Last modified by Xiaoling on 2025/04/23 15:56

From version 32.12
edited by Xiaoling
on 2022/06/02 15:26
Change comment: There is no comment for this version
To version 15.2
edited by Xiaoling
on 2022/05/19 17:47
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -RS485-LN – RS485 to LoRaWAN Converter
1 +RS485-BL – Waterproof RS485 to LoRaWAN Converter
Content
... ... @@ -1,11 +1,12 @@
1 1  (% style="text-align:center" %)
2 -[[image:1653266934636-343.png||height="385" width="385"]]
2 +[[image:1652947681187-144.png||height="385" width="385"]]
3 3  
4 4  
5 5  
6 -**RS485-LN – RS485 to LoRaWAN Converter User Manual**
7 7  
7 +**RS485-BL – Waterproof RS485 to LoRaWAN Converter User Manual**
8 8  
9 +
9 9  **Table of Contents:**
10 10  
11 11  
... ... @@ -14,46 +14,62 @@
14 14  
15 15  = 1.Introduction =
16 16  
17 -== 1.1 What is RS485-LN RS485 to LoRaWAN Converter ==
18 +== 1.1 What is RS485-BL RS485 to LoRaWAN Converter ==
18 18  
19 19  (((
21 +
22 +)))
23 +
20 20  (((
21 -The Dragino RS485-LN is a (% style="color:blue" %)**RS485 to LoRaWAN Converter**(%%). It converts the RS485 signal into LoRaWAN wireless signal which simplify the IoT installation and reduce the installation/maintaining cost.
25 +The Dragino RS485-BL is a **RS485 / UART to LoRaWAN Converter** for Internet of Things solutions. User can connect RS485 or UART sensor to RS485-BL converter, and configure RS485-BL to periodically read sensor data and upload via LoRaWAN network to IoT server.
22 22  )))
23 23  
24 24  (((
25 -RS485-LN allows user to (% style="color:blue" %)**monitor / control RS485 devices**(%%) and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
29 +RS485-BL can interface to RS485 sensor, 3.3v/5v UART sensor or interrupt sensor. RS485-BL provides **a 3.3v output** and** a 5v output** to power external sensors. Both output voltages are controllable to minimize the total system power consumption.
26 26  )))
27 27  
28 28  (((
29 -(% style="color:blue" %)**For data uplink**(%%), RS485-LN sends user-defined commands to RS485 devices and gets the return from the RS485 devices. RS485-LN will process these returns according to user-define rules to get the final payload and upload to LoRaWAN server.
33 +RS485-BL is IP67 **waterproof** and powered by **8500mAh Li-SOCI2 battery**, it is designed for long term use for several years.
30 30  )))
31 31  
32 32  (((
33 -(% style="color:blue" %)**For data downlink**(%%), RS485-LN runs in LoRaWAN Class C. When there downlink commands from LoRaWAN server, RS485-LN will forward the commands from LoRaWAN server to RS485 devices.
37 +RS485-BL runs standard **LoRaWAN 1.0.3 in Class A**. It can reach long transfer range and easy to integrate with LoRaWAN compatible gateway and IoT server.
38 +)))
34 34  
35 -(% style="color:blue" %)**Demo Dashboard for RS485-LN**(%%) connect to two energy meters: [[https:~~/~~/app.datacake.de/dashboard/d/58844a26-378d-4c5a-aaf5-b5b5b153447a>>url:https://app.datacake.de/dashboard/d/58844a26-378d-4c5a-aaf5-b5b5b153447a]]
40 +(((
41 +For data uplink, RS485-BL sends user-defined commands to RS485 devices and gets the return from the RS485 devices. RS485-BL will process these returns data according to user-define rules to get the final payload and upload to LoRaWAN server.
36 36  )))
43 +
44 +(((
45 +For data downlink, RS485-BL runs in LoRaWAN Class A. When there is downlink commands from LoRaWAN server, RS485-BL will forward the commands from LoRaWAN server to RS485 devices.
37 37  )))
38 38  
39 -[[image:1653267211009-519.png||height="419" width="724"]]
48 +(((
49 +Each RS485-BL pre-load with a set of unique keys for LoRaWAN registration, register these keys to LoRaWAN server and it will auto connect after power on.
