<
From version < 32.11 >
edited by Xiaoling
on 2022/06/02 15:26
To version < 29.1 >
edited by Xiaoling
on 2022/05/23 09:35
>
Change comment: Uploaded new attachment "1653269759169-150.png", version {1}

Summary

Details

Page properties
Content
... ... @@ -18,30 +18,26 @@
18 18  
19 19  (((
20 20  (((
21 -The Dragino RS485-LN is a (% style="color:blue" %)**RS485 to LoRaWAN Converter**(%%). It converts the RS485 signal into LoRaWAN wireless signal which simplify the IoT installation and reduce the installation/maintaining cost.
21 +The Dragino RS485-LN is a RS485 to LoRaWAN Converter. It converts the RS485 signal into LoRaWAN wireless signal which simplify the IoT installation and reduce the installation/maintaining cost.
22 22  )))
23 23  
24 24  (((
25 -RS485-LN allows user to (% style="color:blue" %)**monitor / control RS485 devices**(%%) and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
25 +RS485-LN allows user to monitor / control RS485 devices and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
26 26  )))
27 27  
28 28  (((
29 -(% style="color:blue" %)**For data uplink**(%%), RS485-LN sends user-defined commands to RS485 devices and gets the return from the RS485 devices. RS485-LN will process these returns according to user-define rules to get the final payload and upload to LoRaWAN server.
29 +For data uplink, RS485-LN sends user-defined commands to RS485 devices and gets the return from the RS485 devices. RS485-LN will process these returns according to user-define rules to get the final payload and upload to LoRaWAN server.
30 30  )))
31 31  
32 32  (((
33 -(% style="color:blue" %)**For data downlink**(%%), RS485-LN runs in LoRaWAN Class C. When there downlink commands from LoRaWAN server, RS485-LN will forward the commands from LoRaWAN server to RS485 devices.
34 -
35 -(% style="color:blue" %)**Demo Dashboard for RS485-LN**(%%) connect to two energy meters: [[https:~~/~~/app.datacake.de/dashboard/d/58844a26-378d-4c5a-aaf5-b5b5b153447a>>url:https://app.datacake.de/dashboard/d/58844a26-378d-4c5a-aaf5-b5b5b153447a]]
33 +For data downlink, RS485-LN runs in LoRaWAN Class C. When there downlink commands from LoRaWAN server, RS485-LN will forward the commands from LoRaWAN server to RS485 devices.
36 36  )))
37 37  )))
38 38  
39 39  [[image:1653267211009-519.png||height="419" width="724"]]
40 40  
41 -
42 42  == 1.2 Specifications ==
43 43  
44 -
45 45  **Hardware System:**
46 46  
47 47  * STM32L072CZT6 MCU
... ... @@ -48,6 +48,8 @@
48 48  * SX1276/78 Wireless Chip 
49 49  * Power Consumption (exclude RS485 device):
50 50  ** Idle: 32mA@12v
47 +
48 +*
51 51  ** 20dB Transmit: 65mA@12v
52 52  
53 53  **Interface for Model:**
... ... @@ -76,8 +76,6 @@
76 76  * Automatic RF Sense and CAD with ultra-fast AFC.
77 77  * Packet engine up to 256 bytes with CRC.
78 78  
79 -
80 -
81 81  == 1.3 Features ==
82 82  
83 83  * LoRaWAN Class A & Class C protocol (default Class C)
... ... @@ -89,8 +89,6 @@
89 89  * Support Modbus protocol
90 90  * Support Interrupt uplink (Since hardware version v1.2)
91 91  
92 -
93 -
94 94  == 1.4 Applications ==
95 95  
96 96  * Smart Buildings & Home Automation
... ... @@ -100,13 +100,10 @@
100 100  * Smart Cities
101 101  * Smart Factory
102 102  
103 -
104 -
105 105  == 1.5 Firmware Change log ==
106 106  
107 107  [[RS485-LN Image files – Download link and Change log>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/]]
108 108  
109 -
110 110  == 1.6 Hardware Change log ==
111 111  
112 112  (((
... ... @@ -114,8 +114,6 @@
114 114  v1.2: Add External Interrupt Pin.
115 115  
116 116  v1.0: Release
117 -
118 -
119 119  )))
120 120  )))
121 121  
... ... @@ -132,8 +132,6 @@
132 132  )))
133 133  
134 134  [[image:1653268091319-405.png]]
135 -
136 -
137 137  )))
138 138  
139 139  = 3. Operation Mode =
... ... @@ -378,17 +378,11 @@
378 378  **m: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command**
379 379  )))
380 380  
381 -(((
382 382  For example, if we have a RS485 sensor. The command to get sensor value is: 01 03 0B B8 00 02 46 0A. Where 01 03 0B B8 00 02 is the Modbus command to read the register 0B B8 where stored the sensor value. The 46 0A is the CRC-16/MODBUS which calculate manually.
