<
From version < 31.1 >
edited by Xiaoling
on 2022/05/23 09:42
To version < 38.4 >
edited by Xiaoling
on 2022/06/02 16:30
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -18,26 +18,30 @@
18 18  
19 19  (((
20 20  (((
21 -The Dragino RS485-LN is a RS485 to LoRaWAN Converter. It converts the RS485 signal into LoRaWAN wireless signal which simplify the IoT installation and reduce the installation/maintaining cost.
21 +The Dragino RS485-LN is a (% style="color:blue" %)**RS485 to LoRaWAN Converter**(%%). It converts the RS485 signal into LoRaWAN wireless signal which simplify the IoT installation and reduce the installation/maintaining cost.
22 22  )))
23 23  
24 24  (((
25 -RS485-LN allows user to monitor / control RS485 devices and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
25 +RS485-LN allows user to (% style="color:blue" %)**monitor / control RS485 devices**(%%) and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
26 26  )))
27 27  
28 28  (((
29 -For data uplink, RS485-LN sends user-defined commands to RS485 devices and gets the return from the RS485 devices. RS485-LN will process these returns according to user-define rules to get the final payload and upload to LoRaWAN server.
29 +(% style="color:blue" %)**For data uplink**(%%), RS485-LN sends user-defined commands to RS485 devices and gets the return from the RS485 devices. RS485-LN will process these returns according to user-define rules to get the final payload and upload to LoRaWAN server.
30 30  )))
31 31  
32 32  (((
33 -For data downlink, RS485-LN runs in LoRaWAN Class C. When there downlink commands from LoRaWAN server, RS485-LN will forward the commands from LoRaWAN server to RS485 devices.
33 +(% style="color:blue" %)**For data downlink**(%%), RS485-LN runs in LoRaWAN Class C. When there downlink commands from LoRaWAN server, RS485-LN will forward the commands from LoRaWAN server to RS485 devices.
34 +
35 +(% style="color:blue" %)**Demo Dashboard for RS485-LN**(%%) connect to two energy meters: [[https:~~/~~/app.datacake.de/dashboard/d/58844a26-378d-4c5a-aaf5-b5b5b153447a>>url:https://app.datacake.de/dashboard/d/58844a26-378d-4c5a-aaf5-b5b5b153447a]]
34 34  )))
35 35  )))
36 36  
37 37  [[image:1653267211009-519.png||height="419" width="724"]]
38 38  
41 +
39 39  == 1.2 Specifications ==
40 40  
44 +
41 41  **Hardware System:**
42 42  
43 43  * STM32L072CZT6 MCU
... ... @@ -44,8 +44,6 @@
44 44  * SX1276/78 Wireless Chip 
45 45  * Power Consumption (exclude RS485 device):
46 46  ** Idle: 32mA@12v
47 -
48 -*
49 49  ** 20dB Transmit: 65mA@12v
50 50  
51 51  **Interface for Model:**
... ... @@ -98,6 +98,7 @@
98 98  
99 99  [[RS485-LN Image files – Download link and Change log>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/]]
100 100  
103 +
101 101  == 1.6 Hardware Change log ==
102 102  
103 103  (((
... ... @@ -105,6 +105,8 @@
105 105  v1.2: Add External Interrupt Pin.
106 106  
107 107  v1.0: Release
111 +
112 +
108 108  )))
109 109  )))
110 110  
... ... @@ -121,6 +121,8 @@
121 121  )))
122 122  
123 123  [[image:1653268091319-405.png]]
129 +
130 +
124 124  )))
125 125  
126 126  = 3. Operation Mode =
... ... @@ -129,6 +129,8 @@
129 129  
130 130  (((
131 131  The RS485-LN is configured as LoRaWAN OTAA Class C mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the RS485-LN. It will auto join the network via OTAA.
139 +
140 +
132 132  )))
133 133  
134 134  == 3.2 Example to join LoRaWAN network ==
... ... @@ -137,10 +137,15 @@
137 137  
138 138  [[image:1653268155545-638.png||height="334" width="724"]]
139 139  
149 +
140 140  (((
151 +(((
141 141  The RS485-LN in this example connected to two RS485 devices for demonstration, user can connect to other RS485 devices via the same method. The connection is as below:
153 +)))
142 142  
155 +(((
143 143  485A+ and 485B- of the sensor are connected to RS485A and RA485B of RS485-LN respectively.