50 +)))
40 40  
52 +[[image:1652953304999-717.png||height="424" width="733"]]
41 41  
42 42  == 1.2 Specifications ==
43 43  
44 -
45 45  **Hardware System:**
46 46  
47 47  * STM32L072CZT6 MCU
48 48  * SX1276/78 Wireless Chip 
49 49  * Power Consumption (exclude RS485 device):
50 -** Idle: 32mA@12v
51 -** 20dB Transmit: 65mA@12v
61 +** Idle: 6uA@3.3v
52 52  
63 +*
64 +** 20dB Transmit: 130mA@3.3v
65 +
53 53  **Interface for Model:**
54 54  
55 -* RS485
56 -* Power Input 7~~ 24V DC. 
68 +* 1 x RS485 Interface
69 +* 1 x TTL Serial , 3.3v or 5v.
70 +* 1 x I2C Interface, 3.3v or 5v.
71 +* 1 x one wire interface
72 +* 1 x Interrupt Interface
73 +* 1 x Controllable 5V output, max
57 57  
58 58  **LoRa Spec:**
59 59  
... ... @@ -62,35 +62,28 @@
62 62  ** Band 2 (LF): 410 ~~ 528 Mhz
63 63  * 168 dB maximum link budget.
64 64  * +20 dBm - 100 mW constant RF output vs.
65 -* +14 dBm high efficiency PA.
66 66  * Programmable bit rate up to 300 kbps.
67 67  * High sensitivity: down to -148 dBm.
68 68  * Bullet-proof front end: IIP3 = -12.5 dBm.
69 69  * Excellent blocking immunity.
70 -* Low RX current of 10.3 mA, 200 nA register retention.
71 71  * Fully integrated synthesizer with a resolution of 61 Hz.
72 -* FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation.
87 +* LoRa modulation.
73 73  * Built-in bit synchronizer for clock recovery.
74 74  * Preamble detection.
75 75  * 127 dB Dynamic Range RSSI.
76 -* Automatic RF Sense and CAD with ultra-fast AFC.
77 -* Packet engine up to 256 bytes with CRC.
91 +* Automatic RF Sense and CAD with ultra-fast AFC. ​​​
78 78  
79 -
80 -
81 81  == 1.3 Features ==
82 82  
83 -* LoRaWAN Class A & Class C protocol (default Class C)
95 +* LoRaWAN Class A & Class C protocol (default Class A)
84 84  * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865/RU864
85 85  * AT Commands to change parameters
86 -* Remote configure parameters via LoRa Downlink
98 +* Remote configure parameters via LoRaWAN Downlink
87 87  * Firmware upgradable via program port
88 88  * Support multiply RS485 devices by flexible rules
89 89  * Support Modbus protocol
90 -* Support Interrupt uplink (Since hardware version v1.2)
102 +* Support Interrupt uplink
91 91  
92 -
93 -
94 94  == 1.4 Applications ==
95 95  
96 96  * Smart Buildings & Home Automation
... ... @@ -100,50 +100,55 @@
100 100  * Smart Cities
101 101  * Smart Factory
102 102  
103 -
104 -
105 105  == 1.5 Firmware Change log ==
106 106  
107 -[[RS485-LN Image files – Download link and Change log>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/]]
115 +[[RS485-BL Image files – Download link and Change log>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/RS485-BL/Firmware/||style="background-color: rgb(255, 255, 255);"]]
108 108  
109 -
110 110  == 1.6 Hardware Change log ==
111 111  
112 112  (((
120 +v1.4
121 +)))
122 +
113 113  (((
114 -v1.2: Add External Interrupt Pin.
124 +~1. Change Power IC to TPS22916
125 +)))
115 115  
116 -v1.0: Release
117 117  
118 -
128 +(((
129 +v1.3
119 119  )))
131 +
132 +(((
133 +~1. Change JP3 from KF350-8P to KF350-11P, Add one extra interface for I2C and one extra interface for one-wire
120 120  )))
121 121  
122 -= 2. Power ON Device =
123 123  
124 124  (((
125 -The RS485-LN can be powered by 7 ~~ 24V DC power source. Connection as below
138 +v1.2
139 +)))
126 126  
127 -* Power Source VIN to RS485-LN VIN+
128 -* Power Source GND to RS485-LN VIN-
129 -
130 130  (((
131 -Once there is power, the RS485-LN will be on.
142 +Release version ​​​​​
132 132  )))
133 133  
134 -[[image:1653268091319-405.png]]
145 += 2. Pin mapping and Power ON Device =
135 135  
136 -
147 +(((
148 +The RS485-BL is powered on by 8500mAh battery. To save battery life, RS485-BL is shipped with power off. User can put the jumper to power on RS485-BL.
137 137  )))
138 138  
151 +[[image:1652953055962-143.png||height="387" width="728"]]
152 +
153 +
154 +The Left TXD and RXD are TTL interface for external sensor. TTL level is controlled by 3.3/5v Jumper.
