Last modified by Xiaoling on 2025/04/23 15:56

From version 32.11
edited by Xiaoling
on 2022/06/02 15:26
Change comment: There is no comment for this version
To version 18.1
edited by Xiaoling
on 2022/05/23 08:48
Change comment: Uploaded new attachment "1653266934636-343.png", version {1}

Summary

Details

Page properties
Content
... ... @@ -1,11 +1,12 @@
1 1  (% style="text-align:center" %)
2 -[[image:1653266934636-343.png||height="385" width="385"]]
2 +[[image:1652947681187-144.png||height="385" width="385"]]
3 3  
4 4  
5 5  
6 -**RS485-LN – RS485 to LoRaWAN Converter User Manual**
7 7  
7 +**RS485-BL – Waterproof RS485 to LoRaWAN Converter User Manual**
8 8  
9 +
9 9  **Table of Contents:**
10 10  
11 11  
... ... @@ -14,46 +14,62 @@
14 14  
15 15  = 1.Introduction =
16 16  
17 -== 1.1 What is RS485-LN RS485 to LoRaWAN Converter ==
18 +== 1.1 What is RS485-BL RS485 to LoRaWAN Converter ==
18 18  
19 19  (((
21 +
22 +)))
23 +
20 20  (((
21 -The Dragino RS485-LN is a (% style="color:blue" %)**RS485 to LoRaWAN Converter**(%%). It converts the RS485 signal into LoRaWAN wireless signal which simplify the IoT installation and reduce the installation/maintaining cost.
25 +The Dragino RS485-BL is a **RS485 / UART to LoRaWAN Converter** for Internet of Things solutions. User can connect RS485 or UART sensor to RS485-BL converter, and configure RS485-BL to periodically read sensor data and upload via LoRaWAN network to IoT server.
22 22  )))
23 23  
24 24  (((
25 -RS485-LN allows user to (% style="color:blue" %)**monitor / control RS485 devices**(%%) and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
29 +RS485-BL can interface to RS485 sensor, 3.3v/5v UART sensor or interrupt sensor. RS485-BL provides **a 3.3v output** and** a 5v output** to power external sensors. Both output voltages are controllable to minimize the total system power consumption.
26 26  )))
27 27  
28 28  (((
29 -(% style="color:blue" %)**For data uplink**(%%), RS485-LN sends user-defined commands to RS485 devices and gets the return from the RS485 devices. RS485-LN will process these returns according to user-define rules to get the final payload and upload to LoRaWAN server.
33 +RS485-BL is IP67 **waterproof** and powered by **8500mAh Li-SOCI2 battery**, it is designed for long term use for several years.
30 30  )))
31 31  
32 32  (((
33 -(% style="color:blue" %)**For data downlink**(%%), RS485-LN runs in LoRaWAN Class C. When there downlink commands from LoRaWAN server, RS485-LN will forward the commands from LoRaWAN server to RS485 devices.
37 +RS485-BL runs standard **LoRaWAN 1.0.3 in Class A**. It can reach long transfer range and easy to integrate with LoRaWAN compatible gateway and IoT server.
38 +)))
34 34  
35 -(% style="color:blue" %)**Demo Dashboard for RS485-LN**(%%) connect to two energy meters: [[https:~~/~~/app.datacake.de/dashboard/d/58844a26-378d-4c5a-aaf5-b5b5b153447a>>url:https://app.datacake.de/dashboard/d/58844a26-378d-4c5a-aaf5-b5b5b153447a]]
40 +(((
41 +For data uplink, RS485-BL sends user-defined commands to RS485 devices and gets the return from the RS485 devices. RS485-BL will process these returns data according to user-define rules to get the final payload and upload to LoRaWAN server.
36 36  )))
43 +
44 +(((
45 +For data downlink, RS485-BL runs in LoRaWAN Class A. When there is downlink commands from LoRaWAN server, RS485-BL will forward the commands from LoRaWAN server to RS485 devices.
