Changes for page RS485-LN – RS485 to LoRaWAN Converter User Manual
Last modified by Xiaoling on 2025/04/23 15:56
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 15 removed)
- 1652954654347-831.png
- 1653266934636-343.png
- 1653267211009-519.png
- 1653268091319-405.png
- 1653268155545-638.png
- 1653268227651-549.png
- 1653269403619-508.png
- 1653269438444-278.png
- 1653269551753-223.png
- 1653269568276-930.png
- 1653269593172-426.png
- 1653269618463-608.png
- 1653269759169-150.png
- 1653269916228-732.png
- 1653270130359-810.png
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 -RS485-L N– RS485 to LoRaWAN Converter1 +RS485-BL – Waterproof RS485 to LoRaWAN Converter - Content
-
... ... @@ -1,11 +1,12 @@ 1 1 (% style="text-align:center" %) 2 -[[image:165 3266934636-343.png||height="385" width="385"]]2 +[[image:1652947681187-144.png||height="385" width="385"]] 3 3 4 4 5 5 6 -**RS485-LN – RS485 to LoRaWAN Converter User Manual** 7 7 7 +**RS485-BL – Waterproof RS485 to LoRaWAN Converter User Manual** 8 8 9 + 9 9 **Table of Contents:** 10 10 11 11 ... ... @@ -14,46 +14,62 @@ 14 14 15 15 = 1.Introduction = 16 16 17 -== 1.1 What is RS485-L NRS485 to LoRaWAN Converter ==18 +== 1.1 What is RS485-BL RS485 to LoRaWAN Converter == 18 18 19 19 ((( 21 + 22 +))) 23 + 20 20 ((( 21 -The Dragino RS485-L Nis a(% style="color:blue" %)**RS485 to LoRaWAN Converter**(%%).It converts the RS485 signalintoLoRaWANwirelesssignalwhich simplify theIoTinstallationandreducetheinstallation/maintainingcost.25 +The Dragino RS485-BL is a **RS485 / UART to LoRaWAN Converter** for Internet of Things solutions. User can connect RS485 or UART sensor to RS485-BL converter, and configure RS485-BL to periodically read sensor data and upload via LoRaWAN network to IoT server. 22 22 ))) 23 23 24 24 ((( 25 -RS485-L Nallowsuser to(%style="color:blue"%)**monitor/ controlRS485devices**(%%)andreachextremelylongranges. It providesultra-longrangespreadspectrumcommunication andhighinterference immunitywhilstminimizingcurrentconsumption. It targets professionalwirelesssensor networkapplications such asirrigationsystems,smartmetering, smartcities,smartphonedetection, building automation, and so on.29 +RS485-BL can interface to RS485 sensor, 3.3v/5v UART sensor or interrupt sensor. RS485-BL provides **a 3.3v output** and** a 5v output** to power external sensors. Both output voltages are controllable to minimize the total system power consumption. 26 26 ))) 27 27 28 28 ((( 29 - (% style="color:blue" %)**For data uplink**(%%),RS485-LNsendsuser-definedcommandstoRS485devicesand getstheeturnfromtheRS485devices. RS485-LN will processthesereturnsaccording to user-definerulestoget thefinalpayload and upload to LoRaWAN server.33 +RS485-BL is IP67 **waterproof** and powered by **8500mAh Li-SOCI2 battery**, it is designed for long term use for several years. 30 30 ))) 31 31 32 32 ((( 33 -(% style="color:blue" %)**For data downlink**(%%), RS485-LN runs in LoRaWAN Class C. When there downlink commands from LoRaWAN server, RS485-LN will forward the commands from LoRaWAN server to RS485 devices. 37 +RS485-BL runs standard **LoRaWAN 1.0.3 in Class A**. It can reach long transfer range and easy to integrate with LoRaWAN compatible gateway and IoT server. 38 +))) 34 34 35 -(% style="color:blue" %)**Demo Dashboard for RS485-LN**(%%) connect to two energy meters: [[https:~~/~~/app.datacake.de/dashboard/d/58844a26-378d-4c5a-aaf5-b5b5b153447a>>url:https://app.datacake.de/dashboard/d/58844a26-378d-4c5a-aaf5-b5b5b153447a]] 40 +((( 41 +For data uplink, RS485-BL sends user-defined commands to RS485 devices and gets the return from the RS485 devices. RS485-BL will process these returns data according to user-define rules to get the final payload and upload to LoRaWAN server. 36 36 ))) 43 + 44 +((( 45 +For data downlink, RS485-BL runs in LoRaWAN Class A. When there is downlink commands from LoRaWAN server, RS485-BL will forward the commands from LoRaWAN server to RS485 devices. 