155 +
139 139  = 3. Operation Mode =
140 140  
141 141  == 3.1 How it works? ==
142 142  
143 143  (((
144 -The RS485-LN is configured as LoRaWAN OTAA Class C mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the RS485-LN. It will auto join the network via OTAA.
145 -
146 -
161 +The RS485-BL is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the RS485-BL. It will auto join the network via OTAA.
147 147  )))
148 148  
149 149  == 3.2 Example to join LoRaWAN network ==
... ... @@ -150,43 +150,28 @@
150 150  
151 151  Here shows an example for how to join the TTN V3 Network. Below is the network structure, we use [[LG308>>url:http://www.dragino.com/products/lora-lorawan-gateway/item/140-lg308.html]] as LoRaWAN gateway here. 
152 152  
153 -[[image:1653268155545-638.png||height="334" width="724"]]
168 +[[image:1652953414711-647.png||height="337" width="723"]]
154 154  
155 -(((
156 -The RS485-LN in this example connected to two RS485 devices for demonstration, user can connect to other RS485 devices via the same method. The connection is as below:
170 +The RS485-BL in this example connected to two RS485 devices for demonstration, user can connect to other RS485 devices via the same method.
157 157  
158 -485A+ and 485B- of the sensor are connected to RS485A and RA485B of RS485-LN respectively.
172 +The LG308 is already set to connect to [[TTN V3 network >>url:https://www.thethingsnetwork.org/]]. So what we need to now is only configure the TTN V3:
159 159  
160 -[[image:1653268227651-549.png||height="592" width="720"]]
174 +**Step 1**: Create a device in TTN V3 with the OTAA keys from RS485-BL.
161 161  
162 -(((
163 -The LG308 is already set to connect to [[TTN V3 network >>path:eu1.cloud.thethings.network/]]. So what we need to now is only configure the TTN V3:
164 -)))
176 +Each RS485-BL is shipped with a sticker with unique device EUI:
165 165  
166 -(((
167 -**Step 1**: Create a device in TTN V3 with the OTAA keys from RS485-LN.
168 -)))
169 -
170 -(((
171 -Each RS485-LN is shipped with a sticker with unique device EUI:
172 -)))
173 -)))
174 -
175 175  [[image:1652953462722-299.png]]
176 176  
177 -(((
178 -(((
179 179  User can enter this key in their LoRaWAN Server portal. Below is TTN V3 screen shot:
180 -)))
181 181  
182 -(((
183 183  Add APP EUI in the application.
184 -)))
185 -)))
186 186  
184 +
185 +
186 +
187 187  [[image:image-20220519174512-1.png]]
188 188  
189 -[[image:image-20220519174512-2.png||height="323" width="720"]]
189 +[[image:image-20220519174512-2.png||height="328" width="731"]]
190 190  
191 191  [[image:image-20220519174512-3.png||height="556" width="724"]]
192 192  
... ... @@ -202,176 +202,147 @@
202 202  
203 203  
204 204  (((
205 -**Step 2**: Power on RS485-LN and it will auto join to the TTN V3 network. After join success, it will start to upload message to TTN V3 and user can see in the panel.
205 +**Step 2**: Power on RS485-BL and it will auto join to the TTN V3 network. After join success, it will start to upload message to TTN V3 and user can see in the panel.
206 206  )))
207 207  
208 208  [[image:1652953568895-172.png||height="232" width="724"]]
209 209  
210 -== 3.3 Configure Commands to read data ==
211 211  
212 -(((
213 -(((
214 -There are plenty of RS485 devices in the market and each device has different command to read the valid data. To support these devices in flexible, RS485-LN supports flexible command set. User can use [[AT Commands>>path:#AT_COMMAND]] or LoRaWAN Downlink Command to configure what commands RS485-LN should send for each sampling and how to handle the return from RS485 devices.
215 -)))
216 216  
217 -(((
218 -(% style="color:red" %)Note: below description and commands are for firmware version >v1.1, if you have firmware version v1.0. Please check the [[user manual v1.0>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/&file=RS485-LN_UserManual_v1.0.1.pdf]] or upgrade the firmware to v1.1
219 -)))
220 -)))
221 221  
222 -=== 3.3.1 onfigure UART settings for RS485 or TTL communication ===
213 +1.
