Changes for page RS485-LN – RS485 to LoRaWAN Converter User Manual
Last modified by Xiaoling on 2025/04/23 15:56
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 15 removed)
- 1652954654347-831.png
- 1653266934636-343.png
- 1653267211009-519.png
- 1653268091319-405.png
- 1653268155545-638.png
- 1653268227651-549.png
- 1653269403619-508.png
- 1653269438444-278.png
- 1653269551753-223.png
- 1653269568276-930.png
- 1653269593172-426.png
- 1653269618463-608.png
- 1653269759169-150.png
- 1653269916228-732.png
- 1653270130359-810.png
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 -RS485-L N– RS485 to LoRaWAN Converter1 +RS485-BL – Waterproof RS485 to LoRaWAN Converter - Content
-
... ... @@ -1,11 +1,12 @@ 1 1 (% style="text-align:center" %) 2 -[[image:165 3266934636-343.png||height="385" width="385"]]2 +[[image:1652947681187-144.png||height="385" width="385"]] 3 3 4 4 5 5 6 -**RS485-LN – RS485 to LoRaWAN Converter User Manual** 7 7 7 +**RS485-BL – Waterproof RS485 to LoRaWAN Converter User Manual** 8 8 9 + 9 9 **Table of Contents:** 10 10 11 11 ... ... @@ -14,46 +14,62 @@ 14 14 15 15 = 1.Introduction = 16 16 17 -== 1.1 What is RS485-L NRS485 to LoRaWAN Converter ==18 +== 1.1 What is RS485-BL RS485 to LoRaWAN Converter == 18 18 19 19 ((( 21 + 22 +))) 23 + 20 20 ((( 21 -The Dragino RS485-L Nis a(% style="color:blue" %)**RS485 to LoRaWAN Converter**(%%).It converts the RS485 signalintoLoRaWANwirelesssignalwhich simplify theIoTinstallationandreducetheinstallation/maintainingcost.25 +The Dragino RS485-BL is a **RS485 / UART to LoRaWAN Converter** for Internet of Things solutions. User can connect RS485 or UART sensor to RS485-BL converter, and configure RS485-BL to periodically read sensor data and upload via LoRaWAN network to IoT server. 22 22 ))) 23 23 24 24 ((( 25 -RS485-L Nallowsuser to(%style="color:blue"%)**monitor/ controlRS485devices**(%%)andreachextremelylongranges. It providesultra-longrangespreadspectrumcommunication andhighinterference immunitywhilstminimizingcurrentconsumption. It targets professionalwirelesssensor networkapplications such asirrigationsystems,smartmetering, smartcities,smartphonedetection, building automation, and so on.29 +RS485-BL can interface to RS485 sensor, 3.3v/5v UART sensor or interrupt sensor. RS485-BL provides **a 3.3v output** and** a 5v output** to power external sensors. Both output voltages are controllable to minimize the total system power consumption. 26 26 ))) 27 27 28 28 ((( 29 - (% style="color:blue" %)**For data uplink**(%%),RS485-LNsendsuser-definedcommandstoRS485devicesand getstheeturnfromtheRS485devices. RS485-LN will processthesereturnsaccording to user-definerulestoget thefinalpayload and upload to LoRaWAN server.33 +RS485-BL is IP67 **waterproof** and powered by **8500mAh Li-SOCI2 battery**, it is designed for long term use for several years. 30 30 ))) 31 31 32 32 ((( 33 -(% style="color:blue" %)**For data downlink**(%%), RS485-LN runs in LoRaWAN Class C. When there downlink commands from LoRaWAN server, RS485-LN will forward the commands from LoRaWAN server to RS485 devices. 37 +RS485-BL runs standard **LoRaWAN 1.0.3 in Class A**. It can reach long transfer range and easy to integrate with LoRaWAN compatible gateway and IoT server. 38 +))) 34 34 35 -(% style="color:blue" %)**Demo Dashboard for RS485-LN**(%%) connect to two energy meters: [[https:~~/~~/app.datacake.de/dashboard/d/58844a26-378d-4c5a-aaf5-b5b5b153447a>>url:https://app.datacake.de/dashboard/d/58844a26-378d-4c5a-aaf5-b5b5b153447a]] 40 +((( 41 +For data uplink, RS485-BL sends user-defined commands to RS485 devices and gets the return from the RS485 devices. RS485-BL will process these returns data according to user-define rules to get the final payload and upload to LoRaWAN server. 36 36 ))) 43 + 44 +((( 45 +For data downlink, RS485-BL runs in LoRaWAN Class A. When there is downlink commands from LoRaWAN server, RS485-BL will forward the commands from LoRaWAN server to RS485 devices. 