<
From version < 32.12 >
edited by Xiaoling
on 2022/06/02 15:26
To version < 22.6 >
edited by Xiaoling
on 2022/05/23 09:17
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -18,30 +18,26 @@
18 18  
19 19  (((
20 20  (((
21 -The Dragino RS485-LN is a (% style="color:blue" %)**RS485 to LoRaWAN Converter**(%%). It converts the RS485 signal into LoRaWAN wireless signal which simplify the IoT installation and reduce the installation/maintaining cost.
21 +The Dragino RS485-LN is a RS485 to LoRaWAN Converter. It converts the RS485 signal into LoRaWAN wireless signal which simplify the IoT installation and reduce the installation/maintaining cost.
22 22  )))
23 23  
24 24  (((
25 -RS485-LN allows user to (% style="color:blue" %)**monitor / control RS485 devices**(%%) and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
25 +RS485-LN allows user to monitor / control RS485 devices and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
26 26  )))
27 27  
28 28  (((
29 -(% style="color:blue" %)**For data uplink**(%%), RS485-LN sends user-defined commands to RS485 devices and gets the return from the RS485 devices. RS485-LN will process these returns according to user-define rules to get the final payload and upload to LoRaWAN server.
29 +For data uplink, RS485-LN sends user-defined commands to RS485 devices and gets the return from the RS485 devices. RS485-LN will process these returns according to user-define rules to get the final payload and upload to LoRaWAN server.
30 30  )))
31 31  
32 32  (((
33 -(% style="color:blue" %)**For data downlink**(%%), RS485-LN runs in LoRaWAN Class C. When there downlink commands from LoRaWAN server, RS485-LN will forward the commands from LoRaWAN server to RS485 devices.
34 -
35 -(% style="color:blue" %)**Demo Dashboard for RS485-LN**(%%) connect to two energy meters: [[https:~~/~~/app.datacake.de/dashboard/d/58844a26-378d-4c5a-aaf5-b5b5b153447a>>url:https://app.datacake.de/dashboard/d/58844a26-378d-4c5a-aaf5-b5b5b153447a]]
33 +For data downlink, RS485-LN runs in LoRaWAN Class C. When there downlink commands from LoRaWAN server, RS485-LN will forward the commands from LoRaWAN server to RS485 devices.
36 36  )))
37 37  )))
38 38  
39 39  [[image:1653267211009-519.png||height="419" width="724"]]
40 40  
41 -
42 42  == 1.2 Specifications ==
43 43  
44 -
45 45  **Hardware System:**
46 46  
47 47  * STM32L072CZT6 MCU
... ... @@ -48,6 +48,8 @@
48 48  * SX1276/78 Wireless Chip 
49 49  * Power Consumption (exclude RS485 device):
50 50  ** Idle: 32mA@12v
47 +
48 +*
51 51  ** 20dB Transmit: 65mA@12v
52 52  
53 53  **Interface for Model:**
... ... @@ -76,8 +76,6 @@
76 76  * Automatic RF Sense and CAD with ultra-fast AFC.
77 77  * Packet engine up to 256 bytes with CRC.
78 78  
79 -
80 -
81 81  == 1.3 Features ==
82 82  
83 83  * LoRaWAN Class A & Class C protocol (default Class C)
... ... @@ -89,8 +89,6 @@
89 89  * Support Modbus protocol
90 90  * Support Interrupt uplink (Since hardware version v1.2)
91 91  
92 -
93 -
94 94  == 1.4 Applications ==
95 95  
96 96  * Smart Buildings & Home Automation
... ... @@ -100,13 +100,10 @@
100 100  * Smart Cities
101 101  * Smart Factory
102 102  
103 -
104 -
105 105  == 1.5 Firmware Change log ==
106 106  
107 107  [[RS485-LN Image files – Download link and Change log>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/]]
108 108  
109 -
110 110  == 1.6 Hardware Change log ==
111 111  
112 112  (((
... ... @@ -114,8 +114,6 @@
114 114  v1.2: Add External Interrupt Pin.