37 37 ))) 38 38 39 -[[image:1653267211009-519.png||height="419" width="724"]] 48 +((( 49 +Each RS485-BL pre-load with a set of unique keys for LoRaWAN registration, register these keys to LoRaWAN server and it will auto connect after power on. 50 +))) 40 40 52 +[[image:1652953304999-717.png||height="424" width="733"]] 41 41 42 42 == 1.2 Specifications == 43 43 44 - 45 45 **Hardware System:** 46 46 47 47 * STM32L072CZT6 MCU 48 48 * SX1276/78 Wireless Chip 49 49 * Power Consumption (exclude RS485 device): 50 -** Idle: 32mA@12v 51 -** 20dB Transmit: 65mA@12v 61 +** Idle: 6uA@3.3v 52 52 63 +* 64 +** 20dB Transmit: 130mA@3.3v 65 + 53 53 **Interface for Model:** 54 54 55 -* RS485 56 -* Power Input 7~~ 24V DC. 68 +* 1 x RS485 Interface 69 +* 1 x TTL Serial , 3.3v or 5v. 70 +* 1 x I2C Interface, 3.3v or 5v. 71 +* 1 x one wire interface 72 +* 1 x Interrupt Interface 73 +* 1 x Controllable 5V output, max 57 57 58 58 **LoRa Spec:** 59 59 ... ... @@ -62,35 +62,28 @@ 62 62 ** Band 2 (LF): 410 ~~ 528 Mhz 63 63 * 168 dB maximum link budget. 64 64 * +20 dBm - 100 mW constant RF output vs. 65 -* +14 dBm high efficiency PA. 66 66 * Programmable bit rate up to 300 kbps. 67 67 * High sensitivity: down to -148 dBm. 68 68 * Bullet-proof front end: IIP3 = -12.5 dBm. 69 69 * Excellent blocking immunity. 70 -* Low RX current of 10.3 mA, 200 nA register retention. 71 71 * Fully integrated synthesizer with a resolution of 61 Hz. 72 -* FSK, GFSK, MSK, GMSK,LoRaTMand OOKmodulation.87 +* LoRa modulation. 73 73 * Built-in bit synchronizer for clock recovery. 74 74 * Preamble detection. 75 75 * 127 dB Dynamic Range RSSI. 76 -* Automatic RF Sense and CAD with ultra-fast AFC. 77 -* Packet engine up to 256 bytes with CRC. 91 +* Automatic RF Sense and CAD with ultra-fast AFC. 78 78 79 - 80 - 81 81 == 1.3 Features == 82 82 83 -* LoRaWAN Class A & Class C protocol (default Class C)95 +* LoRaWAN Class A & Class C protocol (default Class A) 84 84 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865/RU864 85 85 * AT Commands to change parameters 86 -* Remote configure parameters via LoRa Downlink 98 +* Remote configure parameters via LoRaWAN Downlink 87 87 * Firmware upgradable via program port 88 88 * Support multiply RS485 devices by flexible rules 89 89 * Support Modbus protocol 90 -* Support Interrupt uplink (Since hardware version v1.2)102 +* Support Interrupt uplink 91 91 92 - 93 - 94 94 == 1.4 Applications == 95 95 96 96 * Smart Buildings & Home Automation ... ... @@ -100,50 +100,55 @@ 100 100 * Smart Cities 101 101 * Smart Factory 102 102 103 - 104 - 105 105 == 1.5 Firmware Change log == 106 106 107 -[[RS485-L NImage files – Download link and Change log>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/]]115 +[[RS485-BL Image files – Download link and Change log>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/RS485-BL/Firmware/||style="background-color: rgb(255, 255, 255);"]] 108 108 109 - 110 110 == 1.6 Hardware Change log == 111 111 112 112 ((( 120 +v1.4 121 +))) 122 + 113 113 ((( 114 -v1.2: Add External Interrupt Pin. 124 +~1. Change Power IC to TPS22916 125 +))) 115 115 116 -v1.0: Release 117 117 118 - 128 +((( 129 +v1.3 119 119 ))) 131 + 132 +((( 133 +~1. Change JP3 from KF350-8P to KF350-11P, Add one extra interface for I2C and one extra interface for one-wire 120 120 ))) 121 121 122 -= 2. Power ON Device = 123 123 124 124 ((( 125 -The RS485-LN can be powered by 7 ~~ 24V DC power source. Connection as below 138 +v1.2 139 +))) 126 126 127 -* Power Source VIN to RS485-LN VIN+ 128 -* Power Source GND to RS485-LN VIN- 129 - 130 130 ((( 131 - Oncethere ispower,theRS485-LN will beon.142 +Release version 132 132 ))) 133 133 134 - [[image:1653268091319-405.png]]145 += 2. Pin mapping and Power ON Device = 135 135 136 - 147 +((( 148 +The RS485-BL is powered on by 8500mAh battery. To save battery life, RS485-BL is shipped with power off. User can put the jumper to power on RS485-BL. 137 137 ))) 138 138 151 +[[image:1652953055962-143.png||height="387" width="728"]] 152 + 153 + 154 +The Left TXD and RXD are TTL interface for external sensor. TTL level is controlled by 3.3/5v Jumper. 