37 37 ))) 38 38 39 -[[image:1653267211009-519.png||height="419" width="724"]] 48 +((( 49 +Each RS485-BL pre-load with a set of unique keys for LoRaWAN registration, register these keys to LoRaWAN server and it will auto connect after power on. 50 +))) 40 40 52 +[[image:1652953304999-717.png||height="424" width="733"]] 41 41 42 42 == 1.2 Specifications == 43 43 44 - 45 45 **Hardware System:** 46 46 47 47 * STM32L072CZT6 MCU 48 48 * SX1276/78 Wireless Chip 49 49 * Power Consumption (exclude RS485 device): 50 -** Idle: 32mA@12v 51 -** 20dB Transmit: 65mA@12v 61 +** Idle: 6uA@3.3v 52 52 63 +* 64 +** 20dB Transmit: 130mA@3.3v 65 + 53 53 **Interface for Model:** 54 54 55 -* RS485 56 -* Power Input 7~~ 24V DC. 68 +* 1 x RS485 Interface 69 +* 1 x TTL Serial , 3.3v or 5v. 70 +* 1 x I2C Interface, 3.3v or 5v. 71 +* 1 x one wire interface 72 +* 1 x Interrupt Interface 73 +* 1 x Controllable 5V output, max 57 57 58 58 **LoRa Spec:** 59 59 ... ... @@ -62,35 +62,28 @@ 62 62 ** Band 2 (LF): 410 ~~ 528 Mhz 63 63 * 168 dB maximum link budget. 64 64 * +20 dBm - 100 mW constant RF output vs. 65 -* +14 dBm high efficiency PA. 66 66 * Programmable bit rate up to 300 kbps. 67 67 * High sensitivity: down to -148 dBm. 68 68 * Bullet-proof front end: IIP3 = -12.5 dBm. 69 69 * Excellent blocking immunity. 70 -* Low RX current of 10.3 mA, 200 nA register retention. 71 71 * Fully integrated synthesizer with a resolution of 61 Hz. 72 -* FSK, GFSK, MSK, GMSK,LoRaTMand OOKmodulation.87 +* LoRa modulation. 73 73 * Built-in bit synchronizer for clock recovery. 74 74 * Preamble detection. 75 75 * 127 dB Dynamic Range RSSI. 76 -* Automatic RF Sense and CAD with ultra-fast AFC. 77 -* Packet engine up to 256 bytes with CRC. 91 +* Automatic RF Sense and CAD with ultra-fast AFC. 78 78 79 - 80 - 81 81 == 1.3 Features == 82 82 83 -* LoRaWAN Class A & Class C protocol (default Class C)95 +* LoRaWAN Class A & Class C protocol (default Class A) 84 84 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865/RU864 85 85 * AT Commands to change parameters 86 -* Remote configure parameters via LoRa Downlink 98 +* Remote configure parameters via LoRaWAN Downlink 87 87 * Firmware upgradable via program port 88 88 * Support multiply RS485 devices by flexible rules 89 89 * Support Modbus protocol 90 -* Support Interrupt uplink (Since hardware version v1.2)102 +* Support Interrupt uplink 91 91 92 - 93 - 94 94 == 1.4 Applications == 95 95 96 96 * Smart Buildings & Home Automation ... ... @@ -100,46 +100,55 @@ 100 100 * Smart Cities 101 101 * Smart Factory 102 102 103 - 104 - 105 105 == 1.5 Firmware Change log == 106 106 107 -[[RS485-L NImage files – Download link and Change log>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/]]115 +[[RS485-BL Image files – Download link and Change log>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/RS485-BL/Firmware/||style="background-color: rgb(255, 255, 255);"]] 108 108 109 - 110 110 == 1.6 Hardware Change log == 111 111 112 112 ((( 120 +v1.4 121 +))) 122 + 113 113 ((( 114 -v1.2: Add External Interrupt Pin. 124 +~1. Change Power IC to TPS22916 125 +))) 115 115 116 -v1.0: Release 117 117 118 - 128 +((( 129 +v1.3 119 119 ))) 131 + 132 +((( 133 +~1. Change JP3 from KF350-8P to KF350-11P, Add one extra interface for I2C and one extra interface for one-wire 120 120 ))) 121 121 122 -= 2. Power ON Device = 123 123 124 124 ((( 125 -The RS485-LN can be powered by 7 ~~ 24V DC power source. Connection as below 138 +v1.2 139 +))) 126 126 127 -* Power Source VIN to RS485-LN VIN+ 128 -* Power Source GND to RS485-LN VIN- 129 - 130 130 ((( 131 - Oncethere ispower,theRS485-LN will beon.142 +Release version 132 132 ))) 133 133 134 -[[image:1653268091319-405.png]] 145 += 2. Pin mapping and Power ON Device = 146 + 147 +((( 148 +The RS485-BL is powered on by 8500mAh battery. To save battery life, RS485-BL is shipped with power off. User can put the jumper to power on RS485-BL. 135 135 ))) 136 136 151 +[[image:1652953055962-143.png||height="387" width="728"]] 152 + 153 + 154 +The Left TXD and RXD are TTL interface for external sensor. TTL level is controlled by 3.3/5v Jumper. 