383 -)))
384 384  
385 -(((
386 386  In the RS485-BL, we should use this command AT+COMMAND1=01 03 0B B8 00 02,1 for the same.
387 -)))
388 388  
389 -(((
390 390  **AT+SEARCHx**: This command defines how to handle the return from AT+COMMANDx.
391 -)))
392 392  
393 393  (% border="1" class="table-bordered" %)
394 394  |(((
... ... @@ -400,24 +400,26 @@
400 400  
401 401  )))
402 402  
403 -**Examples:**
384 +Examples:
404 404  
405 -~1. For a return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
386 +1. For a return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
406 406  
407 407  If we set AT+SEARCH1=1,1E 56 34.      (max 5 bytes for prefix)
408 408  
409 -The valid data will be all bytes after 1E 56 34 , so it is (% style="background-color:yellow" %)** 2e 30 58 5f 36 41 30 31 00 49**
390 +The valid data will be all bytes after 1E 56 34 , so it is 2e 30 58 5f 36 41 30 31 00 49
410 410  
411 -[[image:1653269403619-508.png]]
392 +[[image:1652954654347-831.png]]
412 412  
413 -2. For a return string from AT+COMMAND1:  16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
414 414  
395 +1. For a return string from AT+COMMAND1:  16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
396 +
415 415  If we set AT+SEARCH1=2, 1E 56 34+31 00 49
416 416  
417 -Device will search the bytes between 1E 56 34 and 31 00 49. So it is (% style="background-color:yellow" %)** 2e 30 58 5f 36 41 30**
399 +Device will search the bytes between 1E 56 34 and 31 00 49. So it is 2e 30 58 5f 36 41 30
418 418  
419 -[[image:1653269438444-278.png]]
401 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image014.png]]
420 420  
403 +
421 421  **AT+DATACUTx : **This command defines how to handle the return from AT+COMMANDx, max return length is 45 bytes.
422 422  
423 423  |(((
... ... @@ -432,95 +432,94 @@
432 432  
433 433  * Grab bytes:
434 434  
435 -[[image:1653269551753-223.png||height="311" width="717"]]
418 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image015.png]]
436 436  
437 437  * Grab a section.
438 438  
439 -[[image:1653269568276-930.png||height="325" width="718"]]
422 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image016.png]]
440 440  
441 441  * Grab different sections.
442 442  
443 -[[image:1653269593172-426.png||height="303" width="725"]]
426 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image017.png]]
444 444  
445 -(% style="color:red" %)**Note:**
446 446  
429 +Note:
430 +
447 447  AT+SEARCHx and AT+DATACUTx can be used together, if both commands are set, RS485-BL will first process AT+SEARCHx on the return string and get a temporary string, and then process AT+DATACUTx on this temporary string to get the final payload. In this case, AT+DATACUTx need to set to format AT+DATACUTx=0,xx,xx where the return bytes set to 0.
448 448  
449 449  Example:
450 450  
451 -(% style="color:red" %)AT+COMMAND1=11 01 1E D0,0
435 +AT+COMMAND1=11 01 1E D0,0
452 452  
453 -(% style="color:red" %)AT+SEARCH1=1,1E 56 34
437 +AT+SEARCH1=1,1E 56 34
454 454  
455 -(% style="color:red" %)AT+DATACUT1=0,2,1~~5
439 +AT+DATACUT1=0,2,1~~5
456 456  
457 -(% style="color:red" %)Return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
441 +Return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
458 458  
459 -(% style="color:red" %)String after SEARCH command: 2e 30 58 5f 36 41 30 31 00 49
443 +String after SEARCH command: 2e 30 58 5f 36 41 30 31 00 49
460 460  
461 -(% style="color:red" %)Valid payload after DataCUT command: 2e 30 58 5f 36
445 +Valid payload after DataCUT command: 2e 30 58 5f 36
462 462  
463 -[[image:1653269618463-608.png]]
447 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image018.png]]
464 464  
465 -=== 3.3.4 Compose the uplink payload ===
466 466  
467 -(((
450 +
451 +
452 +1.
453 +11.