155 + 139 139 = 3. Operation Mode = 140 140 141 141 == 3.1 How it works? == 142 142 143 143 ((( 144 -The RS485-LN is configured as LoRaWAN OTAA Class C mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the RS485-LN. It will auto join the network via OTAA. 145 - 146 - 161 +The RS485-BL is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the RS485-BL. It will auto join the network via OTAA. 147 147 ))) 148 148 149 149 == 3.2 Example to join LoRaWAN network == ... ... @@ -150,43 +150,28 @@ 150 150 151 151 Here shows an example for how to join the TTN V3 Network. Below is the network structure, we use [[LG308>>url:http://www.dragino.com/products/lora-lorawan-gateway/item/140-lg308.html]] as LoRaWAN gateway here. 152 152 153 -[[image:165 3268155545-638.png||height="334" width="724"]]168 +[[image:1652953414711-647.png||height="337" width="723"]] 154 154 155 -((( 156 -The RS485-LN in this example connected to two RS485 devices for demonstration, user can connect to other RS485 devices via the same method. The connection is as below: 170 +The RS485-BL in this example connected to two RS485 devices for demonstration, user can connect to other RS485 devices via the same method. 157 157 158 - 485A+and485B-ofthe sensor areconnected toRS485A andRA485BofRS485-LNrespectively.172 +The LG308 is already set to connect to [[TTN V3 network >>url:https://www.thethingsnetwork.org/]]. So what we need to now is only configure the TTN V3: 159 159 160 - [[image:1653268227651-549.png||height="592"width="720"]]174 +**Step 1**: Create a device in TTN V3 with the OTAA keys from RS485-BL. 161 161 162 -((( 163 -The LG308 is already set to connect to [[TTN V3 network >>path:eu1.cloud.thethings.network/]]. So what we need to now is only configure the TTN V3: 164 -))) 176 +Each RS485-BL is shipped with a sticker with unique device EUI: 165 165 166 -((( 167 -**Step 1**: Create a device in TTN V3 with the OTAA keys from RS485-LN. 168 -))) 169 - 170 -((( 171 -Each RS485-LN is shipped with a sticker with unique device EUI: 172 -))) 173 -))) 174 - 175 175 [[image:1652953462722-299.png]] 176 176 177 -((( 178 -((( 179 179 User can enter this key in their LoRaWAN Server portal. Below is TTN V3 screen shot: 180 -))) 181 181 182 -((( 183 183 Add APP EUI in the application. 184 -))) 185 -))) 186 186 184 + 185 + 186 + 187 187 [[image:image-20220519174512-1.png]] 188 188 189 -[[image:image-20220519174512-2.png||height="32 3" width="720"]]189 +[[image:image-20220519174512-2.png||height="328" width="731"]] 190 190 191 191 [[image:image-20220519174512-3.png||height="556" width="724"]] 192 192 ... ... @@ -202,176 +202,147 @@ 202 202 203 203 204 204 ((( 205 -**Step 2**: Power on RS485-L Nand it will auto join to the TTN V3 network. After join success, it will start to upload message to TTN V3 and user can see in the panel.205 +**Step 2**: Power on RS485-BL and it will auto join to the TTN V3 network. After join success, it will start to upload message to TTN V3 and user can see in the panel. 206 206 ))) 207 207 208 208 [[image:1652953568895-172.png||height="232" width="724"]] 209 209 210 -== 3.3 Configure Commands to read data == 211 211 212 -((( 213 -((( 214 -There are plenty of RS485 devices in the market and each device has different command to read the valid data. To support these devices in flexible, RS485-LN supports flexible command set. User can use [[AT Commands>>path:#AT_COMMAND]] or LoRaWAN Downlink Command to configure what commands RS485-LN should send for each sampling and how to handle the return from RS485 devices. 215 -))) 216 216 217 -((( 218 -(% style="color:red" %)Note: below description and commands are for firmware version >v1.1, if you have firmware version v1.0. Please check the [[user manual v1.0>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/&file=RS485-LN_UserManual_v1.0.1.pdf]] or upgrade the firmware to v1.1 219 -))) 220 -))) 221 221 222 -=== 3.3.1 onfigure UART settings for RS485 or TTL communication === 213 +1. 214 +11. Configure Commands to read data 223 223 224 -T ouse RS485-LNtoread datafromRS485sensors,connectthe RS485-LNA/B tracestothe sensors.Anduserneedtomakesure RS485-LNuse thematch UARTsettingto accessthesensors. TherelatedcommandsforUART settingsare:216 +There are plenty of RS485 and TTL level devices in the market and each device has different command to read the valid data. To support these devices in flexible, RS485-BL supports flexible command set. User can use [[AT Commands or LoRaWAN Downlink>>path:#AT_COMMAND]] Command to configure how RS485-BL should read the sensor and how to handle the return from RS485 or TTL sensors. 