155 + 137 137 = 3. Operation Mode = 138 138 139 139 == 3.1 How it works? == 140 140 141 141 ((( 142 -The RS485-L Nis configured as LoRaWAN OTAA ClassCmode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the RS485-LN. It will auto join the network via OTAA.161 +The RS485-BL is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the RS485-BL. It will auto join the network via OTAA. 143 143 ))) 144 144 145 145 == 3.2 Example to join LoRaWAN network == ... ... @@ -146,32 +146,27 @@ 146 146 147 147 Here shows an example for how to join the TTN V3 Network. Below is the network structure, we use [[LG308>>url:http://www.dragino.com/products/lora-lorawan-gateway/item/140-lg308.html]] as LoRaWAN gateway here. 148 148 149 -[[image:165 3268155545-638.png||height="334" width="724"]]168 +[[image:1652953414711-647.png||height="337" width="723"]] 150 150 151 151 ((( 152 -The RS485-LN in this example connected to two RS485 devices for demonstration, user can connect to other RS485 devices via the same method. The connection is as below: 171 +The RS485-BL in this example connected to two RS485 devices for demonstration, user can connect to other RS485 devices via the same method. 172 +))) 153 153 154 -485A+ and 485B- of the sensor are connected to RS485A and RA485B of RS485-LN respectively. 155 - 156 -[[image:1653268227651-549.png||height="592" width="720"]] 157 - 158 158 ((( 159 -The LG308 is already set to connect to [[TTN V3 network >> path:eu1.cloud.thethings.network/]]. So what we need to now is only configure the TTN V3:175 +The LG308 is already set to connect to [[TTN V3 network >>url:https://www.thethingsnetwork.org/]]. So what we need to now is only configure the TTN V3: 160 160 ))) 161 161 162 162 ((( 163 -**Step 1**: Create a device in TTN V3 with the OTAA keys from RS485-L N.179 +**Step 1**: Create a device in TTN V3 with the OTAA keys from RS485-BL. 164 164 ))) 165 165 166 166 ((( 167 -Each RS485-L Nis shipped with a sticker with unique device EUI:183 +Each RS485-BL is shipped with a sticker with unique device EUI: 168 168 ))) 169 -))) 170 170 171 171 [[image:1652953462722-299.png]] 172 172 173 173 ((( 174 -((( 175 175 User can enter this key in their LoRaWAN Server portal. Below is TTN V3 screen shot: 176 176 ))) 177 177 ... ... @@ -178,11 +178,13 @@ 178 178 ((( 179 179 Add APP EUI in the application. 180 180 ))) 181 -))) 182 182 196 + 197 + 198 + 183 183 [[image:image-20220519174512-1.png]] 184 184 185 -[[image:image-20220519174512-2.png||height="32 3" width="720"]]201 +[[image:image-20220519174512-2.png||height="328" width="731"]] 186 186 187 187 [[image:image-20220519174512-3.png||height="556" width="724"]] 188 188 ... ... @@ -198,176 +198,147 @@ 198 198 199 199 200 200 ((( 201 -**Step 2**: Power on RS485-L Nand it will auto join to the TTN V3 network. After join success, it will start to upload message to TTN V3 and user can see in the panel.217 +**Step 2**: Power on RS485-BL and it will auto join to the TTN V3 network. After join success, it will start to upload message to TTN V3 and user can see in the panel. 202 202 ))) 203 203 204 204 [[image:1652953568895-172.png||height="232" width="724"]] 205 205 206 -== 3.3 Configure Commands to read data == 207 207 208 -((( 209 -((( 210 -There are plenty of RS485 devices in the market and each device has different command to read the valid data. To support these devices in flexible, RS485-LN supports flexible command set. User can use [[AT Commands>>path:#AT_COMMAND]] or LoRaWAN Downlink Command to configure what commands RS485-LN should send for each sampling and how to handle the return from RS485 devices. 211 -))) 212 212 213 -((( 214 -(% style="color:red" %)Note: below description and commands are for firmware version >v1.1, if you have firmware version v1.0. Please check the [[user manual v1.0>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/&file=RS485-LN_UserManual_v1.0.1.pdf]] or upgrade the firmware to v1.1 215 -))) 216 -))) 217 217 218 -=== 3.3.1 onfigure UART settings for RS485 or TTL communication === 225 +1. 