115 115  
116 116  v1.0: Release
117 -
118 -
119 119  )))
120 120  )))
121 121  
... ... @@ -132,8 +132,6 @@
132 132  )))
133 133  
134 134  [[image:1653268091319-405.png]]
135 -
136 -
137 137  )))
138 138  
139 139  = 3. Operation Mode =
... ... @@ -142,8 +142,6 @@
142 142  
143 143  (((
144 144  The RS485-LN is configured as LoRaWAN OTAA Class C mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the RS485-LN. It will auto join the network via OTAA.
145 -
146 -
147 147  )))
148 148  
149 149  == 3.2 Example to join LoRaWAN network ==
... ... @@ -284,10 +284,12 @@
284 284  === 3.3.2 Configure sensors ===
285 285  
286 286  (((
272 +Some sensors might need to configure before normal operation. User can configure such sensor via PC or through RS485-BL AT Commands (% style="color:#4f81bd" %)**AT+CFGDEV**.
273 +)))
274 +
287 287  (((
288 -Some sensors might need to configure before normal operation. User can configure such sensor via PC and RS485 adapter or through RS485-LN AT Commands (% style="color:#4f81bd" %)**AT+CFGDEV**(%%). Each (% style="color:#4f81bd" %)**AT+CFGDEV **(%%)equals to send a RS485 command to sensors. This command will only run when user input it and won’t run during each sampling.
276 +When user issue an (% style="color:#4f81bd" %)**AT+CFGDEV**(%%) command, Each (% style="color:#4f81bd" %)**AT+CFGDEV**(%%) equals to send a command to the RS485 or TTL sensors. This command will only run when user input it and won’t run during each sampling.
289 289  )))
290 -)))
291 291  
292 292  (% border="1" style="background-color:#ffffcc; color:green; width:806px" %)
293 293  |**AT Commands**|(% style="width:418px" %)**Description**|(% style="width:256px" %)**Example**
... ... @@ -299,6 +299,8 @@
299 299  mm: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command
300 300  )))|(% style="width:256px" %)AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m
301 301  
289 +Detail of AT+CFGDEV command see [[AT+CFGDEV detail>>path:#AT_CFGDEV]].
290 +
302 302  === 3.3.3 Configure read commands for each sampling ===
303 303  
304 304  (((
... ... @@ -380,17 +380,11 @@
380 380  **m: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command**
381 381  )))
382 382  
383 -(((
384 384  For example, if we have a RS485 sensor. The command to get sensor value is: 01 03 0B B8 00 02 46 0A. Where 01 03 0B B8 00 02 is the Modbus command to read the register 0B B8 where stored the sensor value. The 46 0A is the CRC-16/MODBUS which calculate manually.
385 -)))
386 386  
387 -(((
388 388  In the RS485-BL, we should use this command AT+COMMAND1=01 03 0B B8 00 02,1 for the same.
389 -)))
390 390  
391 -(((
392 392  **AT+SEARCHx**: This command defines how to handle the return from AT+COMMANDx.
393 -)))
394 394  
395 395  (% border="1" class="table-bordered" %)
396 396  |(((
... ... @@ -402,24 +402,26 @@
402 402  
403 403  )))
404 404  
405 -**Examples:**
388 +Examples:
406 406  
407 -~1. For a return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
390 +1. For a return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
408 408  
409 409  If we set AT+SEARCH1=1,1E 56 34.      (max 5 bytes for prefix)
410 410  
411 -The valid data will be all bytes after 1E 56 34 , so it is (% style="background-color:yellow" %)** 2e 30 58 5f 36 41 30 31 00 49**
394 +The valid data will be all bytes after 1E 56 34 , so it is 2e 30 58 5f 36 41 30 31 00 49
412 412  
413 -[[image:1653269403619-508.png]]
396 +[[image:1652954654347-831.png]]
414 414  
415 -2. For a return string from AT+COMMAND1:  16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
416 416  
399 +1. For a return string from AT+COMMAND1:  16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
400 +
417 417  If we set AT+SEARCH1=2, 1E 56 34+31 00 49
418 418  
419 -Device will search the bytes between 1E 56 34 and 31 00 49. So it is (% style="background-color:yellow" %)** 2e 30 58 5f 36 41 30**
403 +Device will search the bytes between 1E 56 34 and 31 00 49. So it is 2e 30 58 5f 36 41 30
420 420  
421 -[[image:1653269438444-278.png]]
405 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image014.png]]
422 422  
407 +
423 423  **AT+DATACUTx : **This command defines how to handle the return from AT+COMMANDx, max return length is 45 bytes.