37 37  )))
38 38  
39 -[[image:1653267211009-519.png||height="419" width="724"]]
48 +(((
49 +Each RS485-BL pre-load with a set of unique keys for LoRaWAN registration, register these keys to LoRaWAN server and it will auto connect after power on.
50 +)))
40 40  
52 +[[image:1652953304999-717.png||height="424" width="733"]]
41 41  
42 42  == 1.2 Specifications ==
43 43  
44 -
45 45  **Hardware System:**
46 46  
47 47  * STM32L072CZT6 MCU
48 48  * SX1276/78 Wireless Chip 
49 49  * Power Consumption (exclude RS485 device):
50 -** Idle: 32mA@12v
51 -** 20dB Transmit: 65mA@12v
61 +** Idle: 6uA@3.3v
52 52  
63 +*
64 +** 20dB Transmit: 130mA@3.3v
65 +
53 53  **Interface for Model:**
54 54  
55 -* RS485
56 -* Power Input 7~~ 24V DC. 
68 +* 1 x RS485 Interface
69 +* 1 x TTL Serial , 3.3v or 5v.
70 +* 1 x I2C Interface, 3.3v or 5v.
71 +* 1 x one wire interface
72 +* 1 x Interrupt Interface
73 +* 1 x Controllable 5V output, max
57 57  
58 58  **LoRa Spec:**
59 59  
... ... @@ -62,35 +62,28 @@
62 62  ** Band 2 (LF): 410 ~~ 528 Mhz
63 63  * 168 dB maximum link budget.
64 64  * +20 dBm - 100 mW constant RF output vs.
65 -* +14 dBm high efficiency PA.
66 66  * Programmable bit rate up to 300 kbps.
67 67  * High sensitivity: down to -148 dBm.
68 68  * Bullet-proof front end: IIP3 = -12.5 dBm.
69 69  * Excellent blocking immunity.
70 -* Low RX current of 10.3 mA, 200 nA register retention.
71 71  * Fully integrated synthesizer with a resolution of 61 Hz.
72 -* FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation.
87 +* LoRa modulation.
73 73  * Built-in bit synchronizer for clock recovery.
74 74  * Preamble detection.
75 75  * 127 dB Dynamic Range RSSI.
76 -* Automatic RF Sense and CAD with ultra-fast AFC.
77 -* Packet engine up to 256 bytes with CRC.
91 +* Automatic RF Sense and CAD with ultra-fast AFC. ​​​
78 78  
79 -
80 -
81 81  == 1.3 Features ==
82 82  
83 -* LoRaWAN Class A & Class C protocol (default Class C)
95 +* LoRaWAN Class A & Class C protocol (default Class A)
84 84  * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865/RU864
85 85  * AT Commands to change parameters
86 -* Remote configure parameters via LoRa Downlink
98 +* Remote configure parameters via LoRaWAN Downlink
87 87  * Firmware upgradable via program port
88 88  * Support multiply RS485 devices by flexible rules
89 89  * Support Modbus protocol
90 -* Support Interrupt uplink (Since hardware version v1.2)
102 +* Support Interrupt uplink
91 91  
92 -
93 -
94 94  == 1.4 Applications ==
95 95  
96 96  * Smart Buildings & Home Automation
... ... @@ -100,48 +100,55 @@
100 100  * Smart Cities
101 101  * Smart Factory
102 102  
103 -
104 -
105 105  == 1.5 Firmware Change log ==
106 106  
107 -[[RS485-LN Image files – Download link and Change log>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/]]
115 +[[RS485-BL Image files – Download link and Change log>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/RS485-BL/Firmware/||style="background-color: rgb(255, 255, 255);"]]
108 108  
109 -
110 110  == 1.6 Hardware Change log ==
111 111  
112 112  (((
120 +v1.4
121 +)))
122 +
113 113  (((
114 -v1.2: Add External Interrupt Pin.