225 225 226 -(% border="1" style="background-color:#ffffcc; color:green; width:795px" %) 227 -|((( 228 -**AT Commands** 229 -)))|(% style="width:285px" %)((( 230 -**Description** 231 -)))|(% style="width:347px" %)((( 232 -**Example** 233 -))) 234 -|((( 235 -AT+BAUDR 236 -)))|(% style="width:285px" %)((( 237 -Set the baud rate (for RS485 connection). Default Value is: 9600. 238 -)))|(% style="width:347px" %)((( 239 -((( 218 + 219 +1. 220 +11. 221 +111. Configure UART settings for RS485 or TTL communication 222 + 223 +RS485-BL can connect to either RS485 sensors or TTL sensor. User need to specify what type of sensor need to connect. 224 + 225 +1. RS485-MODBUS mode: 226 + 227 +AT+MOD=1 ~/~/ Support RS485-MODBUS type sensors. User can connect multiply RS485 , Modbus sensors to the A / B pins. 228 + 229 + 230 +1. TTL mode: 231 + 232 +AT+MOD=2 ~/~/ Support TTL Level sensors, User can connect one TTL Sensor to the TXD/RXD/GND pins. 233 + 234 + 235 +RS485-BL default UART settings is **9600, no parity, stop bit 1**. If the sensor has a different settings, user can change the RS485-BL setting to match. 236 + 237 + 238 +|**AT Commands**|**Description**|**Example** 239 +|AT+BAUDR|Set the baud rate (for RS485 connection). Default Value is: 9600.|((( 240 240 AT+BAUDR=9600 241 -))) 242 242 243 -((( 244 244 Options: (1200,2400,4800,14400,19200,115200) 245 245 ))) 246 -))) 247 -|((( 248 -AT+PARITY 249 -)))|(% style="width:285px" %)((( 244 +|AT+PARITY|((( 250 250 Set UART parity (for RS485 connection) 251 -)))|(% style="width:347px" %)((( 252 -((( 246 + 247 +Default Value is: no parity. 248 +)))|((( 253 253 AT+PARITY=0 254 -))) 255 255 256 -((( 257 257 Option: 0: no parity, 1: odd parity, 2: even parity 258 258 ))) 259 -))) 260 -|((( 261 -AT+STOPBIT 262 -)))|(% style="width:285px" %)((( 263 -((( 253 +|AT+STOPBIT|((( 264 264 Set serial stopbit (for RS485 connection) 265 -))) 266 266 267 -((( 268 - 269 -))) 270 -)))|(% style="width:347px" %)((( 271 -((( 256 +Default Value is: 1bit. 257 +)))|((( 272 272 AT+STOPBIT=0 for 1bit 273 -))) 274 274 275 -((( 276 276 AT+STOPBIT=1 for 1.5 bit 277 -))) 278 278 279 -((( 280 280 AT+STOPBIT=2 for 2 bits 281 281 ))) 282 -))) 283 283 284 -=== 3.3.2 Configure sensors === 285 285 286 -((( 287 -((( 288 -Some sensors might need to configure before normal operation. User can configure such sensor via PC and RS485 adapter or through RS485-LN AT Commands (% style="color:#4f81bd" %)**AT+CFGDEV**(%%). Each (% style="color:#4f81bd" %)**AT+CFGDEV **(%%)equals to send a RS485 command to sensors. This command will only run when user input it and won’t run during each sampling. 289 -))) 290 -))) 291 291 292 -(% border="1" style="background-color:#ffffcc; color:green; width:806px" %) 293 -|**AT Commands**|(% style="width:418px" %)**Description**|(% style="width:256px" %)**Example** 294 -|AT+CFGDEV|(% style="width:418px" %)((( 267 + 268 +1. 269 +11. 270 +111. Configure sensors 271 + 272 +Some sensors might need to configure before normal operation. User can configure such sensor via PC or through RS485-BL AT Commands AT+CFGDEV. 273 + 274 + 275 +When user issue an AT+CFGDEV command, Each AT+CFGDEV equals to send a command to the RS485 or TTL sensors. This command will only run when user input it and won’t run during each sampling. 276 + 277 +|**AT Commands**|**Description**|**Example** 278 +|AT+CFGDEV|((( 295 295 This command is used to configure the RS485/TTL devices; they won’t be used during sampling. 296 296 297 -AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx, 281 +AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m 298 298 299 -m m: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command300 -)))| (% style="width:256px" %)AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m283 +m: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command 284 +)))|AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m 301 301 302 - ===3.3.3 Configurereadcommandsforeach sampling ===286 +Detail of AT+CFGDEV command see [[AT+CFGDEV detail>>path:#AT_CFGDEV]]. 