157 +)))
144 144  
145 145  [[image:1653268227651-549.png||height="592" width="720"]]
146 146  
... ... @@ -192,6 +192,7 @@
192 192  
193 193  [[image:1652953568895-172.png||height="232" width="724"]]
194 194  
209 +
195 195  == 3.3 Configure Commands to read data ==
196 196  
197 197  (((
... ... @@ -201,6 +201,8 @@
201 201  
202 202  (((
203 203  (% style="color:red" %)Note: below description and commands are for firmware version >v1.1, if you have firmware version v1.0. Please check the [[user manual v1.0>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/&file=RS485-LN_UserManual_v1.0.1.pdf]] or upgrade the firmware to v1.1
219 +
220 +
204 204  )))
205 205  )))
206 206  
... ... @@ -208,19 +208,19 @@
208 208  
209 209  To use RS485-LN to read data from RS485 sensors, connect the RS485-LN A/B traces to the sensors. And user need to make sure RS485-LN use the match UART setting to access the sensors. The related commands for UART settings are:
210 210  
211 -(% border="1" style="background-color:#ffffcc; color:green; width:795px" %)
212 -|(((
228 +(% border="1" style="background-color:#ffffcc; color:green; width:782px" %)
229 +|(% style="width:128px" %)(((
213 213  **AT Commands**
214 -)))|(% style="width:285px" %)(((
231 +)))|(% style="width:305px" %)(((
215 215  **Description**
216 -)))|(% style="width:347px" %)(((
233 +)))|(% style="width:346px" %)(((
217 217  **Example**
218 218  )))
219 -|(((
236 +|(% style="width:128px" %)(((
220 220  AT+BAUDR
221 -)))|(% style="width:285px" %)(((
238 +)))|(% style="width:305px" %)(((
222 222  Set the baud rate (for RS485 connection). Default Value is: 9600.
223 -)))|(% style="width:347px" %)(((
240 +)))|(% style="width:346px" %)(((
224 224  (((
225 225  AT+BAUDR=9600
226 226  )))
... ... @@ -229,11 +229,11 @@
229 229  Options: (1200,2400,4800,14400,19200,115200)
230 230  )))
231 231  )))
232 -|(((
249 +|(% style="width:128px" %)(((
233 233  AT+PARITY
234 -)))|(% style="width:285px" %)(((
251 +)))|(% style="width:305px" %)(((
235 235  Set UART parity (for RS485 connection)
236 -)))|(% style="width:347px" %)(((
253 +)))|(% style="width:346px" %)(((
237 237  (((
238 238  AT+PARITY=0
239 239  )))
... ... @@ -242,9 +242,9 @@
242 242  Option: 0: no parity, 1: odd parity, 2: even parity
243 243  )))
244 244  )))
245 -|(((
262 +|(% style="width:128px" %)(((
246 246  AT+STOPBIT
247 -)))|(% style="width:285px" %)(((
264 +)))|(% style="width:305px" %)(((
248 248  (((
249 249  Set serial stopbit (for RS485 connection)
250 250  )))
... ... @@ -252,7 +252,7 @@
252 252  (((
253 253  
254 254  )))
255 -)))|(% style="width:347px" %)(((
272 +)))|(% style="width:346px" %)(((
256 256  (((
257 257  AT+STOPBIT=0 for 1bit
258 258  )))
... ... @@ -287,77 +287,34 @@
287 287  === 3.3.3 Configure read commands for each sampling ===
288 288  
289 289  (((
290 -RS485-BL is a battery powered device; it will sleep most of time. And wake up on each period and read RS485 / TTL sensor data and uplink.
291 -)))
307 +During each sampling, we need confirm what commands we need to send to the RS485 sensors to read data. After the RS485 sensors send back the value, it normally include some bytes and we only need a few from them for a shorten payload.
292 292  
293 -(((
294 -During each sampling, we need to confirm what commands we need to send to the sensors to read data. After the RS485/TTL sensors send back the value, it normally includes some bytes and we only need a few from them for a shorten payload.
295 -)))
296 -
297 -(((
298 298  To save the LoRaWAN network bandwidth, we might need to read data from different sensors and combine their valid value into a short payload.
299 -)))
300 300  
301 -(((
302 302  This section describes how to achieve above goals.