124 +~1. Change Power IC to TPS22916
125 +)))
115 115  
116 -v1.0: Release
117 117  
118 -
128 +(((
129 +v1.3
119 119  )))
131 +
132 +(((
133 +~1. Change JP3 from KF350-8P to KF350-11P, Add one extra interface for I2C and one extra interface for one-wire
120 120  )))
121 121  
122 -= 2. Power ON Device =
123 123  
124 124  (((
125 -The RS485-LN can be powered by 7 ~~ 24V DC power source. Connection as below
138 +v1.2
139 +)))
126 126  
127 -* Power Source VIN to RS485-LN VIN+
128 -* Power Source GND to RS485-LN VIN-
129 -
130 130  (((
131 -Once there is power, the RS485-LN will be on.
142 +Release version ​​​​​
132 132  )))
133 133  
134 -[[image:1653268091319-405.png]]
145 += 2. Pin mapping and Power ON Device =
135 135  
136 -
147 +(((
148 +The RS485-BL is powered on by 8500mAh battery. To save battery life, RS485-BL is shipped with power off. User can put the jumper to power on RS485-BL.
137 137  )))
138 138  
151 +[[image:1652953055962-143.png||height="387" width="728"]]
152 +
153 +
154 +The Left TXD and RXD are TTL interface for external sensor. TTL level is controlled by 3.3/5v Jumper.
155 +
139 139  = 3. Operation Mode =
140 140  
141 141  == 3.1 How it works? ==
142 142  
143 143  (((
144 -The RS485-LN is configured as LoRaWAN OTAA Class C mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the RS485-LN. It will auto join the network via OTAA.
161 +The RS485-BL is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the RS485-BL. It will auto join the network via OTAA.
145 145  )))
146 146  
147 147  == 3.2 Example to join LoRaWAN network ==
... ... @@ -148,32 +148,27 @@
148 148  
149 149  Here shows an example for how to join the TTN V3 Network. Below is the network structure, we use [[LG308>>url:http://www.dragino.com/products/lora-lorawan-gateway/item/140-lg308.html]] as LoRaWAN gateway here. 
150 150  
151 -[[image:1653268155545-638.png||height="334" width="724"]]
168 +[[image:1652953414711-647.png||height="337" width="723"]]
152 152  
153 153  (((
154 -The RS485-LN in this example connected to two RS485 devices for demonstration, user can connect to other RS485 devices via the same method. The connection is as below:
171 +The RS485-BL in this example connected to two RS485 devices for demonstration, user can connect to other RS485 devices via the same method.
172 +)))
155 155  
156 -485A+ and 485B- of the sensor are connected to RS485A and RA485B of RS485-LN respectively.
157 -
158 -[[image:1653268227651-549.png||height="592" width="720"]]
159 -
160 160  (((
161 -The LG308 is already set to connect to [[TTN V3 network >>path:eu1.cloud.thethings.network/]]. So what we need to now is only configure the TTN V3:
175 +The LG308 is already set to connect to [[TTN V3 network >>url:https://www.thethingsnetwork.org/]]. So what we need to now is only configure the TTN V3:
162 162  )))
163 163  
164 164  (((
165 -**Step 1**: Create a device in TTN V3 with the OTAA keys from RS485-LN.
179 +**Step 1**: Create a device in TTN V3 with the OTAA keys from RS485-BL.
166 166  )))
167 167  
168 168  (((
169 -Each RS485-LN is shipped with a sticker with unique device EUI:
183 +Each RS485-BL is shipped with a sticker with unique device EUI:
170 170  )))
171 -)))
172 172  
173 173  [[image:1652953462722-299.png]]
174 174  
175 175  (((
176 -(((
177 177  User can enter this key in their LoRaWAN Server portal. Below is TTN V3 screen shot:
178 178  )))
179 179  
... ... @@ -180,11 +180,13 @@
180 180  (((
181 181  Add APP EUI in the application.
