uplink so each uplink <= 11 bytes. For the last uplink, DATA will might less than 6 bytes
513 513  
514 -[[image:1653269916228-732.png||height="433" width="711"]]
507 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
515 515  
516 516  
517 517  So totally there will be 3 uplinks for this sampling, each uplink includes 6 bytes DATA
518 518  
519 -DATA1=RETURN1 Valid Value = (% style="background-color:green; color:white" %)20 20 0a 33 90 41
512 +DATA1=RETURN1 Valid Value = 20 20 0a 33 90 41
520 520  
521 -DATA2=1^^st^^ ~~ 6^^th^^ byte of Valid value of RETURN10=(% style="background-color:green; color:white" %) 02 aa 05 81 0a 20
514 +DATA2=1^^st^^ ~~ 6^^th^^ byte of Valid value of RETURN10= 02 aa 05 81 0a 20
522 522  
523 -DATA3=7^^th^^ ~~ 11^^th^^ bytes of Valid value of RETURN10 = (% style="background-color:green; color:white" %)20 20 20 2d 30
516 +DATA3=7^^th^^ ~~ 11^^th^^ bytes of Valid value of RETURN10 = 20 20 20 2d 30
524 524  
518 +
519 +
525 525  Below are the uplink payloads:
526 526  
527 -[[image:1653270130359-810.png]]
522 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image021.png]]
528 528  
529 529  
530 -(% style="color:red" %)**Notice: the Max bytes is according to the max support bytes in different Frequency Bands for lowest SF. As below:**
525 +Notice: the Max bytes is according to the max support bytes in different Frequency Bands for lowest SF. As below:
531 531  
532 532   ~* For AU915/AS923 bands, if UplinkDwell time=0, max 51 bytes for each uplink ( so 51 -5 = 46 max valid date)
533 533  
... ... @@ -537,8 +537,12 @@
537 537  
538 538   ~* For all other bands: max 51 bytes for each uplink  ( so 51 -5 = 46 max valid date).
539 539  
540 -=== 3.3.5 Uplink on demand ===
541 541  
536 +
537 +1.
538 +11.
539 +111. Uplink on demand
540 +
542 542  Except uplink periodically, RS485-BL is able to uplink on demand. The server sends downlink command to RS485-BL and RS485 will uplink data base on the command.
543 543  
544 544  Downlink control command:
... ... @@ -549,8 +549,8 @@
549 549  
550 550  
551 551  
552 -1.
553 -11.
551 +1.
552 +11.
554 554  111. Uplink on Interrupt
555 555  
556 556  Put the interrupt sensor between 3.3v_out and GPIO ext.[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image022.png]]
... ... @@ -564,7 +564,7 @@
564 564  AT+INTMOD=3  Interrupt trigger by rising edge.
565 565  
566 566  
567 -1.
566 +1.
568 568  11. Uplink Payload
569 569  
570 570  |**Size(bytes)**|**2**|**1**|**Length depends on the return from the commands**
... ... @@ -626,15 +626,15 @@
626 626  
627 627  * **Sensor Related Commands**: These commands are special designed for RS485-BL.  User can see these commands below:
628 628  
629 -1.
630 -11.
628 +1.
629 +11.
631 631  111. Common Commands:
632 632  
633 633  They should be available for each of Dragino Sensors, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: [[http:~~/~~/wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands>>url:http://wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands]]
634 634  
635 635  
636 -1.
637 -11.
635 +1.
636 +11.
638 638  111. Sensor related commands:
639 639  
640 640  ==== Choose Device Type (RS485 or TTL) ====
... ... @@ -940,13 +940,13 @@
940 940  
941 941  
942 942  
943 -1.
942 +1.
944 944  11. Buttons
945 945  
946 946  |**Button**|**Feature**
947 947  |**RST**|Reboot RS485-BL
948 948  
949 -1.
948 +1.
950 950  11. +3V3 Output
951 951  
952 952  RS485-BL has a Controllable +3V3 output, user can use this output to power external sensor.
... ... @@ -964,7 +964,7 @@
964 964  By default, the AT+3V3T=0. This is a special case, means the +3V3 output is always on at any time
965 965  
966 966  
967 -1.
966 +1.
968 968  11. +5V Output
969 969  
970 970  RS485-BL has a Controllable +5V output, user can use this output to power external sensor.
... ... @@ -984,13 +984,13 @@
984 984  
985 985  
986 986  
987 -1.
986 +1.
988 988  11. LEDs
989 989  
990 990  |**LEDs**|**Feature**
991 991  |**LED1**|Blink when device transmit a packet.
992 992  
993 -1.
992 +1.
994 994  11. Switch Jumper
995 995  
996 996  |**Switch Jumper**|**Feature**
... ... @@ -1036,7 +1036,7 @@
1036 1036  
1037 1037  
1038 1038  
1039 -1.
1038 +1.
1040 1040  11. Common AT Command Sequence
1041 1041  111. Multi-channel ABP mode (Use with SX1301/LG308)
1042 1042  
... ... @@ -1055,8 +1055,8 @@
1055 1055  
1056 1056  ATZ
1057 1057  
1058 -1.
1059 -11.
1057 +1.
1058 +11.
1060 1060  111. Single-channel ABP mode (Use with LG01/LG02)
1061 1061  
1062 1062  AT+FDR   Reset Parameters to Factory Default, Keys Reserve
... ... @@ -1131,7 +1131,7 @@
1131 1131  [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image035.png]] [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image036.png]]
1132 1132  
1133 1133  
1134 -1.
1133 +1.
1135 1135  11. How to change the LoRa Frequency Bands/Region?
1136 1136  
1137 1137  User can follow the introduction for [[how to upgrade image>>path:#upgrade_image]]. When download the images, choose the required image file for download.
... ... @@ -1138,7 +1138,7 @@
1138 1138  
1139 1139  
1140 1140  
1141 -1.
1140 +1.
1142 1142  11. How many RS485-Slave can RS485-BL connects?
1143 1143  
1144 1144  The RS485-BL can support max 32 RS485 devices. Each uplink command of RS485-BL can support max 16 different RS485 command. So RS485-BL can support max 16 RS485 devices pre-program in the device for uplink. For other devices no pre-program, user can use the [[downlink message (type code 0xA8) to poll their info>>path:#downlink_A8]].
... ... @@ -1155,7 +1155,7 @@
1155 1155  
1156 1156  
1157 1157  
1158 -1.
1157 +1.
1159 1159  11. Why I can’t join TTN V3 in US915 /AU915 bands?
1160 1160  
1161 1161  It might about the channels mapping. Please see for detail.
1653269403619-508.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -27.8 KB
Content
1653269438444-278.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -26.6 KB
Content
1653269551753-223.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -138.7 KB
Content
1653269568276-930.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -131.4 KB
Content
1653269593172-426.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -142.6 KB
Content
1653269618463-608.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -27.7 KB
Content
1653269759169-150.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -294.0 KB
Content
1653269916228-732.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -143.3 KB
Content
1653270130359-810.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -197.8 KB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0