214 +11. Configure Commands to read data
223 223  
224 -To use RS485-LN to read data from RS485 sensors, connect the RS485-LN A/B traces to the sensors. And user need to make sure RS485-LN use the match UART setting to access the sensors. The related commands for UART settings are:
216 +There are plenty of RS485 and TTL level devices in the market and each device has different command to read the valid data. To support these devices in flexible, RS485-BL supports flexible command set. User can use [[AT Commands or LoRaWAN Downlink>>path:#AT_COMMAND]] Command to configure how RS485-BL should read the sensor and how to handle the return from RS485 or TTL sensors.
225 225  
226 -(% border="1" style="background-color:#ffffcc; color:green; width:795px" %)
227 -|(((
228 -**AT Commands**
229 -)))|(% style="width:285px" %)(((
230 -**Description**
231 -)))|(% style="width:347px" %)(((
232 -**Example**
233 -)))
234 -|(((
235 -AT+BAUDR
236 -)))|(% style="width:285px" %)(((
237 -Set the baud rate (for RS485 connection). Default Value is: 9600.
238 -)))|(% style="width:347px" %)(((
239 -(((
218 +
219 +1.
220 +11.
221 +111. Configure UART settings for RS485 or TTL communication
222 +
223 +RS485-BL can connect to either RS485 sensors or TTL sensor. User need to specify what type of sensor need to connect.
224 +
225 +1. RS485-MODBUS mode:
226 +
227 +AT+MOD=1 ~/~/ Support RS485-MODBUS type sensors. User can connect multiply RS485 , Modbus sensors to the A / B pins.
228 +
229 +
230 +1. TTL mode:
231 +
232 +AT+MOD=2 ~/~/ Support TTL Level sensors, User can connect one TTL Sensor to the TXD/RXD/GND pins.
233 +
234 +
235 +RS485-BL default UART settings is **9600, no parity, stop bit 1**. If the sensor has a different settings, user can change the RS485-BL setting to match.
236 +
237 +
238 +|**AT Commands**|**Description**|**Example**
239 +|AT+BAUDR|Set the baud rate (for RS485 connection). Default Value is: 9600.|(((
240 240  AT+BAUDR=9600
241 -)))
242 242  
243 -(((
244 244  Options: (1200,2400,4800,14400,19200,115200)
245 245  )))
246 -)))
247 -|(((
248 -AT+PARITY
249 -)))|(% style="width:285px" %)(((
244 +|AT+PARITY|(((
250 250  Set UART parity (for RS485 connection)
251 -)))|(% style="width:347px" %)(((
252 -(((
246 +
247 +Default Value is: no parity.
248 +)))|(((
253 253  AT+PARITY=0
254 -)))
255 255  
256 -(((
257 257  Option: 0: no parity, 1: odd parity, 2: even parity
258 258  )))
259 -)))
260 -|(((
261 -AT+STOPBIT
262 -)))|(% style="width:285px" %)(((
263 -(((
253 +|AT+STOPBIT|(((
264 264  Set serial stopbit (for RS485 connection)
265 -)))
266 266  
267 -(((
268 -
269 -)))
270 -)))|(% style="width:347px" %)(((
271 -(((
256 +Default Value is: 1bit.
257 +)))|(((
272 272  AT+STOPBIT=0 for 1bit
273 -)))
274 274  
275 -(((
276 276  AT+STOPBIT=1 for 1.5 bit
277 -)))
278 278  
279 -(((
280 280  AT+STOPBIT=2 for 2 bits
281 281  )))
282 -)))
283 283  
284 -=== 3.3.2 Configure sensors ===
285 285  
286 -(((
287 -(((
288 -Some sensors might need to configure before normal operation. User can configure such sensor via PC and RS485 adapter or through RS485-LN AT Commands (% style="color:#4f81bd" %)**AT+CFGDEV**(%%). Each (% style="color:#4f81bd" %)**AT+CFGDEV **(%%)equals to send a RS485 command to sensors. This command will only run when user input it and won’t run during each sampling.
289 -)))
290 -)))
291 291  
292 -(% border="1" style="background-color:#ffffcc; color:green; width:806px" %)
293 -|**AT Commands**|(% style="width:418px" %)**Description**|(% style="width:256px" %)**Example**
294 -|AT+CFGDEV|(% style="width:418px" %)(((
267 +
268 +1.
269 +11.
270 +111. Configure sensors
271 +
272 +Some sensors might need to configure before normal operation. User can configure such sensor via PC or through RS485-BL AT Commands AT+CFGDEV.
273 +
274 +
275 +When user issue an AT+CFGDEV command, Each AT+CFGDEV equals to send a command to the RS485 or TTL sensors. This command will only run when user input it and won’t run during each sampling.
276 +
277 +|**AT Commands**|**Description**|**Example**
278 +|AT+CFGDEV|(((
295 295  This command is used to configure the RS485/TTL devices; they won’t be used during sampling.