226 +11. Configure Commands to read data 219 219 220 -T ouse RS485-LNtoread datafromRS485sensors,connectthe RS485-LNA/B tracestothe sensors.Anduserneedtomakesure RS485-LNuse thematch UARTsettingto accessthesensors. TherelatedcommandsforUART settingsare:228 +There are plenty of RS485 and TTL level devices in the market and each device has different command to read the valid data. To support these devices in flexible, RS485-BL supports flexible command set. User can use [[AT Commands or LoRaWAN Downlink>>path:#AT_COMMAND]] Command to configure how RS485-BL should read the sensor and how to handle the return from RS485 or TTL sensors. 221 221 222 -(% border="1" style="background-color:#ffffcc; color:green; width:795px" %) 223 -|((( 224 -**AT Commands** 225 -)))|(% style="width:285px" %)((( 226 -**Description** 227 -)))|(% style="width:347px" %)((( 228 -**Example** 229 -))) 230 -|((( 231 -AT+BAUDR 232 -)))|(% style="width:285px" %)((( 233 -Set the baud rate (for RS485 connection). Default Value is: 9600. 234 -)))|(% style="width:347px" %)((( 235 -((( 230 + 231 +1. 232 +11. 233 +111. Configure UART settings for RS485 or TTL communication 234 + 235 +RS485-BL can connect to either RS485 sensors or TTL sensor. User need to specify what type of sensor need to connect. 236 + 237 +1. RS485-MODBUS mode: 238 + 239 +AT+MOD=1 ~/~/ Support RS485-MODBUS type sensors. User can connect multiply RS485 , Modbus sensors to the A / B pins. 240 + 241 + 242 +1. TTL mode: 243 + 244 +AT+MOD=2 ~/~/ Support TTL Level sensors, User can connect one TTL Sensor to the TXD/RXD/GND pins. 245 + 246 + 247 +RS485-BL default UART settings is **9600, no parity, stop bit 1**. If the sensor has a different settings, user can change the RS485-BL setting to match. 248 + 249 + 250 +|**AT Commands**|**Description**|**Example** 251 +|AT+BAUDR|Set the baud rate (for RS485 connection). Default Value is: 9600.|((( 236 236 AT+BAUDR=9600 237 -))) 238 238 239 -((( 240 240 Options: (1200,2400,4800,14400,19200,115200) 241 241 ))) 242 -))) 243 -|((( 244 -AT+PARITY 245 -)))|(% style="width:285px" %)((( 256 +|AT+PARITY|((( 246 246 Set UART parity (for RS485 connection) 247 -)))|(% style="width:347px" %)((( 248 -((( 258 + 259 +Default Value is: no parity. 260 +)))|((( 249 249 AT+PARITY=0 250 -))) 251 251 252 -((( 253 253 Option: 0: no parity, 1: odd parity, 2: even parity 254 254 ))) 255 -))) 256 -|((( 257 -AT+STOPBIT 258 -)))|(% style="width:285px" %)((( 259 -((( 265 +|AT+STOPBIT|((( 260 260 Set serial stopbit (for RS485 connection) 261 -))) 262 262 263 -((( 264 - 265 -))) 266 -)))|(% style="width:347px" %)((( 267 -((( 268 +Default Value is: 1bit. 269 +)))|((( 268 268 AT+STOPBIT=0 for 1bit 269 -))) 270 270 271 -((( 272 272 AT+STOPBIT=1 for 1.5 bit 273 -))) 274 274 275 -((( 276 276 AT+STOPBIT=2 for 2 bits 277 277 ))) 278 -))) 279 279 280 -=== 3.3.2 Configure sensors === 281 281 282 -((( 283 -((( 284 -Some sensors might need to configure before normal operation. User can configure such sensor via PC and RS485 adapter or through RS485-LN AT Commands (% style="color:#4f81bd" %)**AT+CFGDEV**(%%). Each (% style="color:#4f81bd" %)**AT+CFGDEV **(%%)equals to send a RS485 command to sensors. This command will only run when user input it and won’t run during each sampling. 285 -))) 286 -))) 287 287 288 -(% border="1" style="background-color:#ffffcc; color:green; width:806px" %) 289 -|**AT Commands**|(% style="width:418px" %)**Description**|(% style="width:256px" %)**Example** 290 -|AT+CFGDEV|(% style="width:418px" %)((( 279 + 280 +1. 281 +11. 282 +111. Configure sensors 283 + 284 +Some sensors might need to configure before normal operation. User can configure such sensor via PC or through RS485-BL AT Commands AT+CFGDEV. 285 + 286 + 287 +When user issue an AT+CFGDEV command, Each AT+CFGDEV equals to send a command to the RS485 or TTL sensors. This command will only run when user input it and won’t run during each sampling. 288 + 289 +|**AT Commands**|**Description**|**Example** 290 +|AT+CFGDEV|((( 291 291 This command is used to configure the RS485/TTL devices; they won’t be used during sampling. 292 292 293 -AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx, 293 +AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m 294 294 295 -m m: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command296 -)))| (% style="width:256px" %)AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m295 +m: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command 296 +)))|AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m 297 297 298 - ===3.3.3 Configurereadcommandsforeach sampling ===298 +Detail of AT+CFGDEV command see [[AT+CFGDEV detail>>path:#AT_CFGDEV]]. 