454 +111. Compose the uplink payload
455 +
468 468  Through AT+COMMANDx and AT+DATACUTx we got valid value from each RS485 commands, Assume these valid value are RETURN1, RETURN2, .., to RETURNx. The next step is how to compose the LoRa Uplink Payload by these RETURNs. The command is **AT+DATAUP.**
469 -)))
470 470  
471 -(((
472 -(% style="color:#4f81bd" %)**Examples: AT+DATAUP=0**
473 -)))
474 474  
475 -(((
476 -Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**A SIGNLE UPLINK**.
477 -)))
459 +**Examples: AT+DATAUP=0**
478 478  
479 -(((
461 +Compose the uplink payload with value returns in sequence and send with **A SIGNLE UPLINK**.
462 +
480 480  Final Payload is
481 -)))
482 482  
483 -(((
484 -(% style="color:#4f81bd" %)**Battery Info+PAYVER + VALID Value from RETURN1 + Valid Value from RETURN2 + … + RETURNx**
485 -)))
465 +Battery Info+PAYVER + VALID Value from RETURN1 + Valid Value from RETURN2 + … + RETURNx
486 486  
487 -(((
488 488  Where PAYVER is defined by AT+PAYVER, below is an example screen shot.
489 -)))
490 490  
491 -[[image:1653269759169-150.png||height="513" width="716"]]
469 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image019.png]]
492 492  
493 -(% style="color:#4f81bd" %)**Examples: AT+DATAUP=1**
494 494  
495 -Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**Multiply UPLINKs**.
496 496  
473 +**Examples: AT+DATAUP=1**
474 +
475 +Compose the uplink payload with value returns in sequence and send with **Multiply UPLINKs**.
476 +
497 497  Final Payload is
498 498  
499 -(% style="color:#4f81bd" %)**Battery Info+PAYVER + PAYLOAD COUNT + PAYLOAD# + DATA**
479 +Battery Info+PAYVER + PAYLOAD COUNT + PAYLOAD# + DATA
500 500  
501 501  1. Battery Info (2 bytes): Battery voltage
502 502  1. PAYVER (1 byte): Defined by AT+PAYVER
503 503  1. PAYLOAD COUNT (1 byte): Total how many uplinks of this sampling.
504 504  1. PAYLOAD# (1 byte): Number of this uplink. (from 0,1,2,3…,to PAYLOAD COUNT)
505 -1. DATA: Valid value: max 6 bytes(US915 version here, Notice*!) for each uplink so each uplink <= 11 bytes. For the last uplink, DATA will might less than 6 bytes
485 +1. DATA: Valid value: max 6 bytes(US915 version here, [[Notice*!>>path:#max_byte]]) for each uplink so each uplink <= 11 bytes. For the last uplink, DATA will might less than 6 bytes
506 506  
507 -[[image:1653269916228-732.png||height="433" width="711"]]
487 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
508 508  
509 509  
510 510  So totally there will be 3 uplinks for this sampling, each uplink includes 6 bytes DATA
511 511  
512 -DATA1=RETURN1 Valid Value = (% style="background-color:green; color:white" %)20 20 0a 33 90 41
492 +DATA1=RETURN1 Valid Value = 20 20 0a 33 90 41
513 513  
514 -DATA2=1^^st^^ ~~ 6^^th^^ byte of Valid value of RETURN10=(% style="background-color:green; color:white" %) 02 aa 05 81 0a 20
494 +DATA2=1^^st^^ ~~ 6^^th^^ byte of Valid value of RETURN10= 02 aa 05 81 0a 20
515 515  
516 -DATA3=7^^th^^ ~~ 11^^th^^ bytes of Valid value of RETURN10 = (% style="background-color:green; color:white" %)20 20 20 2d 30
496 +DATA3=7^^th^^ ~~ 11^^th^^ bytes of Valid value of RETURN10 = 20 20 20 2d 30
517 517  
498 +
499 +
518 518  Below are the uplink payloads:
519 519  
520 -[[image:1653270130359-810.png]]
502 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image021.png]]
521 521  
522 522  
523 -(% style="color:red" %)**Notice: the Max bytes is according to the max support bytes in different Frequency Bands for lowest SF. As below:**
505 +Notice: the Max bytes is according to the max support bytes in different Frequency Bands for lowest SF. As below:
524 524  
525 525   ~* For AU915/AS923 bands, if UplinkDwell time=0, max 51 bytes for each uplink ( so 51 -5 = 46 max valid date)
526 526  
... ... @@ -530,8 +530,12 @@
530 530  
531 531   ~* For all other bands: max 51 bytes for each uplink  ( so 51 -5 = 46 max valid date).
532 532  
533 -=== 3.3.5 Uplink on demand ===
534 534  
516 +
517 +1.
518 +11.