296 296  
297 -AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,
281 +AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m
298 298  
299 -mm: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command
300 -)))|(% style="width:256px" %)AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m
283 +m: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command
284 +)))|AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m
301 301  
302 -=== 3.3.3 Configure read commands for each sampling ===
286 +Detail of AT+CFGDEV command see [[AT+CFGDEV detail>>path:#AT_CFGDEV]].
303 303  
304 -(((
288 +
289 +
290 +
291 +
292 +1.
293 +11.
294 +111. Configure read commands for each sampling
295 +
305 305  RS485-BL is a battery powered device; it will sleep most of time. And wake up on each period and read RS485 / TTL sensor data and uplink.
306 -)))
307 307  
308 -(((
298 +
309 309  During each sampling, we need to confirm what commands we need to send to the sensors to read data. After the RS485/TTL sensors send back the value, it normally includes some bytes and we only need a few from them for a shorten payload.
310 -)))
311 311  
312 -(((
301 +
313 313  To save the LoRaWAN network bandwidth, we might need to read data from different sensors and combine their valid value into a short payload.
314 -)))
315 315  
316 -(((
304 +
317 317  This section describes how to achieve above goals.
318 -)))
319 319  
320 -(((
307 +
321 321  During each sampling, the RS485-BL can support 15 commands to read sensors. And combine the return to one or several uplink payloads.
322 -)))
323 323  
324 -(((
310 +
325 325  **Command from RS485-BL to Sensor:**
326 -)))
327 327  
328 -(((
329 329  RS485-BL can send out pre-set max 15 strings via **AT+COMMAD1**, **ATCOMMAND2**,…, to **AT+COMMANDF** . All commands are of same grammar.
330 -)))
331 331  
332 -(((
315 +
333 333  **Handle return from sensors to RS485-BL**:
334 -)))
335 335  
336 -(((
337 337  After RS485-BL send out a string to sensor, RS485-BL will wait for the return from RS485 or TTL sensor. And user can specify how to handle the return, by **AT+DATACUT or AT+SEARCH commands**
338 -)))
339 339  
340 -* (((
341 -**AT+DATACUT**
342 -)))
343 343  
344 -(((
321 +* **AT+DATACUT**
322 +
345 345  When the return value from sensor have fix length and we know which position the valid value we should get, we can use AT+DATACUT command.
346 -)))
347 347  
348 -* (((
349 -**AT+SEARCH**
350 -)))
351 351  
352 -(((
326 +* **AT+SEARCH**
327 +
353 353  When the return value from sensor is dynamic length and we are not sure which bytes the valid data is, instead, we know what value the valid value following. We can use AT+SEARCH to search the valid value in the return string.
354 -)))
355 355  
356 -(((
330 +
357 357  **Define wait timeout:**
358 -)))
359 359  
360 -(((
361 361  Some RS485 device might has longer delay on reply, so user can use AT+CMDDL to set the timeout for getting reply after the RS485 command is sent. For example, AT+CMDDL1=1000 to send the open time to 1000ms
362 -)))
363 363  
364 -(((
335 +
365 365  After we got the valid value from each RS485 commands, we need to combine them together with the command **AT+DATAUP**.
366 -)))
367 367  
338 +
368 368  **Examples:**
369 369  
370 370  Below are examples for the how above AT Commands works.
371 371  
343 +
372 372  **AT+COMMANDx : **This command will be sent to RS485/TTL devices during each sampling, Max command length is 14 bytes. The grammar is:
373 373  
374 -(% border="1" class="table-bordered" %)
375 375  |(((
376 376  **AT+COMMANDx=xx xx xx xx xx xx xx xx xx xx xx xx,m**
377 377  
... ... @@ -380,19 +380,13 @@
380 380  **m: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command**
381 381  )))
382 382  
383 -(((
384 384  For example, if we have a RS485 sensor. The command to get sensor value is: 01 03 0B B8 00 02 46 0A. Where 01 03 0B B8 00 02 is the Modbus command to read the register 0B B8 where stored the sensor value. The 46 0A is the CRC-16/MODBUS which calculate manually.
385 -)))
386 386  
387 -(((
388 388  In the RS485-BL, we should use this command AT+COMMAND1=01 03 0B B8 00 02,1 for the same.
389 -)))
390 390  
391 -(((
358 +
392 392  **AT+SEARCHx**: This command defines how to handle the return from AT+COMMANDx.