303 -)))
304 304  
305 -(((
306 -During each sampling, the RS485-BL can support 15 commands to read sensors. And combine the return to one or several uplink payloads.
307 -)))
313 +During each sampling, the RS485-LN can support 15 commands to read sensors. And combine the return to one or several uplink payloads.
308 308  
309 -(((
310 -**Command from RS485-BL to Sensor:**
311 -)))
312 312  
313 -(((
314 -RS485-BL can send out pre-set max 15 strings via **AT+COMMAD1**, **ATCOMMAND2**,…, to **AT+COMMANDF** . All commands are of same grammar.
315 -)))
316 +**Each RS485 commands include two parts:**
316 316  
317 -(((
318 -**Handle return from sensors to RS485-BL**:
319 -)))
318 +~1. What commands RS485-LN will send to the RS485 sensors. There are total 15 commands from **AT+COMMAD1**, **ATCOMMAND2**,…, to **AT+COMMANDF**. All commands are of same grammar.
320 320  
321 -(((
322 -After RS485-BL send out a string to sensor, RS485-BL will wait for the return from RS485 or TTL sensor. And user can specify how to handle the return, by **AT+DATACUT or AT+SEARCH commands**
323 -)))
320 +2. How to get wanted value the from RS485 sensors returns from by 1). There are total 15 AT Commands to handle the return, commands are **AT+DATACUT1**,**AT+DATACUT2**,…, **AT+DATACUTF** corresponding to the commands from 1). All commands are of same grammar.
324 324  
325 -* (((
326 -**AT+DATACUT**
327 -)))
322 +3. Some RS485 device might has longer delay on reply, so user can use AT+CMDDL to set the timeout for getting reply after the RS485 command is sent. For example **AT+CMDDL1=1000** to send the open time to 1000ms
328 328  
329 -(((
330 -When the return value from sensor have fix length and we know which position the valid value we should get, we can use AT+DATACUT command.
331 -)))
332 332  
333 -* (((
334 -**AT+SEARCH**
335 -)))
336 -
337 -(((
338 -When the return value from sensor is dynamic length and we are not sure which bytes the valid data is, instead, we know what value the valid value following. We can use AT+SEARCH to search the valid value in the return string.
339 -)))
340 -
341 -(((
342 -**Define wait timeout:**
343 -)))
344 -
345 -(((
346 -Some RS485 device might has longer delay on reply, so user can use AT+CMDDL to set the timeout for getting reply after the RS485 command is sent. For example, AT+CMDDL1=1000 to send the open time to 1000ms
347 -)))
348 -
349 -(((
350 350  After we got the valid value from each RS485 commands, we need to combine them together with the command **AT+DATAUP**.
351 -)))
352 352  
353 -**Examples:**
354 354  
355 355  Below are examples for the how above AT Commands works.
356 356  
357 -**AT+COMMANDx : **This command will be sent to RS485/TTL devices during each sampling, Max command length is 14 bytes. The grammar is:
358 358  
359 -(% border="1" class="table-bordered" %)
360 -|(((
331 +**AT+COMMANDx : **This command will be sent to RS485 devices during each sampling, Max command length is 14 bytes. The grammar is:
332 +
333 +(% border="1" style="background-color:#4bacc6; color:white; width:499px" %)
334 +|(% style="width:496px" %)(((
361 361  **AT+COMMANDx=xx xx xx xx xx xx xx xx xx xx xx xx,m**
362 362  
363 363  **xx xx xx xx xx xx xx xx xx xx xx xx: The RS485 command to be sent**
... ... @@ -365,49 +365,15 @@
365 365  **m: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command**
366 366  )))
367 367  
368 -(((
369 369  For example, if we have a RS485 sensor. The command to get sensor value is: 01 03 0B B8 00 02 46 0A. Where 01 03 0B B8 00 02 is the Modbus command to read the register 0B B8 where stored the sensor value. The 46 0A is the CRC-16/MODBUS which calculate manually.
370 -)))
371 371  
372 -(((
373 -In the RS485-BL, we should use this command AT+COMMAND1=01 03 0B B8 00 02,1 for the same.
374 -)))
344 +In the RS485-LN, we should use this command AT+COMMAND1=01 03 0B B8 00 02,1 for the same.