299 299 300 -((( 300 + 301 + 302 + 303 + 304 +1. 305 +11. 306 +111. Configure read commands for each sampling 307 + 301 301 RS485-BL is a battery powered device; it will sleep most of time. And wake up on each period and read RS485 / TTL sensor data and uplink. 302 -))) 303 303 304 - (((310 + 305 305 During each sampling, we need to confirm what commands we need to send to the sensors to read data. After the RS485/TTL sensors send back the value, it normally includes some bytes and we only need a few from them for a shorten payload. 306 -))) 307 307 308 - (((313 + 309 309 To save the LoRaWAN network bandwidth, we might need to read data from different sensors and combine their valid value into a short payload. 310 -))) 311 311 312 - (((316 + 313 313 This section describes how to achieve above goals. 314 -))) 315 315 316 - (((319 + 317 317 During each sampling, the RS485-BL can support 15 commands to read sensors. And combine the return to one or several uplink payloads. 318 -))) 319 319 320 - (((322 + 321 321 **Command from RS485-BL to Sensor:** 322 -))) 323 323 324 -((( 325 325 RS485-BL can send out pre-set max 15 strings via **AT+COMMAD1**, **ATCOMMAND2**,…, to **AT+COMMANDF** . All commands are of same grammar. 326 -))) 327 327 328 - (((327 + 329 329 **Handle return from sensors to RS485-BL**: 330 -))) 331 331 332 -((( 333 333 After RS485-BL send out a string to sensor, RS485-BL will wait for the return from RS485 or TTL sensor. And user can specify how to handle the return, by **AT+DATACUT or AT+SEARCH commands** 334 -))) 335 335 336 -* ((( 337 -**AT+DATACUT** 338 -))) 339 339 340 -((( 333 +* **AT+DATACUT** 334 + 341 341 When the return value from sensor have fix length and we know which position the valid value we should get, we can use AT+DATACUT command. 342 -))) 343 343 344 -* ((( 345 -**AT+SEARCH** 346 -))) 347 347 348 -((( 338 +* **AT+SEARCH** 339 + 349 349 When the return value from sensor is dynamic length and we are not sure which bytes the valid data is, instead, we know what value the valid value following. We can use AT+SEARCH to search the valid value in the return string. 350 -))) 351 351 352 - (((342 + 353 353 **Define wait timeout:** 354 -))) 355 355 356 -((( 357 357 Some RS485 device might has longer delay on reply, so user can use AT+CMDDL to set the timeout for getting reply after the RS485 command is sent. For example, AT+CMDDL1=1000 to send the open time to 1000ms 358 -))) 359 359 360 - (((347 + 361 361 After we got the valid value from each RS485 commands, we need to combine them together with the command **AT+DATAUP**. 362 -))) 363 363 350 + 364 364 **Examples:** 365 365 366 366 Below are examples for the how above AT Commands works. 367 367 355 + 368 368 **AT+COMMANDx : **This command will be sent to RS485/TTL devices during each sampling, Max command length is 14 bytes. The grammar is: 369 369 370 -(% border="1" class="table-bordered" %) 371 371 |((( 372 372 **AT+COMMANDx=xx xx xx xx xx xx xx xx xx xx xx xx,m** 373 373 ... ... @@ -376,19 +376,13 @@ 376 376 **m: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command** 377 377 ))) 378 378 379 -((( 380 380 For example, if we have a RS485 sensor. The command to get sensor value is: 01 03 0B B8 00 02 46 0A. Where 01 03 0B B8 00 02 is the Modbus command to read the register 0B B8 where stored the sensor value. The 46 0A is the CRC-16/MODBUS which calculate manually. 381 -))) 382 382 383 -((( 384 384 In the RS485-BL, we should use this command AT+COMMAND1=01 03 0B B8 00 02,1 for the same. 385 -))) 386 386 387 - (((370 + 388 388 **AT+SEARCHx**: This command defines how to handle the return from AT+COMMANDx. 