303 303 304 -((( 288 + 289 + 290 + 291 + 292 +1. 293 +11. 294 +111. Configure read commands for each sampling 295 + 305 305 RS485-BL is a battery powered device; it will sleep most of time. And wake up on each period and read RS485 / TTL sensor data and uplink. 306 -))) 307 307 308 - (((298 + 309 309 During each sampling, we need to confirm what commands we need to send to the sensors to read data. After the RS485/TTL sensors send back the value, it normally includes some bytes and we only need a few from them for a shorten payload. 310 -))) 311 311 312 - (((301 + 313 313 To save the LoRaWAN network bandwidth, we might need to read data from different sensors and combine their valid value into a short payload. 314 -))) 315 315 316 - (((304 + 317 317 This section describes how to achieve above goals. 318 -))) 319 319 320 - (((307 + 321 321 During each sampling, the RS485-BL can support 15 commands to read sensors. And combine the return to one or several uplink payloads. 322 -))) 323 323 324 - (((310 + 325 325 **Command from RS485-BL to Sensor:** 326 -))) 327 327 328 -((( 329 329 RS485-BL can send out pre-set max 15 strings via **AT+COMMAD1**, **ATCOMMAND2**,…, to **AT+COMMANDF** . All commands are of same grammar. 330 -))) 331 331 332 - (((315 + 333 333 **Handle return from sensors to RS485-BL**: 334 -))) 335 335 336 -((( 337 337 After RS485-BL send out a string to sensor, RS485-BL will wait for the return from RS485 or TTL sensor. And user can specify how to handle the return, by **AT+DATACUT or AT+SEARCH commands** 338 -))) 339 339 340 -* ((( 341 -**AT+DATACUT** 342 -))) 343 343 344 -((( 321 +* **AT+DATACUT** 322 + 345 345 When the return value from sensor have fix length and we know which position the valid value we should get, we can use AT+DATACUT command. 346 -))) 347 347 348 -* ((( 349 -**AT+SEARCH** 350 -))) 351 351 352 -((( 326 +* **AT+SEARCH** 327 + 353 353 When the return value from sensor is dynamic length and we are not sure which bytes the valid data is, instead, we know what value the valid value following. We can use AT+SEARCH to search the valid value in the return string. 354 -))) 355 355 356 - (((330 + 357 357 **Define wait timeout:** 358 -))) 359 359 360 -((( 361 361 Some RS485 device might has longer delay on reply, so user can use AT+CMDDL to set the timeout for getting reply after the RS485 command is sent. For example, AT+CMDDL1=1000 to send the open time to 1000ms 362 -))) 363 363 364 - (((335 + 365 365 After we got the valid value from each RS485 commands, we need to combine them together with the command **AT+DATAUP**. 366 -))) 367 367 338 + 368 368 **Examples:** 369 369 370 370 Below are examples for the how above AT Commands works. 371 371 343 + 372 372 **AT+COMMANDx : **This command will be sent to RS485/TTL devices during each sampling, Max command length is 14 bytes. The grammar is: 373 373 374 -(% border="1" class="table-bordered" %) 375 375 |((( 376 376 **AT+COMMANDx=xx xx xx xx xx xx xx xx xx xx xx xx,m** 377 377 ... ... @@ -380,19 +380,13 @@ 380 380 **m: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command** 381 381 ))) 382 382 383 -((( 384 384 For example, if we have a RS485 sensor. The command to get sensor value is: 01 03 0B B8 00 02 46 0A. Where 01 03 0B B8 00 02 is the Modbus command to read the register 0B B8 where stored the sensor value. The 46 0A is the CRC-16/MODBUS which calculate manually. 385 -))) 386 386 387 -((( 388 388 In the RS485-BL, we should use this command AT+COMMAND1=01 03 0B B8 00 02,1 for the same. 389 -))) 390 390 391 - (((358 + 392 392 **AT+SEARCHx**: This command defines how to handle the return from AT+COMMANDx. 