375 375  
376 -(((
377 -**AT+SEARCHx**: This command defines how to handle the return from AT+COMMANDx.
378 -)))
379 379  
380 -(% border="1" class="table-bordered" %)
381 -|(((
382 -**AT+SEARCHx=aa,xx xx xx xx xx**
383 -
384 -* **aa: 1: prefix match mode; 2: prefix and suffix match mode**
385 -* **xx xx xx xx xx: match string. Max 5 bytes for prefix and 5 bytes for suffix**
386 -
387 -
388 -)))
389 -
390 -**Examples:**
391 -
392 -~1. For a return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
393 -
394 -If we set AT+SEARCH1=1,1E 56 34.      (max 5 bytes for prefix)
395 -
396 -The valid data will be all bytes after 1E 56 34 , so it is (% style="background-color:yellow" %)** 2e 30 58 5f 36 41 30 31 00 49**
397 -
398 -[[image:1653269403619-508.png]]
399 -
400 -2. For a return string from AT+COMMAND1:  16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
401 -
402 -If we set AT+SEARCH1=2, 1E 56 34+31 00 49
403 -
404 -Device will search the bytes between 1E 56 34 and 31 00 49. So it is (% style="background-color:yellow" %)** 2e 30 58 5f 36 41 30**
405 -
406 -[[image:1653269438444-278.png]]
407 -
408 408  **AT+DATACUTx : **This command defines how to handle the return from AT+COMMANDx, max return length is 45 bytes.
409 409  
410 -|(((
349 +(% border="1" style="background-color:#4bacc6; color:white; width:725px" %)
350 +|(% style="width:722px" %)(((
411 411  **AT+DATACUTx=a,b,c**
412 412  
413 413  * **a: length for the return of AT+COMMAND**
... ... @@ -415,48 +415,37 @@
415 415  * **c: define the position for valid value.  **
416 416  )))
417 417  
418 -Examples:
358 +**Examples:**
419 419  
420 420  * Grab bytes:
421 421  
422 -[[image:1653269551753-223.png||height="311" width="717"]]
362 +[[image:image-20220602153621-1.png]]
423 423  
364 +
424 424  * Grab a section.
425 425  
426 -[[image:1653269568276-930.png||height="325" width="718"]]
367 +[[image:image-20220602153621-2.png]]
427 427  
369 +
428 428  * Grab different sections.
429 429  
430 -[[image:1653269593172-426.png||height="303" width="725"]]
372 +[[image:image-20220602153621-3.png]]
431 431  
432 -(% style="color:red" %)**Note:**
374 +
375 +)))
433 433  
434 -AT+SEARCHx and AT+DATACUTx can be used together, if both commands are set, RS485-BL will first process AT+SEARCHx on the return string and get a temporary string, and then process AT+DATACUTx on this temporary string to get the final payload. In this case, AT+DATACUTx need to set to format AT+DATACUTx=0,xx,xx where the return bytes set to 0.
435 -
436 -Example:
437 -
438 -(% style="color:red" %)AT+COMMAND1=11 01 1E D0,0
439 -
440 -(% style="color:red" %)AT+SEARCH1=1,1E 56 34
441 -
442 -(% style="color:red" %)AT+DATACUT1=0,2,1~~5
443 -
444 -(% style="color:red" %)Return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
445 -
446 -(% style="color:red" %)String after SEARCH command: 2e 30 58 5f 36 41 30 31 00 49
447 -
448 -(% style="color:red" %)Valid payload after DataCUT command: 2e 30 58 5f 36
449 -
450 -[[image:1653269618463-608.png]]
451 -
452 452  === 3.3.4 Compose the uplink payload ===
453 453  
454 454  (((
455 455  Through AT+COMMANDx and AT+DATACUTx we got valid value from each RS485 commands, Assume these valid value are RETURN1, RETURN2, .., to RETURNx. The next step is how to compose the LoRa Uplink Payload by these RETURNs. The command is **AT+DATAUP.**
381 +
382 +
456 456  )))
457 457  
458 458  (((
459 -(% style="color:#4f81bd" %)**Examples: AT+DATAUP=0**
386 +(% style="color:#037691" %)**Examples: AT+DATAUP=0**
387 +
388 +
460 460  )))
461 461  
462 462  (((
... ... @@ -477,8 +477,10 @@
477 477  
478 478  [[image:1653269759169-150.png||height="513" width="716"]]
479 479  
480 -(% style="color:#4f81bd" %)**Examples: AT+DATAUP=1**
481 481  
410 +(% style="color:#037691" %)**Examples: AT+DATAUP=1**
411 +
412 +
482 482  Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**Multiply UPLINKs**.