393 -)))
394 394  
395 -(% border="1" class="table-bordered" %)
396 396  |(((
397 397  **AT+SEARCHx=aa,xx xx xx xx xx**
398 398  
... ... @@ -402,24 +402,26 @@
402 402  
403 403  )))
404 404  
405 -**Examples:**
370 +Examples:
406 406  
407 -~1. For a return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
372 +1. For a return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
408 408  
409 409  If we set AT+SEARCH1=1,1E 56 34.      (max 5 bytes for prefix)
410 410  
411 -The valid data will be all bytes after 1E 56 34 , so it is (% style="background-color:yellow" %)** 2e 30 58 5f 36 41 30 31 00 49**
376 +The valid data will be all bytes after 1E 56 34 , so it is 2e 30 58 5f 36 41 30 31 00 49
412 412  
413 -[[image:1653269403619-508.png]]
378 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image013.png]]
414 414  
415 -2. For a return string from AT+COMMAND1:  16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
416 416  
381 +1. For a return string from AT+COMMAND1:  16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
382 +
417 417  If we set AT+SEARCH1=2, 1E 56 34+31 00 49
418 418  
419 -Device will search the bytes between 1E 56 34 and 31 00 49. So it is (% style="background-color:yellow" %)** 2e 30 58 5f 36 41 30**
385 +Device will search the bytes between 1E 56 34 and 31 00 49. So it is 2e 30 58 5f 36 41 30
420 420  
421 -[[image:1653269438444-278.png]]
387 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image014.png]]
422 422  
389 +
423 423  **AT+DATACUTx : **This command defines how to handle the return from AT+COMMANDx, max return length is 45 bytes.
424 424  
425 425  |(((
... ... @@ -434,95 +434,94 @@
434 434  
435 435  * Grab bytes:
436 436  
437 -[[image:1653269551753-223.png||height="311" width="717"]]
404 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image015.png]]
438 438  
439 439  * Grab a section.
440 440  
441 -[[image:1653269568276-930.png||height="325" width="718"]]
408 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image016.png]]
442 442  
443 443  * Grab different sections.
444 444  
445 -[[image:1653269593172-426.png||height="303" width="725"]]
412 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image017.png]]
446 446  
447 -(% style="color:red" %)**Note:**
448 448  
415 +Note:
416 +
449 449  AT+SEARCHx and AT+DATACUTx can be used together, if both commands are set, RS485-BL will first process AT+SEARCHx on the return string and get a temporary string, and then process AT+DATACUTx on this temporary string to get the final payload. In this case, AT+DATACUTx need to set to format AT+DATACUTx=0,xx,xx where the return bytes set to 0.
450 450  
451 451  Example:
452 452  
453 -(% style="color:red" %)AT+COMMAND1=11 01 1E D0,0
421 +AT+COMMAND1=11 01 1E D0,0
454 454  
455 -(% style="color:red" %)AT+SEARCH1=1,1E 56 34
423 +AT+SEARCH1=1,1E 56 34
456 456  
457 -(% style="color:red" %)AT+DATACUT1=0,2,1~~5
425 +AT+DATACUT1=0,2,1~~5
458 458  
459 -(% style="color:red" %)Return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
427 +Return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
460 460  
461 -(% style="color:red" %)String after SEARCH command: 2e 30 58 5f 36 41 30 31 00 49
429 +String after SEARCH command: 2e 30 58 5f 36 41 30 31 00 49
462 462  
463 -(% style="color:red" %)Valid payload after DataCUT command: 2e 30 58 5f 36
431 +Valid payload after DataCUT command: 2e 30 58 5f 36
464 464  
465 -[[image:1653269618463-608.png]]
433 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image018.png]]
466 466  
467 -=== 3.3.4 Compose the uplink payload ===
468 468  
469 -(((
436 +
437 +
438 +1.
439 +11.
440 +111. Compose the uplink payload
441 +
470 470  Through AT+COMMANDx and AT+DATACUTx we got valid value from each RS485 commands, Assume these valid value are RETURN1, RETURN2, .., to RETURNx. The next step is how to compose the LoRa Uplink Payload by these RETURNs. The command is **AT+DATAUP.**
471 -)))
472 472  
473 -(((
474 -(% style="color:#4f81bd" %)**Examples: AT+DATAUP=0**
475 -)))
476 476  
477 -(((
478 -Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**A SIGNLE UPLINK**.
479 -)))
445 +**Examples: AT+DATAUP=0**
480 480  
481 -(((
447 +Compose the uplink payload with value returns in sequence and send with **A SIGNLE UPLINK**.