389 -))) 390 390 391 -(% border="1" class="table-bordered" %) 392 392 |((( 393 393 **AT+SEARCHx=aa,xx xx xx xx xx** 394 394 ... ... @@ -398,24 +398,26 @@ 398 398 399 399 ))) 400 400 401 - **Examples:**382 +Examples: 402 402 403 - ~1. For a return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49384 +1. For a return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49 404 404 405 405 If we set AT+SEARCH1=1,1E 56 34. (max 5 bytes for prefix) 406 406 407 -The valid data will be all bytes after 1E 56 34 , so it is (% style="background-color:yellow" %)**2e 30 58 5f 36 41 30 31 00 49**388 +The valid data will be all bytes after 1E 56 34 , so it is 2e 30 58 5f 36 41 30 31 00 49 408 408 409 -[[image: 1653269403619-508.png]]390 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image013.png]] 410 410 411 -2. For a return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49 412 412 393 +1. For a return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49 394 + 413 413 If we set AT+SEARCH1=2, 1E 56 34+31 00 49 414 414 415 -Device will search the bytes between 1E 56 34 and 31 00 49. So it is (% style="background-color:yellow" %)**2e 30 58 5f 36 41 30**397 +Device will search the bytes between 1E 56 34 and 31 00 49. So it is 2e 30 58 5f 36 41 30 416 416 417 -[[image: 1653269438444-278.png]]399 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image014.png]] 418 418 401 + 419 419 **AT+DATACUTx : **This command defines how to handle the return from AT+COMMANDx, max return length is 45 bytes. 420 420 421 421 |((( ... ... @@ -430,95 +430,94 @@ 430 430 431 431 * Grab bytes: 432 432 433 -[[image: 1653269551753-223.png||height="311" width="717"]]416 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image015.png]] 434 434 435 435 * Grab a section. 436 436 437 -[[image: 1653269568276-930.png||height="325" width="718"]]420 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image016.png]] 438 438 439 439 * Grab different sections. 440 440 441 -[[image: 1653269593172-426.png||height="303" width="725"]]424 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image017.png]] 442 442 443 -(% style="color:red" %)**Note:** 444 444 427 +Note: 428 + 445 445 AT+SEARCHx and AT+DATACUTx can be used together, if both commands are set, RS485-BL will first process AT+SEARCHx on the return string and get a temporary string, and then process AT+DATACUTx on this temporary string to get the final payload. In this case, AT+DATACUTx need to set to format AT+DATACUTx=0,xx,xx where the return bytes set to 0. 446 446 447 447 Example: 448 448 449 - (% style="color:red" %)AT+COMMAND1=11 01 1E D0,0433 +AT+COMMAND1=11 01 1E D0,0 450 450 451 - (% style="color:red" %)AT+SEARCH1=1,1E 56 34435 +AT+SEARCH1=1,1E 56 34 452 452 453 - (% style="color:red" %)AT+DATACUT1=0,2,1~~5437 +AT+DATACUT1=0,2,1~~5 454 454 455 - (% style="color:red" %)Return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49439 +Return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49 456 456 457 - (% style="color:red" %)String after SEARCH command: 2e 30 58 5f 36 41 30 31 00 49441 +String after SEARCH command: 2e 30 58 5f 36 41 30 31 00 49 458 458 459 - (% style="color:red" %)Valid payload after DataCUT command: 2e 30 58 5f 36443 +Valid payload after DataCUT command: 2e 30 58 5f 36 460 460 461 -[[image: 1653269618463-608.png]]445 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image018.png]] 462 462 463 -=== 3.3.4 Compose the uplink payload === 464 464 465 -((( 448 + 449 + 450 +1. 451 +11. 452 +111. Compose the uplink payload 453 + 466 466 Through AT+COMMANDx and AT+DATACUTx we got valid value from each RS485 commands, Assume these valid value are RETURN1, RETURN2, .., to RETURNx. The next step is how to compose the LoRa Uplink Payload by these RETURNs. The command is **AT+DATAUP.** 467 -))) 468 468 469 -((( 470 -(% style="color:#4f81bd" %)**Examples: AT+DATAUP=0** 471 -))) 472 472 473 -((( 474 -Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**A SIGNLE UPLINK**. 475 -))) 457 +**Examples: AT+DATAUP=0** 476 476 477 -((( 459 +Compose the uplink payload with value returns in sequence and send with **A SIGNLE UPLINK**. 