424 424  
425 425  |(((
... ... @@ -434,95 +434,94 @@
434 434  
435 435  * Grab bytes:
436 436  
437 -[[image:1653269551753-223.png||height="311" width="717"]]
422 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image015.png]]
438 438  
439 439  * Grab a section.
440 440  
441 -[[image:1653269568276-930.png||height="325" width="718"]]
426 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image016.png]]
442 442  
443 443  * Grab different sections.
444 444  
445 -[[image:1653269593172-426.png||height="303" width="725"]]
430 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image017.png]]
446 446  
447 -(% style="color:red" %)**Note:**
448 448  
433 +Note:
434 +
449 449  AT+SEARCHx and AT+DATACUTx can be used together, if both commands are set, RS485-BL will first process AT+SEARCHx on the return string and get a temporary string, and then process AT+DATACUTx on this temporary string to get the final payload. In this case, AT+DATACUTx need to set to format AT+DATACUTx=0,xx,xx where the return bytes set to 0.
450 450  
451 451  Example:
452 452  
453 -(% style="color:red" %)AT+COMMAND1=11 01 1E D0,0
439 +AT+COMMAND1=11 01 1E D0,0
454 454  
455 -(% style="color:red" %)AT+SEARCH1=1,1E 56 34
441 +AT+SEARCH1=1,1E 56 34
456 456  
457 -(% style="color:red" %)AT+DATACUT1=0,2,1~~5
443 +AT+DATACUT1=0,2,1~~5
458 458  
459 -(% style="color:red" %)Return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
445 +Return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
460 460  
461 -(% style="color:red" %)String after SEARCH command: 2e 30 58 5f 36 41 30 31 00 49
447 +String after SEARCH command: 2e 30 58 5f 36 41 30 31 00 49
462 462  
463 -(% style="color:red" %)Valid payload after DataCUT command: 2e 30 58 5f 36
449 +Valid payload after DataCUT command: 2e 30 58 5f 36
464 464  
465 -[[image:1653269618463-608.png]]
451 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image018.png]]
466 466  
467 -=== 3.3.4 Compose the uplink payload ===
468 468  
469 -(((
454 +
455 +
456 +1.
457 +11.
458 +111. Compose the uplink payload
459 +
470 470  Through AT+COMMANDx and AT+DATACUTx we got valid value from each RS485 commands, Assume these valid value are RETURN1, RETURN2, .., to RETURNx. The next step is how to compose the LoRa Uplink Payload by these RETURNs. The command is **AT+DATAUP.**
471 -)))
472 472  
473 -(((
474 -(% style="color:#4f81bd" %)**Examples: AT+DATAUP=0**
475 -)))
476 476  
477 -(((
478 -Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**A SIGNLE UPLINK**.
479 -)))
463 +**Examples: AT+DATAUP=0**
480 480  
481 -(((
465 +Compose the uplink payload with value returns in sequence and send with **A SIGNLE UPLINK**.
466 +
482 482  Final Payload is
483 -)))
484 484  
485 -(((
486 -(% style="color:#4f81bd" %)**Battery Info+PAYVER + VALID Value from RETURN1 + Valid Value from RETURN2 + … + RETURNx**
487 -)))
469 +Battery Info+PAYVER + VALID Value from RETURN1 + Valid Value from RETURN2 + … + RETURNx
488 488  
489 -(((
490 490  Where PAYVER is defined by AT+PAYVER, below is an example screen shot.
491 -)))
492 492  
493 -[[image:1653269759169-150.png||height="513" width="716"]]
473 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image019.png]]
494 494  
495 -(% style="color:#4f81bd" %)**Examples: AT+DATAUP=1**
496 496  
497 -Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**Multiply UPLINKs**.