519 +111. Uplink on demand
520 +
535 535  Except uplink periodically, RS485-BL is able to uplink on demand. The server sends downlink command to RS485-BL and RS485 will uplink data base on the command.
536 536  
537 537  Downlink control command:
... ... @@ -542,8 +542,8 @@
542 542  
543 543  
544 544  
545 -1.
546 -11.
531 +1.
532 +11.
547 547  111. Uplink on Interrupt
548 548  
549 549  Put the interrupt sensor between 3.3v_out and GPIO ext.[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image022.png]]
... ... @@ -557,7 +557,7 @@
557 557  AT+INTMOD=3  Interrupt trigger by rising edge.
558 558  
559 559  
560 -1.
546 +1.
561 561  11. Uplink Payload
562 562  
563 563  |**Size(bytes)**|**2**|**1**|**Length depends on the return from the commands**
... ... @@ -619,15 +619,15 @@
619 619  
620 620  * **Sensor Related Commands**: These commands are special designed for RS485-BL.  User can see these commands below:
621 621  
622 -1.
623 -11.
608 +1.
609 +11.
624 624  111. Common Commands:
625 625  
626 626  They should be available for each of Dragino Sensors, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: [[http:~~/~~/wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands>>url:http://wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands]]
627 627  
628 628  
629 -1.
630 -11.
615 +1.
616 +11.
631 631  111. Sensor related commands:
632 632  
633 633  ==== Choose Device Type (RS485 or TTL) ====
... ... @@ -933,13 +933,13 @@
933 933  
934 934  
935 935  
936 -1.
922 +1.
937 937  11. Buttons
938 938  
939 939  |**Button**|**Feature**
940 940  |**RST**|Reboot RS485-BL
941 941  
942 -1.
928 +1.
943 943  11. +3V3 Output
944 944  
945 945  RS485-BL has a Controllable +3V3 output, user can use this output to power external sensor.
... ... @@ -957,7 +957,7 @@
957 957  By default, the AT+3V3T=0. This is a special case, means the +3V3 output is always on at any time
958 958  
959 959  
960 -1.
946 +1.
961 961  11. +5V Output
962 962  
963 963  RS485-BL has a Controllable +5V output, user can use this output to power external sensor.
... ... @@ -977,13 +977,13 @@
977 977  
978 978  
979 979  
980 -1.
966 +1.
981 981  11. LEDs
982 982  
983 983  |**LEDs**|**Feature**
984 984  |**LED1**|Blink when device transmit a packet.
985 985  
986 -1.
972 +1.
987 987  11. Switch Jumper
988 988  
989 989  |**Switch Jumper**|**Feature**
... ... @@ -1029,7 +1029,7 @@
1029 1029  
1030 1030  
1031 1031  
1032 -1.
1018 +1.
1033 1033  11. Common AT Command Sequence
1034 1034  111. Multi-channel ABP mode (Use with SX1301/LG308)
1035 1035  
... ... @@ -1048,8 +1048,8 @@
1048 1048  
1049 1049  ATZ
1050 1050  
1051 -1.
1052 -11.
1037 +1.
1038 +11.
1053 1053  111. Single-channel ABP mode (Use with LG01/LG02)
1054 1054  
1055 1055  AT+FDR   Reset Parameters to Factory Default, Keys Reserve
... ... @@ -1124,7 +1124,7 @@
1124 1124  [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image035.png]] [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image036.png]]
1125 1125  
1126 1126  
1127 -1.
1113 +1.
1128 1128  11. How to change the LoRa Frequency Bands/Region?
1129 1129  
1130 1130  User can follow the introduction for [[how to upgrade image>>path:#upgrade_image]]. When download the images, choose the required image file for download.
... ... @@ -1131,7 +1131,7 @@
1131 1131  
1132 1132  
1133 1133  
1134 -1.
1120 +1.
1135 1135  11. How many RS485-Slave can RS485-BL connects?
1136 1136  
1137 1137  The RS485-BL can support max 32 RS485 devices. Each uplink command of RS485-BL can support max 16 different RS485 command. So RS485-BL can support max 16 RS485 devices pre-program in the device for uplink. For other devices no pre-program, user can use the [[downlink message (type code 0xA8) to poll their info>>path:#downlink_A8]].
... ... @@ -1148,7 +1148,7 @@
1148 1148  
1149 1149  
1150 1150  
1151 -1.
1137 +1.
1152 1152  11. Why I can’t join TTN V3 in US915 /AU915 bands?
1153 1153  
1154 1154  It might about the channels mapping. Please see for detail.
1653269916228-732.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -143.3 KB
Content
1653270130359-810.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -197.8 KB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0