182 182  )))
183 -)))
184 184  
196 +
197 +
198 +
185 185  [[image:image-20220519174512-1.png]]
186 186  
187 -[[image:image-20220519174512-2.png||height="323" width="720"]]
201 +[[image:image-20220519174512-2.png||height="328" width="731"]]
188 188  
189 189  [[image:image-20220519174512-3.png||height="556" width="724"]]
190 190  
... ... @@ -200,7 +200,7 @@
200 200  
201 201  
202 202  (((
203 -**Step 2**: Power on RS485-LN and it will auto join to the TTN V3 network. After join success, it will start to upload message to TTN V3 and user can see in the panel.
217 +**Step 2**: Power on RS485-BL and it will auto join to the TTN V3 network. After join success, it will start to upload message to TTN V3 and user can see in the panel.
204 204  )))
205 205  
206 206  [[image:1652953568895-172.png||height="232" width="724"]]
... ... @@ -208,19 +208,23 @@
208 208  == 3.3 Configure Commands to read data ==
209 209  
210 210  (((
211 -(((
212 -There are plenty of RS485 devices in the market and each device has different command to read the valid data. To support these devices in flexible, RS485-LN supports flexible command set. User can use [[AT Commands>>path:#AT_COMMAND]] or LoRaWAN Downlink Command to configure what commands RS485-LN should send for each sampling and how to handle the return from RS485 devices.
225 +There are plenty of RS485 and TTL level devices in the market and each device has different command to read the valid data. To support these devices in flexible, RS485-BL supports flexible command set. User can use [[AT Commands or LoRaWAN Downlink>>path:#AT_COMMAND]] Command to configure how RS485-BL should read the sensor and how to handle the return from RS485 or TTL sensors.
213 213  )))
214 214  
215 -(((
216 -(% style="color:red" %)Note: below description and commands are for firmware version >v1.1, if you have firmware version v1.0. Please check the [[user manual v1.0>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/&file=RS485-LN_UserManual_v1.0.1.pdf]] or upgrade the firmware to v1.1
217 -)))
218 -)))
219 -
220 220  === 3.3.1 onfigure UART settings for RS485 or TTL communication ===
221 221  
222 -To use RS485-LN to read data from RS485 sensors, connect the RS485-LN A/B traces to the sensors. And user need to make sure RS485-LN use the match UART setting to access the sensors. The related commands for UART settings are:
230 +RS485-BL can connect to either RS485 sensors or TTL sensor. User need to specify what type of sensor need to connect.
223 223  
232 +**~1. RS485-MODBUS mode:**
233 +
234 +AT+MOD=1 ~/~/ Support RS485-MODBUS type sensors. User can connect multiply RS485 , Modbus sensors to the A / B pins.
235 +
236 +**2. TTL mode:**
237 +
238 +AT+MOD=2 ~/~/ Support TTL Level sensors, User can connect one TTL Sensor to the TXD/RXD/GND pins.
239 +
240 +RS485-BL default UART settings is **9600, no parity, stop bit 1**. If the sensor has a different settings, user can change the RS485-BL setting to match.
241 +
224 224  (% border="1" style="background-color:#ffffcc; color:green; width:795px" %)
225 225  |(((
226 226  **AT Commands**
... ... @@ -245,7 +245,13 @@
245 245  |(((
246 246  AT+PARITY
247 247  )))|(% style="width:285px" %)(((
266 +(((
248 248  Set UART parity (for RS485 connection)
268 +)))
269 +
270 +(((
271 +Default Value is: no parity.
272 +)))
249 249  )))|(% style="width:347px" %)(((
250 250  (((
251 251  AT+PARITY=0
... ... @@ -263,7 +263,7 @@
263 263  )))
264 264  
265 265  (((
266 -
290 +Default Value is: 1bit.
267 267  )))
268 268  )))|(% style="width:347px" %)(((
269 269  (((
... ... @@ -282,10 +282,12 @@
282 282  === 3.3.2 Configure sensors ===
283 283  
284 284  (((
309 +Some sensors might need to configure before normal operation. User can configure such sensor via PC or through RS485-BL AT Commands (% style="color:#4f81bd" %)**AT+CFGDEV**.