498 498  
477 +**Examples: AT+DATAUP=1**
478 +
479 +Compose the uplink payload with value returns in sequence and send with **Multiply UPLINKs**.
480 +
499 499  Final Payload is
500 500  
501 -(% style="color:#4f81bd" %)**Battery Info+PAYVER + PAYLOAD COUNT + PAYLOAD# + DATA**
483 +Battery Info+PAYVER + PAYLOAD COUNT + PAYLOAD# + DATA
502 502  
503 503  1. Battery Info (2 bytes): Battery voltage
504 504  1. PAYVER (1 byte): Defined by AT+PAYVER
505 505  1. PAYLOAD COUNT (1 byte): Total how many uplinks of this sampling.
506 506  1. PAYLOAD# (1 byte): Number of this uplink. (from 0,1,2,3…,to PAYLOAD COUNT)
507 -1. DATA: Valid value: max 6 bytes(US915 version here, Notice*!) for each uplink so each uplink <= 11 bytes. For the last uplink, DATA will might less than 6 bytes
489 +1. DATA: Valid value: max 6 bytes(US915 version here, [[Notice*!>>path:#max_byte]]) for each uplink so each uplink <= 11 bytes. For the last uplink, DATA will might less than 6 bytes
508 508  
509 -[[image:1653269916228-732.png||height="433" width="711"]]
491 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
510 510  
511 511  
512 512  So totally there will be 3 uplinks for this sampling, each uplink includes 6 bytes DATA
513 513  
514 -DATA1=RETURN1 Valid Value = (% style="background-color:green; color:white" %)20 20 0a 33 90 41
496 +DATA1=RETURN1 Valid Value = 20 20 0a 33 90 41
515 515  
516 -DATA2=1^^st^^ ~~ 6^^th^^ byte of Valid value of RETURN10=(% style="background-color:green; color:white" %) 02 aa 05 81 0a 20
498 +DATA2=1^^st^^ ~~ 6^^th^^ byte of Valid value of RETURN10= 02 aa 05 81 0a 20
517 517  
518 -DATA3=7^^th^^ ~~ 11^^th^^ bytes of Valid value of RETURN10 = (% style="background-color:green; color:white" %)20 20 20 2d 30
500 +DATA3=7^^th^^ ~~ 11^^th^^ bytes of Valid value of RETURN10 = 20 20 20 2d 30
519 519  
502 +
503 +
520 520  Below are the uplink payloads:
521 521  
522 -[[image:1653270130359-810.png]]
506 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image021.png]]
523 523  
524 524  
525 -(% style="color:red" %)**Notice: the Max bytes is according to the max support bytes in different Frequency Bands for lowest SF. As below:**
509 +Notice: the Max bytes is according to the max support bytes in different Frequency Bands for lowest SF. As below:
526 526  
527 527   ~* For AU915/AS923 bands, if UplinkDwell time=0, max 51 bytes for each uplink ( so 51 -5 = 46 max valid date)
528 528  
... ... @@ -532,8 +532,12 @@
532 532  
533 533   ~* For all other bands: max 51 bytes for each uplink  ( so 51 -5 = 46 max valid date).
534 534  
535 -=== 3.3.5 Uplink on demand ===
536 536  
520 +
521 +1.
522 +11.
523 +111. Uplink on demand
524 +
537 537  Except uplink periodically, RS485-BL is able to uplink on demand. The server sends downlink command to RS485-BL and RS485 will uplink data base on the command.
538 538  
539 539  Downlink control command:
... ... @@ -544,8 +544,8 @@
544 544  
545 545  
546 546  
547 -1.
548 -11.
535 +1.
536 +11.
549 549  111. Uplink on Interrupt
550 550  
551 551  Put the interrupt sensor between 3.3v_out and GPIO ext.[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image022.png]]
... ... @@ -559,7 +559,7 @@
559 559  AT+INTMOD=3  Interrupt trigger by rising edge.
560 560  
561 561  
562 -1.
550 +1.
563 563  11. Uplink Payload
564 564  
565 565  |**Size(bytes)**|**2**|**1**|**Length depends on the return from the commands**
... ... @@ -621,15 +621,15 @@
621 621  
622 622  * **Sensor Related Commands**: These commands are special designed for RS485-BL.  User can see these commands below:
623 623  
624 -1.