393 -))) 394 394 395 -(% border="1" class="table-bordered" %) 396 396 |((( 397 397 **AT+SEARCHx=aa,xx xx xx xx xx** 398 398 ... ... @@ -402,24 +402,26 @@ 402 402 403 403 ))) 404 404 405 - **Examples:**370 +Examples: 406 406 407 - ~1. For a return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49372 +1. For a return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49 408 408 409 409 If we set AT+SEARCH1=1,1E 56 34. (max 5 bytes for prefix) 410 410 411 -The valid data will be all bytes after 1E 56 34 , so it is (% style="background-color:yellow" %)**2e 30 58 5f 36 41 30 31 00 49**376 +The valid data will be all bytes after 1E 56 34 , so it is 2e 30 58 5f 36 41 30 31 00 49 412 412 413 -[[image: 1653269403619-508.png]]378 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image013.png]] 414 414 415 -2. For a return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49 416 416 381 +1. For a return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49 382 + 417 417 If we set AT+SEARCH1=2, 1E 56 34+31 00 49 418 418 419 -Device will search the bytes between 1E 56 34 and 31 00 49. So it is (% style="background-color:yellow" %)**2e 30 58 5f 36 41 30**385 +Device will search the bytes between 1E 56 34 and 31 00 49. So it is 2e 30 58 5f 36 41 30 420 420 421 -[[image: 1653269438444-278.png]]387 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image014.png]] 422 422 389 + 423 423 **AT+DATACUTx : **This command defines how to handle the return from AT+COMMANDx, max return length is 45 bytes. 424 424 425 425 |((( ... ... @@ -434,95 +434,94 @@ 434 434 435 435 * Grab bytes: 436 436 437 -[[image: 1653269551753-223.png||height="311" width="717"]]404 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image015.png]] 438 438 439 439 * Grab a section. 440 440 441 -[[image: 1653269568276-930.png||height="325" width="718"]]408 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image016.png]] 442 442 443 443 * Grab different sections. 444 444 445 -[[image: 1653269593172-426.png||height="303" width="725"]]412 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image017.png]] 446 446 447 -(% style="color:red" %)**Note:** 448 448 415 +Note: 416 + 449 449 AT+SEARCHx and AT+DATACUTx can be used together, if both commands are set, RS485-BL will first process AT+SEARCHx on the return string and get a temporary string, and then process AT+DATACUTx on this temporary string to get the final payload. In this case, AT+DATACUTx need to set to format AT+DATACUTx=0,xx,xx where the return bytes set to 0. 450 450 451 451 Example: 452 452 453 - (% style="color:red" %)AT+COMMAND1=11 01 1E D0,0421 +AT+COMMAND1=11 01 1E D0,0 454 454 455 - (% style="color:red" %)AT+SEARCH1=1,1E 56 34423 +AT+SEARCH1=1,1E 56 34 456 456 457 - (% style="color:red" %)AT+DATACUT1=0,2,1~~5425 +AT+DATACUT1=0,2,1~~5 458 458 459 - (% style="color:red" %)Return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49427 +Return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49 460 460 461 - (% style="color:red" %)String after SEARCH command: 2e 30 58 5f 36 41 30 31 00 49429 +String after SEARCH command: 2e 30 58 5f 36 41 30 31 00 49 462 462 463 - (% style="color:red" %)Valid payload after DataCUT command: 2e 30 58 5f 36431 +Valid payload after DataCUT command: 2e 30 58 5f 36 464 464 465 -[[image: 1653269618463-608.png]]433 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image018.png]] 466 466 467 -=== 3.3.4 Compose the uplink payload === 468 468 469 -((( 436 + 437 + 438 +1. 439 +11. 440 +111. Compose the uplink payload 441 + 470 470 Through AT+COMMANDx and AT+DATACUTx we got valid value from each RS485 commands, Assume these valid value are RETURN1, RETURN2, .., to RETURNx. The next step is how to compose the LoRa Uplink Payload by these RETURNs. The command is **AT+DATAUP.** 471 -))) 472 472 473 -((( 474 -(% style="color:#4f81bd" %)**Examples: AT+DATAUP=0** 475 -))) 476 476 477 -((( 478 -Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**A SIGNLE UPLINK**. 479 -))) 445 +**Examples: AT+DATAUP=0** 480 480 481 -((( 447 +Compose the uplink payload with value returns in sequence and send with **A SIGNLE UPLINK**. 