310 +)))
311 +
285 285  (((
286 -Some sensors might need to configure before normal operation. User can configure such sensor via PC and RS485 adapter or through RS485-LN AT Commands (% style="color:#4f81bd" %)**AT+CFGDEV**(%%). Each (% style="color:#4f81bd" %)**AT+CFGDEV **(%%)equals to send a RS485 command to sensors. This command will only run when user input it and won’t run during each sampling.
313 +When user issue an (% style="color:#4f81bd" %)**AT+CFGDEV**(%%) command, Each (% style="color:#4f81bd" %)**AT+CFGDEV**(%%) equals to send a command to the RS485 or TTL sensors. This command will only run when user input it and won’t run during each sampling.
287 287  )))
288 -)))
289 289  
290 290  (% border="1" style="background-color:#ffffcc; color:green; width:806px" %)
291 291  |**AT Commands**|(% style="width:418px" %)**Description**|(% style="width:256px" %)**Example**
... ... @@ -297,6 +297,8 @@
297 297  mm: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command
298 298  )))|(% style="width:256px" %)AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m
299 299  
326 +Detail of AT+CFGDEV command see [[AT+CFGDEV detail>>path:#AT_CFGDEV]].
327 +
300 300  === 3.3.3 Configure read commands for each sampling ===
301 301  
302 302  (((
... ... @@ -378,17 +378,11 @@
378 378  **m: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command**
379 379  )))
380 380  
381 -(((
382 382  For example, if we have a RS485 sensor. The command to get sensor value is: 01 03 0B B8 00 02 46 0A. Where 01 03 0B B8 00 02 is the Modbus command to read the register 0B B8 where stored the sensor value. The 46 0A is the CRC-16/MODBUS which calculate manually.
383 -)))
384 384  
385 -(((
386 386  In the RS485-BL, we should use this command AT+COMMAND1=01 03 0B B8 00 02,1 for the same.
387 -)))
388 388  
389 -(((
390 390  **AT+SEARCHx**: This command defines how to handle the return from AT+COMMANDx.
391 -)))
392 392  
393 393  (% border="1" class="table-bordered" %)
394 394  |(((
... ... @@ -400,24 +400,26 @@
400 400  
401 401  )))
402 402  
403 -**Examples:**
425 +Examples:
404 404  
405 -~1. For a return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
427 +1. For a return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
406 406  
407 407  If we set AT+SEARCH1=1,1E 56 34.      (max 5 bytes for prefix)
408 408  
409 -The valid data will be all bytes after 1E 56 34 , so it is (% style="background-color:yellow" %)** 2e 30 58 5f 36 41 30 31 00 49**
431 +The valid data will be all bytes after 1E 56 34 , so it is 2e 30 58 5f 36 41 30 31 00 49
410 410  
411 -[[image:1653269403619-508.png]]
433 +[[image:1652954654347-831.png]]
412 412  
413 -2. For a return string from AT+COMMAND1:  16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
414 414  
436 +1. For a return string from AT+COMMAND1:  16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
437 +
415 415  If we set AT+SEARCH1=2, 1E 56 34+31 00 49
416 416  
417 -Device will search the bytes between 1E 56 34 and 31 00 49. So it is (% style="background-color:yellow" %)** 2e 30 58 5f 36 41 30**
440 +Device will search the bytes between 1E 56 34 and 31 00 49. So it is 2e 30 58 5f 36 41 30
418 418  
419 -[[image:1653269438444-278.png]]
442 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image014.png]]
420 420  
444 +
421 421  **AT+DATACUTx : **This command defines how to handle the return from AT+COMMANDx, max return length is 45 bytes.
422 422  
423 423  |(((
... ... @@ -432,95 +432,94 @@
432 432  
433 433  * Grab bytes:
434 434  
435 -[[image:1653269551753-223.png||height="311" width="717"]]
459 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image015.png]]
436 436  
437 437  * Grab a section.