448 +
482 482  Final Payload is
483 -)))
484 484  
485 -(((
486 -(% style="color:#4f81bd" %)**Battery Info+PAYVER + VALID Value from RETURN1 + Valid Value from RETURN2 + … + RETURNx**
487 -)))
451 +Battery Info+PAYVER + VALID Value from RETURN1 + Valid Value from RETURN2 + … + RETURNx
488 488  
489 -(((
490 490  Where PAYVER is defined by AT+PAYVER, below is an example screen shot.
491 -)))
492 492  
493 -[[image:1653269759169-150.png||height="513" width="716"]]
455 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image019.png]]
494 494  
495 -(% style="color:#4f81bd" %)**Examples: AT+DATAUP=1**
496 496  
497 -Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**Multiply UPLINKs**.
498 498  
459 +**Examples: AT+DATAUP=1**
460 +
461 +Compose the uplink payload with value returns in sequence and send with **Multiply UPLINKs**.
462 +
499 499  Final Payload is
500 500  
501 -(% style="color:#4f81bd" %)**Battery Info+PAYVER + PAYLOAD COUNT + PAYLOAD# + DATA**
465 +Battery Info+PAYVER + PAYLOAD COUNT + PAYLOAD# + DATA
502 502  
503 503  1. Battery Info (2 bytes): Battery voltage
504 504  1. PAYVER (1 byte): Defined by AT+PAYVER
505 505  1. PAYLOAD COUNT (1 byte): Total how many uplinks of this sampling.
506 506  1. PAYLOAD# (1 byte): Number of this uplink. (from 0,1,2,3…,to PAYLOAD COUNT)
507 -1. DATA: Valid value: max 6 bytes(US915 version here, Notice*!) for each uplink so each uplink <= 11 bytes. For the last uplink, DATA will might less than 6 bytes
471 +1. DATA: Valid value: max 6 bytes(US915 version here, [[Notice*!>>path:#max_byte]]) for each uplink so each uplink <= 11 bytes. For the last uplink, DATA will might less than 6 bytes
508 508  
509 -[[image:1653269916228-732.png||height="433" width="711"]]
473 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
510 510  
511 511  
512 512  So totally there will be 3 uplinks for this sampling, each uplink includes 6 bytes DATA
513 513  
514 -DATA1=RETURN1 Valid Value = (% style="background-color:green; color:white" %)20 20 0a 33 90 41
478 +DATA1=RETURN1 Valid Value = 20 20 0a 33 90 41
515 515  
516 -DATA2=1^^st^^ ~~ 6^^th^^ byte of Valid value of RETURN10=(% style="background-color:green; color:white" %) 02 aa 05 81 0a 20
480 +DATA2=1^^st^^ ~~ 6^^th^^ byte of Valid value of RETURN10= 02 aa 05 81 0a 20
517 517  
518 -DATA3=7^^th^^ ~~ 11^^th^^ bytes of Valid value of RETURN10 = (% style="background-color:green; color:white" %)20 20 20 2d 30
482 +DATA3=7^^th^^ ~~ 11^^th^^ bytes of Valid value of RETURN10 = 20 20 20 2d 30
519 519  
484 +
485 +
520 520  Below are the uplink payloads:
521 521  
522 -[[image:1653270130359-810.png]]
488 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image021.png]]
523 523  
524 524  
525 -(% style="color:red" %)**Notice: the Max bytes is according to the max support bytes in different Frequency Bands for lowest SF. As below:**
491 +Notice: the Max bytes is according to the max support bytes in different Frequency Bands for lowest SF. As below:
526 526  
527 527   ~* For AU915/AS923 bands, if UplinkDwell time=0, max 51 bytes for each uplink ( so 51 -5 = 46 max valid date)
528 528  
... ... @@ -532,8 +532,12 @@
532 532  
533 533   ~* For all other bands: max 51 bytes for each uplink  ( so 51 -5 = 46 max valid date).
534 534  
535 -=== 3.3.5 Uplink on demand ===
536 536  
502 +
503 +1.
504 +11.
505 +111. Uplink on demand
506 +
537 537  Except uplink periodically, RS485-BL is able to uplink on demand. The server sends downlink command to RS485-BL and RS485 will uplink data base on the command.
538 538  
539 539  Downlink control command:
... ... @@ -544,8 +544,8 @@
544 544  
545 545  
546 546  
547 -1.
548 -11.
517 +1.
518 +11.
549 549  111. Uplink on Interrupt
550 550  
551 551  Put the interrupt sensor between 3.3v_out and GPIO ext.[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image022.png]]
... ... @@ -559,7 +559,7 @@
559 559  AT+INTMOD=3  Interrupt trigger by rising edge.
560 560  
561 561  
562 -1.
532 +1.