460 + 478 478 Final Payload is 479 -))) 480 480 481 -((( 482 -(% style="color:#4f81bd" %)**Battery Info+PAYVER + VALID Value from RETURN1 + Valid Value from RETURN2 + … + RETURNx** 483 -))) 463 +Battery Info+PAYVER + VALID Value from RETURN1 + Valid Value from RETURN2 + … + RETURNx 484 484 485 -((( 486 486 Where PAYVER is defined by AT+PAYVER, below is an example screen shot. 487 -))) 488 488 489 -[[image: 1653269759169-150.png||height="513" width="716"]]467 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image019.png]] 490 490 491 -(% style="color:#4f81bd" %)**Examples: AT+DATAUP=1** 492 492 493 -Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**Multiply UPLINKs**. 494 494 471 +**Examples: AT+DATAUP=1** 472 + 473 +Compose the uplink payload with value returns in sequence and send with **Multiply UPLINKs**. 474 + 495 495 Final Payload is 496 496 497 - (% style="color:#4f81bd" %)**Battery Info+PAYVER + PAYLOAD COUNT + PAYLOAD# + DATA**477 +Battery Info+PAYVER + PAYLOAD COUNT + PAYLOAD# + DATA 498 498 499 499 1. Battery Info (2 bytes): Battery voltage 500 500 1. PAYVER (1 byte): Defined by AT+PAYVER 501 501 1. PAYLOAD COUNT (1 byte): Total how many uplinks of this sampling. 502 502 1. PAYLOAD# (1 byte): Number of this uplink. (from 0,1,2,3…,to PAYLOAD COUNT) 503 -1. DATA: Valid value: max 6 bytes(US915 version here, Notice*!) for each uplink so each uplink <= 11 bytes. For the last uplink, DATA will might less than 6 bytes 483 +1. DATA: Valid value: max 6 bytes(US915 version here, [[Notice*!>>path:#max_byte]]) for each uplink so each uplink <= 11 bytes. For the last uplink, DATA will might less than 6 bytes 504 504 505 -[[image: 1653269916228-732.png||height="433" width="711"]]485 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]] 506 506 507 507 508 508 So totally there will be 3 uplinks for this sampling, each uplink includes 6 bytes DATA 509 509 510 -DATA1=RETURN1 Valid Value = (% style="background-color:green; color:white" %)20 20 0a 33 90 41490 +DATA1=RETURN1 Valid Value = 20 20 0a 33 90 41 511 511 512 -DATA2=1^^st^^ ~~ 6^^th^^ byte of Valid value of RETURN10= (%style="background-color:green; color:white" %)02 aa 05 81 0a 20492 +DATA2=1^^st^^ ~~ 6^^th^^ byte of Valid value of RETURN10= 02 aa 05 81 0a 20 513 513 514 -DATA3=7^^th^^ ~~ 11^^th^^ bytes of Valid value of RETURN10 = (%style="background-color:green; color:white" %)20 20 20 2d 30494 +DATA3=7^^th^^ ~~ 11^^th^^ bytes of Valid value of RETURN10 = 20 20 20 2d 30 515 515 496 + 497 + 516 516 Below are the uplink payloads: 517 517 518 -[[image: 1653270130359-810.png]]500 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image021.png]] 519 519 520 520 521 - (% style="color:red" %)**Notice: the Max bytes is according to the max support bytes in different Frequency Bands for lowest SF. As below:**503 +Notice: the Max bytes is according to the max support bytes in different Frequency Bands for lowest SF. As below: 522 522 523 523 ~* For AU915/AS923 bands, if UplinkDwell time=0, max 51 bytes for each uplink ( so 51 -5 = 46 max valid date) 524 524 ... ... @@ -528,8 +528,12 @@ 528 528 529 529 ~* For all other bands: max 51 bytes for each uplink ( so 51 -5 = 46 max valid date). 530 530 531 -=== 3.3.5 Uplink on demand === 532 532 514 + 515 +1. 516 +11. 517 +111. Uplink on demand 518 + 533 533 Except uplink periodically, RS485-BL is able to uplink on demand. The server sends downlink command to RS485-BL and RS485 will uplink data base on the command. 534 534 535 535 Downlink control command: ... ... @@ -540,8 +540,8 @@ 540 540 541 541 542 542 543 -1. 544 -11. 529 +1. 530 +11. 545 545 111. Uplink on Interrupt 546 546 547 547 Put the interrupt sensor between 3.3v_out and GPIO ext.[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image022.png]] ... ... @@ -555,7 +555,7 @@ 555 555 AT+INTMOD=3 Interrupt trigger by rising edge. 556 556 557 557 558 -1. 544 +1. 559 559 11. Uplink Payload 560 560 561 561 |**Size(bytes)**|**2**|**1**|**Length depends on the return from the commands** ... ... @@ -617,15 +617,15 @@ 617 617 618 618 * **Sensor Related Commands**: These commands are special designed for RS485-BL. User can see these commands below: 619 619 620 -1. 621 -11. 606 +1. 607 +11. 622 622 111. Common Commands: 623 623 624 624 They should be available for each of Dragino Sensors, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: [[http:~~/~~/wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands>>url:http://wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands]] 625 625 626 626 627 -1. 