483 483  
484 484  Final Payload is
... ... @@ -485,144 +485,98 @@
485 485  
486 486  (% style="color:#4f81bd" %)**Battery Info+PAYVER + PAYLOAD COUNT + PAYLOAD# + DATA**
487 487  
488 -1. Battery Info (2 bytes): Battery voltage
489 -1. PAYVER (1 byte): Defined by AT+PAYVER
490 -1. PAYLOAD COUNT (1 byte): Total how many uplinks of this sampling.
491 -1. PAYLOAD# (1 byte): Number of this uplink. (from 0,1,2,3…,to PAYLOAD COUNT)
492 -1. DATA: Valid value: max 6 bytes(US915 version here, Notice*!) for each uplink so each uplink <= 11 bytes. For the last uplink, DATA will might less than 6 bytes
419 +1. PAYVER: Defined by AT+PAYVER
420 +1. PAYLOAD COUNT: Total how many uplinks of this sampling.
421 +1. PAYLOAD#: Number of this uplink. (from 0,1,2,3…,to PAYLOAD COUNT)
422 +1. DATA: Valid value: max 8 bytes for each uplink so each uplink <= 11 bytes. For the last uplink, DATA will might less than 8 bytes
493 493  
494 -[[image:1653269916228-732.png]]
424 +[[image:image-20220602155039-4.png]]
495 495  
496 496  
497 -So totally there will be 3 uplinks for this sampling, each uplink includes 6 bytes DATA
427 +So totally there will be 3 uplinks for this sampling, each uplink include 8 bytes DATA
498 498  
499 -DATA1=RETURN1 Valid Value = 20 20 0a 33 90 41
429 +DATA1=RETURN1 Valid Value + the first two of Valid value of RETURN10= **20 20 0a 33 90 41 02 aa**
500 500  
501 -DATA2=1^^st^^ ~~ 6^^th^^ byte of Valid value of RETURN10= 02 aa 05 81 0a 20
431 +DATA2=3^^rd^^ ~~ 10^^th^^ byte of Valid value of RETURN10= **05 81 0a 20 20 20 20 2d**
502 502  
503 -DATA3=7^^th^^ ~~ 11^^th^^ bytes of Valid value of RETURN10 = 20 20 20 2d 30
433 +DATA3=the rest of Valid value of RETURN10= **30**
504 504  
505 505  
436 +(% style="color:red" %)Notice: In firmware v1.3, the Max bytes has been changed according to the max bytes in different Frequency Bands for lowest SF. As below:
506 506  
507 -Below are the uplink payloads:
438 + ~* For AU915/AS923 bands, if UplinkDwell time=0, max 51 bytes for each uplink.
508 508  
509 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image021.png]]
440 + * For AU915/AS923 bands, if UplinkDwell time=0, max 11 bytes for each uplink.
510 510  
442 + * For US915 band, max 11 bytes for each uplink.
511 511  
512 -Notice: the Max bytes is according to the max support bytes in different Frequency Bands for lowest SF. As below:
444 + ~* For all other bands: max 51 bytes for each uplink.
513 513  
514 - ~* For AU915/AS923 bands, if UplinkDwell time=0, max 51 bytes for each uplink ( so 51 -5 = 46 max valid date)
515 515  
516 - * For AU915/AS923 bands, if UplinkDwell time=1, max 11 bytes for each uplink ( so 11 -5 = 6 max valid date).
447 +Below are the uplink payloads:
517 517  
518 - * For US915 band, max 11 bytes for each uplink ( so 11 -5 = 6 max valid date).
449 +[[image:1654157178836-407.png]]
519 519  
520 - ~* For all other bands: max 51 bytes for each uplink  ( so 51 -5 = 46 max valid date).
521 521  
452 +=== 3.3.5 Uplink on demand ===
522 522  
454 +Except uplink periodically, RS485-LN is able to uplink on demand. The server send downlink command to RS485-LN and RS485 will uplink data base on the command.
523 523  
524 -1.