438 438  
439 -[[image:1653269568276-930.png||height="325" width="718"]]
463 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image016.png]]
440 440  
441 441  * Grab different sections.
442 442  
443 -[[image:1653269593172-426.png||height="303" width="725"]]
467 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image017.png]]
444 444  
445 -(% style="color:red" %)**Note:**
446 446  
470 +Note:
471 +
447 447  AT+SEARCHx and AT+DATACUTx can be used together, if both commands are set, RS485-BL will first process AT+SEARCHx on the return string and get a temporary string, and then process AT+DATACUTx on this temporary string to get the final payload. In this case, AT+DATACUTx need to set to format AT+DATACUTx=0,xx,xx where the return bytes set to 0.
448 448  
449 449  Example:
450 450  
451 -(% style="color:red" %)AT+COMMAND1=11 01 1E D0,0
476 +AT+COMMAND1=11 01 1E D0,0
452 452  
453 -(% style="color:red" %)AT+SEARCH1=1,1E 56 34
478 +AT+SEARCH1=1,1E 56 34
454 454  
455 -(% style="color:red" %)AT+DATACUT1=0,2,1~~5
480 +AT+DATACUT1=0,2,1~~5
456 456  
457 -(% style="color:red" %)Return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
482 +Return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
458 458  
459 -(% style="color:red" %)String after SEARCH command: 2e 30 58 5f 36 41 30 31 00 49
484 +String after SEARCH command: 2e 30 58 5f 36 41 30 31 00 49
460 460  
461 -(% style="color:red" %)Valid payload after DataCUT command: 2e 30 58 5f 36
486 +Valid payload after DataCUT command: 2e 30 58 5f 36
462 462  
463 -[[image:1653269618463-608.png]]
488 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image018.png]]
464 464  
465 -=== 3.3.4 Compose the uplink payload ===
466 466  
467 -(((
491 +
492 +
493 +1.
494 +11.
495 +111. Compose the uplink payload
496 +
468 468  Through AT+COMMANDx and AT+DATACUTx we got valid value from each RS485 commands, Assume these valid value are RETURN1, RETURN2, .., to RETURNx. The next step is how to compose the LoRa Uplink Payload by these RETURNs. The command is **AT+DATAUP.**
469 -)))
470 470  
471 -(((
472 -(% style="color:#4f81bd" %)**Examples: AT+DATAUP=0**
473 -)))
474 474  
475 -(((
476 -Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**A SIGNLE UPLINK**.
477 -)))
500 +**Examples: AT+DATAUP=0**
478 478  
479 -(((
502 +Compose the uplink payload with value returns in sequence and send with **A SIGNLE UPLINK**.
503 +
480 480  Final Payload is
481 -)))
482 482  
483 -(((
484 -(% style="color:#4f81bd" %)**Battery Info+PAYVER + VALID Value from RETURN1 + Valid Value from RETURN2 + … + RETURNx**
485 -)))
506 +Battery Info+PAYVER + VALID Value from RETURN1 + Valid Value from RETURN2 + … + RETURNx
486 486  
487 -(((
488 488  Where PAYVER is defined by AT+PAYVER, below is an example screen shot.
489 -)))
490 490  
491 -[[image:1653269759169-150.png||height="513" width="716"]]
510 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image019.png]]
492 492  
493 -(% style="color:#4f81bd" %)**Examples: AT+DATAUP=1**
494 494  
495 -Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**Multiply UPLINKs**.
496 496  
514 +**Examples: AT+DATAUP=1**
515 +
516 +Compose the uplink payload with value returns in sequence and send with **Multiply UPLINKs**.
517 +
497 497  Final Payload is
498 498  
499 -(% style="color:#4f81bd" %)**Battery Info+PAYVER + PAYLOAD COUNT + PAYLOAD# + DATA**
520 +Battery Info+PAYVER + PAYLOAD COUNT + PAYLOAD# + DATA
500 500  
501 501  1. Battery Info (2 bytes): Battery voltage
502 502  1. PAYVER (1 byte): Defined by AT+PAYVER
503 503  1. PAYLOAD COUNT (1 byte): Total how many uplinks of this sampling.