628 -11. 613 +1. 614 +11. 629 629 111. Sensor related commands: 630 630 631 631 ==== Choose Device Type (RS485 or TTL) ==== ... ... @@ -931,13 +931,13 @@ 931 931 932 932 933 933 934 -1. 920 +1. 935 935 11. Buttons 936 936 937 937 |**Button**|**Feature** 938 938 |**RST**|Reboot RS485-BL 939 939 940 -1. 926 +1. 941 941 11. +3V3 Output 942 942 943 943 RS485-BL has a Controllable +3V3 output, user can use this output to power external sensor. ... ... @@ -955,7 +955,7 @@ 955 955 By default, the AT+3V3T=0. This is a special case, means the +3V3 output is always on at any time 956 956 957 957 958 -1. 944 +1. 959 959 11. +5V Output 960 960 961 961 RS485-BL has a Controllable +5V output, user can use this output to power external sensor. ... ... @@ -975,13 +975,13 @@ 975 975 976 976 977 977 978 -1. 964 +1. 979 979 11. LEDs 980 980 981 981 |**LEDs**|**Feature** 982 982 |**LED1**|Blink when device transmit a packet. 983 983 984 -1. 970 +1. 985 985 11. Switch Jumper 986 986 987 987 |**Switch Jumper**|**Feature** ... ... @@ -1027,7 +1027,7 @@ 1027 1027 1028 1028 1029 1029 1030 -1. 1016 +1. 1031 1031 11. Common AT Command Sequence 1032 1032 111. Multi-channel ABP mode (Use with SX1301/LG308) 1033 1033 ... ... @@ -1046,8 +1046,8 @@ 1046 1046 1047 1047 ATZ 1048 1048 1049 -1. 1050 -11. 1035 +1. 1036 +11. 1051 1051 111. Single-channel ABP mode (Use with LG01/LG02) 1052 1052 1053 1053 AT+FDR Reset Parameters to Factory Default, Keys Reserve ... ... @@ -1122,7 +1122,7 @@ 1122 1122 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image035.png]] [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image036.png]] 1123 1123 1124 1124 1125 -1. 1111 +1. 1126 1126 11. How to change the LoRa Frequency Bands/Region? 1127 1127 1128 1128 User can follow the introduction for [[how to upgrade image>>path:#upgrade_image]]. When download the images, choose the required image file for download. ... ... @@ -1129,7 +1129,7 @@ 1129 1129 1130 1130 1131 1131 1132 -1. 1118 +1. 1133 1133 11. How many RS485-Slave can RS485-BL connects? 1134 1134 1135 1135 The RS485-BL can support max 32 RS485 devices. Each uplink command of RS485-BL can support max 16 different RS485 command. So RS485-BL can support max 16 RS485 devices pre-program in the device for uplink. For other devices no pre-program, user can use the [[downlink message (type code 0xA8) to poll their info>>path:#downlink_A8]]. ... ... @@ -1146,7 +1146,7 @@ 1146 1146 1147 1147 1148 1148 1149 -1. 1135 +1. 1150 1150 11. Why I can’t join TTN V3 in US915 /AU915 bands? 1151 1151 1152 1152 It might about the channels mapping. Please see for detail.
- 1652954654347-831.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -138.7 KB - Content
- 1653266934636-343.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -176.5 KB - Content
- 1653267211009-519.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -138.7 KB - Content
- 1653268091319-405.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -399.3 KB - Content
- 1653268155545-638.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -113.7 KB - Content
- 1653268227651-549.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -1.3 MB - Content
- 1653269403619-508.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -27.8 KB - Content
- 1653269438444-278.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -26.6 KB - Content
- 1653269551753-223.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -138.7 KB - Content
- 1653269568276-930.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -131.4 KB - Content
- 1653269593172-426.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -142.6 KB - Content
- 1653269618463-608.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -27.7 KB - Content
- 1653269759169-150.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -294.0 KB - Content
- 1653269916228-732.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -143.3 KB - Content
- 1653270130359-810.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -197.8 KB - Content