525 -11.
526 -111. Uplink on demand
527 -
528 -Except uplink periodically, RS485-BL is able to uplink on demand. The server sends downlink command to RS485-BL and RS485 will uplink data base on the command.
529 -
530 530  Downlink control command:
531 531  
532 -[[0x08 command>>path:#downlink_08]]: Poll an uplink with current command set in RS485-BL.
458 +**0x08 command**: Poll an uplink with current command set in RS485-LN.
533 533  
534 -[[0xA8 command>>path:#downlink_A8]]: Send a command to RS485-BL and uplink the output from sensors.
460 +**0xA8 command**: Send a command to RS485-LN and uplink the output from sensors.
535 535  
536 536  
537 537  
538 -1.
539 -11.
540 -111. Uplink on Interrupt
464 +=== 3.3.6 Uplink on Interrupt ===
541 541  
542 -Put the interrupt sensor between 3.3v_out and GPIO ext.[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image022.png]]
466 +RS485-LN support external Interrupt uplink since hardware v1.2 release.
543 543  
544 -AT+INTMOD=0  Disable Interrupt
468 +[[image:1654157342174-798.png]]
545 545  
546 -AT+INTMOD=1  Interrupt trigger by rising or falling edge.
470 +Connect the Interrupt pin to RS485-LN INT port and connect the GND pin to V- port. When there is a high voltage (Max 24v) on INT pin. Device will send an uplink packet.
547 547  
548 -AT+INTMOD=2  Interrupt trigger by falling edge. ( Default Value)
549 549  
550 -AT+INTMOD=3  Interrupt trigger by rising edge.
473 +== 3.4 Uplink Payload ==
551 551  
552 -
553 -1.
554 -11. Uplink Payload
555 -
556 -|**Size(bytes)**|**2**|**1**|**Length depends on the return from the commands**
557 -|Value|(((
475 +(% border="1" style="background-color:#4bacc6; color:white; width:734px" %)
476 +|**Size(bytes)**|(% style="width:120px" %)**2**|(% style="width:116px" %)**1**|(% style="width:386px" %)**Length depends on the return from the commands**
477 +|Value|(% style="width:120px" %)(((
558 558  Battery(mV)
559 559  
560 560  &
561 561  
562 562  Interrupt _Flag
563 -)))|(((
483 +)))|(% style="width:116px" %)(((
564 564  PAYLOAD_VER
565 565  
566 566  
567 -)))|If the valid payload is too long and exceed the maximum support payload length in server, server will show payload not provided in the LoRaWAN server.
487 +)))|(% style="width:386px" %)If the valid payload is too long and exceed the maximum support payload length in server, server will show payload not provided in the LoRaWAN server.
568 568  
569 569  Below is the decoder for the first 3 bytes. The rest bytes are dynamic depends on different RS485 sensors.
570 570  
571 571  
572 -function Decoder(bytes, port) {
492 +== 3.5 Configure RS485-BL via AT or Downlink ==
573 573  
574 -~/~/Payload Formats of RS485-BL Deceive
494 +User can configure RS485-LN via AT Commands or LoRaWAN Downlink Commands
575 575  
576 -return {
496 +There are two kinds of Commands:
577 577  
578 - ~/~/Battery,units:V
498 +* (% style="color:#4f81bd" %)**Common Commands**(%%): They should be available for each sensor, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
579 579  
580 - BatV:((bytes[0]<<8 | bytes[1])&0x7fff)/1000,
500 +* (% style="color:#4f81bd" %)**Sensor Related Commands**(%%): These commands are special designed for RS485-LN.  User can see these commands below:
581 581  
582 - ~/~/GPIO_EXTI 
583 583  
584 - EXTI_Trigger:(bytes[0] & 0x80)? "TRUE":"FALSE",
585 585  
586 - ~/~/payload of version
504 +=== 3.5.1 Common Commands ===
587 587  
588 - Pay_ver:bytes[2],
506 +They should be available for each of Dragino Sensors, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
589 589  
590 - };
591 591  
592 - }
509 +=== 3.5.2 Sensor related commands: ===
593 593  
594 -
595 -
596 -
597 -
598 -
599 -
600 -TTN V3 uplink screen shot.
601 -
602 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image023.png]]
603 -
604 -1.