448 + 482 482 Final Payload is 483 -))) 484 484 485 -((( 486 -(% style="color:#4f81bd" %)**Battery Info+PAYVER + VALID Value from RETURN1 + Valid Value from RETURN2 + … + RETURNx** 487 -))) 451 +Battery Info+PAYVER + VALID Value from RETURN1 + Valid Value from RETURN2 + … + RETURNx 488 488 489 -((( 490 490 Where PAYVER is defined by AT+PAYVER, below is an example screen shot. 491 -))) 492 492 493 -[[image: 1653269759169-150.png||height="513" width="716"]]455 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image019.png]] 494 494 495 -(% style="color:#4f81bd" %)**Examples: AT+DATAUP=1** 496 496 497 -Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**Multiply UPLINKs**. 498 498 459 +**Examples: AT+DATAUP=1** 460 + 461 +Compose the uplink payload with value returns in sequence and send with **Multiply UPLINKs**. 462 + 499 499 Final Payload is 500 500 501 - (% style="color:#4f81bd" %)**Battery Info+PAYVER + PAYLOAD COUNT + PAYLOAD# + DATA**465 +Battery Info+PAYVER + PAYLOAD COUNT + PAYLOAD# + DATA 502 502 503 503 1. Battery Info (2 bytes): Battery voltage 504 504 1. PAYVER (1 byte): Defined by AT+PAYVER 505 505 1. PAYLOAD COUNT (1 byte): Total how many uplinks of this sampling. 506 506 1. PAYLOAD# (1 byte): Number of this uplink. (from 0,1,2,3…,to PAYLOAD COUNT) 507 -1. DATA: Valid value: max 6 bytes(US915 version here, Notice*!) for each uplink so each uplink <= 11 bytes. For the last uplink, DATA will might less than 6 bytes 471 +1. DATA: Valid value: max 6 bytes(US915 version here, [[Notice*!>>path:#max_byte]]) for each uplink so each uplink <= 11 bytes. For the last uplink, DATA will might less than 6 bytes 508 508 509 -[[image: 1653269916228-732.png||height="433" width="711"]]473 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]] 510 510 511 511 512 512 So totally there will be 3 uplinks for this sampling, each uplink includes 6 bytes DATA 513 513 514 -DATA1=RETURN1 Valid Value = (% style="background-color:green; color:white" %)20 20 0a 33 90 41478 +DATA1=RETURN1 Valid Value = 20 20 0a 33 90 41 515 515 516 -DATA2=1^^st^^ ~~ 6^^th^^ byte of Valid value of RETURN10= (%style="background-color:green; color:white" %)02 aa 05 81 0a 20480 +DATA2=1^^st^^ ~~ 6^^th^^ byte of Valid value of RETURN10= 02 aa 05 81 0a 20 517 517 518 -DATA3=7^^th^^ ~~ 11^^th^^ bytes of Valid value of RETURN10 = (%style="background-color:green; color:white" %)20 20 20 2d 30482 +DATA3=7^^th^^ ~~ 11^^th^^ bytes of Valid value of RETURN10 = 20 20 20 2d 30 519 519 484 + 485 + 520 520 Below are the uplink payloads: 521 521 522 -[[image: 1653270130359-810.png]]488 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image021.png]] 523 523 524 524 525 - (% style="color:red" %)**Notice: the Max bytes is according to the max support bytes in different Frequency Bands for lowest SF. As below:**491 +Notice: the Max bytes is according to the max support bytes in different Frequency Bands for lowest SF. As below: 526 526 527 527 ~* For AU915/AS923 bands, if UplinkDwell time=0, max 51 bytes for each uplink ( so 51 -5 = 46 max valid date) 528 528 ... ... @@ -532,8 +532,12 @@ 532 532 533 533 ~* For all other bands: max 51 bytes for each uplink ( so 51 -5 = 46 max valid date). 534 534 535 -=== 3.3.5 Uplink on demand === 536 536 502 + 503 +1. 504 +11. 505 +111. Uplink on demand 506 + 537 537 Except uplink periodically, RS485-BL is able to uplink on demand. The server sends downlink command to RS485-BL and RS485 will uplink data base on the command. 538 538 539 539 Downlink control command: ... ... @@ -544,8 +544,8 @@ 544 544 545 545 546 546 547 -1. 548 -11. 517 +1. 518 +11. 549 549 111. Uplink on Interrupt 550 550 551 551 Put the interrupt sensor between 3.3v_out and GPIO ext.[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image022.png]] ... ... @@ -559,7 +559,7 @@ 559 559 AT+INTMOD=3 Interrupt trigger by rising edge. 560 560 561 561 562 -1. 532 +1. 563 563 11. Uplink Payload 564 564 565 565 |**Size(bytes)**|**2**|**1**|**Length depends on the return from the commands** ... ... @@ -621,15 +621,15 @@ 621 621 622 622 * **Sensor Related Commands**: These commands are special designed for RS485-BL. User can see these commands below: 623 623 624 -1. 625 -11. 594 +1. 595 +11. 626 626 111. Common Commands: 627 627 628 628 They should be available for each of Dragino Sensors, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: [[http:~~/~~/wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands>>url:http://wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands]] 629 629 630 630 631 -1. 