504 504  1. PAYLOAD# (1 byte): Number of this uplink. (from 0,1,2,3…,to PAYLOAD COUNT)
505 -1. DATA: Valid value: max 6 bytes(US915 version here, Notice*!) for each uplink so each uplink <= 11 bytes. For the last uplink, DATA will might less than 6 bytes
526 +1. DATA: Valid value: max 6 bytes(US915 version here, [[Notice*!>>path:#max_byte]]) for each uplink so each uplink <= 11 bytes. For the last uplink, DATA will might less than 6 bytes
506 506  
507 -[[image:1653269916228-732.png||height="433" width="711"]]
528 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
508 508  
509 509  
510 510  So totally there will be 3 uplinks for this sampling, each uplink includes 6 bytes DATA
511 511  
512 -DATA1=RETURN1 Valid Value = (% style="background-color:green; color:white" %)20 20 0a 33 90 41
533 +DATA1=RETURN1 Valid Value = 20 20 0a 33 90 41
513 513  
514 -DATA2=1^^st^^ ~~ 6^^th^^ byte of Valid value of RETURN10=(% style="background-color:green; color:white" %) 02 aa 05 81 0a 20
535 +DATA2=1^^st^^ ~~ 6^^th^^ byte of Valid value of RETURN10= 02 aa 05 81 0a 20
515 515  
516 -DATA3=7^^th^^ ~~ 11^^th^^ bytes of Valid value of RETURN10 = (% style="background-color:green; color:white" %)20 20 20 2d 30
537 +DATA3=7^^th^^ ~~ 11^^th^^ bytes of Valid value of RETURN10 = 20 20 20 2d 30
517 517  
539 +
540 +
518 518  Below are the uplink payloads:
519 519  
520 -[[image:1653270130359-810.png]]
543 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image021.png]]
521 521  
522 522  
523 -(% style="color:red" %)**Notice: the Max bytes is according to the max support bytes in different Frequency Bands for lowest SF. As below:**
546 +Notice: the Max bytes is according to the max support bytes in different Frequency Bands for lowest SF. As below:
524 524  
525 525   ~* For AU915/AS923 bands, if UplinkDwell time=0, max 51 bytes for each uplink ( so 51 -5 = 46 max valid date)
526 526  
... ... @@ -530,8 +530,12 @@
530 530  
531 531   ~* For all other bands: max 51 bytes for each uplink  ( so 51 -5 = 46 max valid date).
532 532  
533 -=== 3.3.5 Uplink on demand ===
534 534  
557 +
558 +1.
559 +11.
560 +111. Uplink on demand
561 +
535 535  Except uplink periodically, RS485-BL is able to uplink on demand. The server sends downlink command to RS485-BL and RS485 will uplink data base on the command.
536 536  
537 537  Downlink control command:
... ... @@ -542,8 +542,8 @@
542 542  
543 543  
544 544  
545 -1.
546 -11.
572 +1.
573 +11.
547 547  111. Uplink on Interrupt
548 548  
549 549  Put the interrupt sensor between 3.3v_out and GPIO ext.[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image022.png]]
... ... @@ -557,7 +557,7 @@
557 557  AT+INTMOD=3  Interrupt trigger by rising edge.
558 558  
559 559  
560 -1.
587 +1.
561 561  11. Uplink Payload
562 562  
563 563  |**Size(bytes)**|**2**|**1**|**Length depends on the return from the commands**
... ... @@ -619,15 +619,15 @@
619 619  
620 620  * **Sensor Related Commands**: These commands are special designed for RS485-BL.  User can see these commands below:
621 621  
622 -1.
623 -11.
649 +1.
650 +11.
624 624  111. Common Commands:
625 625  
626 626  They should be available for each of Dragino Sensors, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: [[http:~~/~~/wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands>>url:http://wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands]]
627 627  
628 628  
629 -1.