605 -11. Configure RS485-BL via AT or Downlink
606 -
607 -User can configure RS485-BL via [[AT Commands >>path:#_​Using_the_AT]]or LoRaWAN Downlink Commands
608 -
609 -There are two kinds of Commands:
610 -
611 -* **Common Commands**: They should be available for each sensor, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: http:~/~/wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands
612 -
613 -* **Sensor Related Commands**: These commands are special designed for RS485-BL.  User can see these commands below:
614 -
615 -1.
616 -11.
617 -111. Common Commands:
618 -
619 -They should be available for each of Dragino Sensors, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: [[http:~~/~~/wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands>>url:http://wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands]]
620 -
621 -
622 -1.
623 -11.
624 -111. Sensor related commands:
625 -
626 626  ==== Choose Device Type (RS485 or TTL) ====
627 627  
628 628  RS485-BL can connect to either RS485 sensors or TTL sensor. User need to specify what type of sensor need to connect.
... ... @@ -926,13 +926,13 @@
926 926  
927 927  
928 928  
929 -1.
814 +1.
930 930  11. Buttons
931 931  
932 932  |**Button**|**Feature**
933 933  |**RST**|Reboot RS485-BL
934 934  
935 -1.
820 +1.
936 936  11. +3V3 Output
937 937  
938 938  RS485-BL has a Controllable +3V3 output, user can use this output to power external sensor.
... ... @@ -950,7 +950,7 @@
950 950  By default, the AT+3V3T=0. This is a special case, means the +3V3 output is always on at any time
951 951  
952 952  
953 -1.
838 +1.
954 954  11. +5V Output
955 955  
956 956  RS485-BL has a Controllable +5V output, user can use this output to power external sensor.
... ... @@ -970,13 +970,13 @@
970 970  
971 971  
972 972  
973 -1.
858 +1.
974 974  11. LEDs
975 975  
976 976  |**LEDs**|**Feature**
977 977  |**LED1**|Blink when device transmit a packet.
978 978  
979 -1.
864 +1.
980 980  11. Switch Jumper
981 981  
982 982  |**Switch Jumper**|**Feature**
... ... @@ -1022,7 +1022,7 @@
1022 1022  
1023 1023  
1024 1024  
1025 -1.
910 +1.
1026 1026  11. Common AT Command Sequence
1027 1027  111. Multi-channel ABP mode (Use with SX1301/LG308)
1028 1028  
... ... @@ -1041,8 +1041,8 @@
1041 1041  
1042 1042  ATZ
1043 1043  
1044 -1.
1045 -11.
929 +1.
930 +11.
1046 1046  111. Single-channel ABP mode (Use with LG01/LG02)
1047 1047  
1048 1048  AT+FDR   Reset Parameters to Factory Default, Keys Reserve
... ... @@ -1117,7 +1117,7 @@
1117 1117  [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image035.png]] [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image036.png]]
1118 1118  
1119 1119  
1120 -1.
1005 +1.
1121 1121  11. How to change the LoRa Frequency Bands/Region?
1122 1122  
1123 1123  User can follow the introduction for [[how to upgrade image>>path:#upgrade_image]]. When download the images, choose the required image file for download.
... ... @@ -1124,7 +1124,7 @@
1124 1124  
1125 1125  
1126 1126  
1127 -1.
1012 +1.
1128 1128  11. How many RS485-Slave can RS485-BL connects?
1129 1129  
1130 1130  The RS485-BL can support max 32 RS485 devices. Each uplink command of RS485-BL can support max 16 different RS485 command. So RS485-BL can support max 16 RS485 devices pre-program in the device for uplink. For other devices no pre-program, user can use the [[downlink message (type code 0xA8) to poll their info>>path:#downlink_A8]].
... ... @@ -1141,7 +1141,7 @@
1141 1141  
1142 1142  
1143 1143  
1144 -1.
1029 +1.
1145 1145  11. Why I can’t join TTN V3 in US915 /AU915 bands?
1146 1146  
1147 1147  It might about the channels mapping. Please see for detail.
1654157178836-407.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +179.9 KB
Content
1654157342174-798.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +31.9 KB
Content
image-20220602153621-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +23.4 KB
Content
image-20220602153621-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +22.2 KB
Content
image-20220602153621-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +22.3 KB
Content
image-20220602155039-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +24.6 KB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0