632 -11. 601 +1. 602 +11. 633 633 111. Sensor related commands: 634 634 635 635 ==== Choose Device Type (RS485 or TTL) ==== ... ... @@ -935,13 +935,13 @@ 935 935 936 936 937 937 938 -1. 908 +1. 939 939 11. Buttons 940 940 941 941 |**Button**|**Feature** 942 942 |**RST**|Reboot RS485-BL 943 943 944 -1. 914 +1. 945 945 11. +3V3 Output 946 946 947 947 RS485-BL has a Controllable +3V3 output, user can use this output to power external sensor. ... ... @@ -959,7 +959,7 @@ 959 959 By default, the AT+3V3T=0. This is a special case, means the +3V3 output is always on at any time 960 960 961 961 962 -1. 932 +1. 963 963 11. +5V Output 964 964 965 965 RS485-BL has a Controllable +5V output, user can use this output to power external sensor. ... ... @@ -979,13 +979,13 @@ 979 979 980 980 981 981 982 -1. 952 +1. 983 983 11. LEDs 984 984 985 985 |**LEDs**|**Feature** 986 986 |**LED1**|Blink when device transmit a packet. 987 987 988 -1. 958 +1. 989 989 11. Switch Jumper 990 990 991 991 |**Switch Jumper**|**Feature** ... ... @@ -1031,7 +1031,7 @@ 1031 1031 1032 1032 1033 1033 1034 -1. 1004 +1. 1035 1035 11. Common AT Command Sequence 1036 1036 111. Multi-channel ABP mode (Use with SX1301/LG308) 1037 1037 ... ... @@ -1050,8 +1050,8 @@ 1050 1050 1051 1051 ATZ 1052 1052 1053 -1. 1054 -11. 1023 +1. 1024 +11. 1055 1055 111. Single-channel ABP mode (Use with LG01/LG02) 1056 1056 1057 1057 AT+FDR Reset Parameters to Factory Default, Keys Reserve ... ... @@ -1126,7 +1126,7 @@ 1126 1126 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image035.png]] [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image036.png]] 1127 1127 1128 1128 1129 -1. 1099 +1. 1130 1130 11. How to change the LoRa Frequency Bands/Region? 1131 1131 1132 1132 User can follow the introduction for [[how to upgrade image>>path:#upgrade_image]]. When download the images, choose the required image file for download. ... ... @@ -1133,7 +1133,7 @@ 1133 1133 1134 1134 1135 1135 1136 -1. 1106 +1. 1137 1137 11. How many RS485-Slave can RS485-BL connects? 1138 1138 1139 1139 The RS485-BL can support max 32 RS485 devices. Each uplink command of RS485-BL can support max 16 different RS485 command. So RS485-BL can support max 16 RS485 devices pre-program in the device for uplink. For other devices no pre-program, user can use the [[downlink message (type code 0xA8) to poll their info>>path:#downlink_A8]]. ... ... @@ -1150,7 +1150,7 @@ 1150 1150 1151 1151 1152 1152 1153 -1. 1123 +1. 1154 1154 11. Why I can’t join TTN V3 in US915 /AU915 bands? 1155 1155 1156 1156 It might about the channels mapping. Please see for detail.
- 1652954654347-831.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -138.7 KB - Content
- 1653266934636-343.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -176.5 KB - Content
- 1653267211009-519.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -138.7 KB - Content
- 1653268091319-405.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -399.3 KB - Content
- 1653268155545-638.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -113.7 KB - Content
- 1653268227651-549.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -1.3 MB - Content
- 1653269403619-508.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -27.8 KB - Content
- 1653269438444-278.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -26.6 KB - Content
- 1653269551753-223.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -138.7 KB - Content
- 1653269568276-930.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -131.4 KB - Content
- 1653269593172-426.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -142.6 KB - Content
- 1653269618463-608.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -27.7 KB - Content
- 1653269759169-150.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -294.0 KB - Content
- 1653269916228-732.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -143.3 KB - Content
- 1653270130359-810.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -197.8 KB - Content