625 -11.
612 +1.
613 +11.
626 626  111. Common Commands:
627 627  
628 628  They should be available for each of Dragino Sensors, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: [[http:~~/~~/wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands>>url:http://wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands]]
629 629  
630 630  
631 -1.
632 -11.
619 +1.
620 +11.
633 633  111. Sensor related commands:
634 634  
635 635  ==== Choose Device Type (RS485 or TTL) ====
... ... @@ -935,13 +935,13 @@
935 935  
936 936  
937 937  
938 -1.
926 +1.
939 939  11. Buttons
940 940  
941 941  |**Button**|**Feature**
942 942  |**RST**|Reboot RS485-BL
943 943  
944 -1.
932 +1.
945 945  11. +3V3 Output
946 946  
947 947  RS485-BL has a Controllable +3V3 output, user can use this output to power external sensor.
... ... @@ -959,7 +959,7 @@
959 959  By default, the AT+3V3T=0. This is a special case, means the +3V3 output is always on at any time
960 960  
961 961  
962 -1.
950 +1.
963 963  11. +5V Output
964 964  
965 965  RS485-BL has a Controllable +5V output, user can use this output to power external sensor.
... ... @@ -979,13 +979,13 @@
979 979  
980 980  
981 981  
982 -1.
970 +1.
983 983  11. LEDs
984 984  
985 985  |**LEDs**|**Feature**
986 986  |**LED1**|Blink when device transmit a packet.
987 987  
988 -1.
976 +1.
989 989  11. Switch Jumper
990 990  
991 991  |**Switch Jumper**|**Feature**
... ... @@ -1031,7 +1031,7 @@
1031 1031  
1032 1032  
1033 1033  
1034 -1.
1022 +1.
1035 1035  11. Common AT Command Sequence
1036 1036  111. Multi-channel ABP mode (Use with SX1301/LG308)
1037 1037  
... ... @@ -1050,8 +1050,8 @@
1050 1050  
1051 1051  ATZ
1052 1052  
1053 -1.
1054 -11.
1041 +1.
1042 +11.
1055 1055  111. Single-channel ABP mode (Use with LG01/LG02)
1056 1056  
1057 1057  AT+FDR   Reset Parameters to Factory Default, Keys Reserve
... ... @@ -1126,7 +1126,7 @@
1126 1126  [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image035.png]] [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image036.png]]
1127 1127  
1128 1128  
1129 -1.
1117 +1.
1130 1130  11. How to change the LoRa Frequency Bands/Region?
1131 1131  
1132 1132  User can follow the introduction for [[how to upgrade image>>path:#upgrade_image]]. When download the images, choose the required image file for download.
... ... @@ -1133,7 +1133,7 @@
1133 1133  
1134 1134  
1135 1135  
1136 -1.
1124 +1.
1137 1137  11. How many RS485-Slave can RS485-BL connects?
1138 1138  
1139 1139  The RS485-BL can support max 32 RS485 devices. Each uplink command of RS485-BL can support max 16 different RS485 command. So RS485-BL can support max 16 RS485 devices pre-program in the device for uplink. For other devices no pre-program, user can use the [[downlink message (type code 0xA8) to poll their info>>path:#downlink_A8]].
... ... @@ -1150,7 +1150,7 @@
1150 1150  
1151 1151  
1152 1152  
1153 -1.
1141 +1.
1154 1154  11. Why I can’t join TTN V3 in US915 /AU915 bands?
1155 1155  
1156 1156  It might about the channels mapping. Please see for detail.
1653269403619-508.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -27.8 KB
Content
1653269438444-278.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -26.6 KB
Content
1653269551753-223.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -138.7 KB
Content
1653269568276-930.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -131.4 KB
Content
1653269593172-426.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -142.6 KB
Content
1653269618463-608.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -27.7 KB
Content
1653269759169-150.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -294.0 KB
Content
1653269916228-732.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -143.3 KB
Content
1653270130359-810.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -197.8 KB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0