563 563  11. Uplink Payload
564 564  
565 565  |**Size(bytes)**|**2**|**1**|**Length depends on the return from the commands**
... ... @@ -621,15 +621,15 @@
621 621  
622 622  * **Sensor Related Commands**: These commands are special designed for RS485-BL.  User can see these commands below:
623 623  
624 -1.
625 -11.
594 +1.
595 +11.
626 626  111. Common Commands:
627 627  
628 628  They should be available for each of Dragino Sensors, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: [[http:~~/~~/wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands>>url:http://wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands]]
629 629  
630 630  
631 -1.
632 -11.
601 +1.
602 +11.
633 633  111. Sensor related commands:
634 634  
635 635  ==== Choose Device Type (RS485 or TTL) ====
... ... @@ -935,13 +935,13 @@
935 935  
936 936  
937 937  
938 -1.
908 +1.
939 939  11. Buttons
940 940  
941 941  |**Button**|**Feature**
942 942  |**RST**|Reboot RS485-BL
943 943  
944 -1.
914 +1.
945 945  11. +3V3 Output
946 946  
947 947  RS485-BL has a Controllable +3V3 output, user can use this output to power external sensor.
... ... @@ -959,7 +959,7 @@
959 959  By default, the AT+3V3T=0. This is a special case, means the +3V3 output is always on at any time
960 960  
961 961  
962 -1.
932 +1.
963 963  11. +5V Output
964 964  
965 965  RS485-BL has a Controllable +5V output, user can use this output to power external sensor.
... ... @@ -979,13 +979,13 @@
979 979  
980 980  
981 981  
982 -1.
952 +1.
983 983  11. LEDs
984 984  
985 985  |**LEDs**|**Feature**
986 986  |**LED1**|Blink when device transmit a packet.
987 987  
988 -1.
958 +1.
989 989  11. Switch Jumper
990 990  
991 991  |**Switch Jumper**|**Feature**
... ... @@ -1031,7 +1031,7 @@
1031 1031  
1032 1032  
1033 1033  
1034 -1.
1004 +1.
1035 1035  11. Common AT Command Sequence
1036 1036  111. Multi-channel ABP mode (Use with SX1301/LG308)
1037 1037  
... ... @@ -1050,8 +1050,8 @@
1050 1050  
1051 1051  ATZ
1052 1052  
1053 -1.
1054 -11.
1023 +1.
1024 +11.
1055 1055  111. Single-channel ABP mode (Use with LG01/LG02)
1056 1056  
1057 1057  AT+FDR   Reset Parameters to Factory Default, Keys Reserve
... ... @@ -1126,7 +1126,7 @@
1126 1126  [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image035.png]] [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image036.png]]
1127 1127  
1128 1128  
1129 -1.
1099 +1.
1130 1130  11. How to change the LoRa Frequency Bands/Region?
1131 1131  
1132 1132  User can follow the introduction for [[how to upgrade image>>path:#upgrade_image]]. When download the images, choose the required image file for download.
... ... @@ -1133,7 +1133,7 @@
1133 1133  
1134 1134  
1135 1135  
1136 -1.
1106 +1.
1137 1137  11. How many RS485-Slave can RS485-BL connects?
1138 1138  
1139 1139  The RS485-BL can support max 32 RS485 devices. Each uplink command of RS485-BL can support max 16 different RS485 command. So RS485-BL can support max 16 RS485 devices pre-program in the device for uplink. For other devices no pre-program, user can use the [[downlink message (type code 0xA8) to poll their info>>path:#downlink_A8]].
... ... @@ -1150,7 +1150,7 @@
1150 1150  
1151 1151  
1152 1152  
1153 -1.
1123 +1.
1154 1154  11. Why I can’t join TTN V3 in US915 /AU915 bands?
1155 1155  
1156 1156  It might about the channels mapping. Please see for detail.
1652954654347-831.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -138.7 KB
Content
1653266934636-343.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -176.5 KB
Content
1653267211009-519.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -138.7 KB
Content
1653268091319-405.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -399.3 KB
Content
1653268155545-638.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -113.7 KB
Content
1653268227651-549.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -1.3 MB
Content
1653269403619-508.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -27.8 KB
Content
1653269438444-278.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -26.6 KB
Content
1653269551753-223.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -138.7 KB
Content
1653269568276-930.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -131.4 KB
Content
1653269593172-426.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -142.6 KB
Content
1653269618463-608.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -27.7 KB
Content
1653269759169-150.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -294.0 KB
Content
1653269916228-732.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -143.3 KB
Content
1653270130359-810.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -197.8 KB
Content