630 -11.
656 +1.
657 +11.
631 631  111. Sensor related commands:
632 632  
633 633  ==== Choose Device Type (RS485 or TTL) ====
... ... @@ -933,13 +933,13 @@
933 933  
934 934  
935 935  
936 -1.
963 +1.
937 937  11. Buttons
938 938  
939 939  |**Button**|**Feature**
940 940  |**RST**|Reboot RS485-BL
941 941  
942 -1.
969 +1.
943 943  11. +3V3 Output
944 944  
945 945  RS485-BL has a Controllable +3V3 output, user can use this output to power external sensor.
... ... @@ -957,7 +957,7 @@
957 957  By default, the AT+3V3T=0. This is a special case, means the +3V3 output is always on at any time
958 958  
959 959  
960 -1.
987 +1.
961 961  11. +5V Output
962 962  
963 963  RS485-BL has a Controllable +5V output, user can use this output to power external sensor.
... ... @@ -977,13 +977,13 @@
977 977  
978 978  
979 979  
980 -1.
1007 +1.
981 981  11. LEDs
982 982  
983 983  |**LEDs**|**Feature**
984 984  |**LED1**|Blink when device transmit a packet.
985 985  
986 -1.
1013 +1.
987 987  11. Switch Jumper
988 988  
989 989  |**Switch Jumper**|**Feature**
... ... @@ -1029,7 +1029,7 @@
1029 1029  
1030 1030  
1031 1031  
1032 -1.
1059 +1.
1033 1033  11. Common AT Command Sequence
1034 1034  111. Multi-channel ABP mode (Use with SX1301/LG308)
1035 1035  
... ... @@ -1048,8 +1048,8 @@
1048 1048  
1049 1049  ATZ
1050 1050  
1051 -1.
1052 -11.
1078 +1.
1079 +11.
1053 1053  111. Single-channel ABP mode (Use with LG01/LG02)
1054 1054  
1055 1055  AT+FDR   Reset Parameters to Factory Default, Keys Reserve
... ... @@ -1124,7 +1124,7 @@
1124 1124  [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image035.png]] [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image036.png]]
1125 1125  
1126 1126  
1127 -1.
1154 +1.
1128 1128  11. How to change the LoRa Frequency Bands/Region?
1129 1129  
1130 1130  User can follow the introduction for [[how to upgrade image>>path:#upgrade_image]]. When download the images, choose the required image file for download.
... ... @@ -1131,7 +1131,7 @@
1131 1131  
1132 1132  
1133 1133  
1134 -1.
1161 +1.
1135 1135  11. How many RS485-Slave can RS485-BL connects?
1136 1136  
1137 1137  The RS485-BL can support max 32 RS485 devices. Each uplink command of RS485-BL can support max 16 different RS485 command. So RS485-BL can support max 16 RS485 devices pre-program in the device for uplink. For other devices no pre-program, user can use the [[downlink message (type code 0xA8) to poll their info>>path:#downlink_A8]].
... ... @@ -1148,7 +1148,7 @@
1148 1148  
1149 1149  
1150 1150  
1151 -1.
1178 +1.
1152 1152  11. Why I can’t join TTN V3 in US915 /AU915 bands?
1153 1153  
1154 1154  It might about the channels mapping. Please see for detail.
1653267211009-519.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -138.7 KB
Content
1653268091319-405.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -399.3 KB
Content
1653268155545-638.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -113.7 KB
Content
1653268227651-549.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -1.3 MB
Content
1653269403619-508.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -27.8 KB
Content
1653269438444-278.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -26.6 KB
Content
1653269551753-223.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -138.7 KB
Content
1653269568276-930.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -131.4 KB
Content
1653269593172-426.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -142.6 KB
Content
1653269618463-608.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -27.7 KB
Content
1653269759169-150.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -294.0 KB
Content
1653269916228-732.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -143.3 KB
Content
1653270130359-810.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -197.8 KB
Content