Last modified by Xiaoling on 2025/04/23 15:56

From version 30.2
edited by Xiaoling
on 2022/05/23 09:40
Change comment: There is no comment for this version
To version 4.2
edited by Xiaoling
on 2022/05/19 17:41
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -RS485-LN – RS485 to LoRaWAN Converter
1 +RS485-BL – Waterproof RS485 to LoRaWAN Converter
Content
... ... @@ -1,11 +1,13 @@
1 1  (% style="text-align:center" %)
2 -[[image:1653266934636-343.png||height="385" width="385"]]
2 +[[image:1652947681187-144.png||height="385" width="385"]]
3 3  
4 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image001.jpg]]
4 4  
5 5  
6 -**RS485-LN – RS485 to LoRaWAN Converter User Manual**
7 7  
8 +**RS485-BL – Waterproof RS485 to LoRaWAN Converter User Manual**
8 8  
10 +
9 9  **Table of Contents:**
10 10  
11 11  
... ... @@ -14,44 +14,62 @@
14 14  
15 15  = 1.Introduction =
16 16  
17 -== 1.1 What is RS485-LN RS485 to LoRaWAN Converter ==
19 +== 1.1 What is RS485-BL RS485 to LoRaWAN Converter ==
18 18  
19 19  (((
22 +
23 +)))
24 +
20 20  (((
21 -The Dragino RS485-LN is a RS485 to LoRaWAN Converter. It converts the RS485 signal into LoRaWAN wireless signal which simplify the IoT installation and reduce the installation/maintaining cost.
26 +The Dragino RS485-BL is a **RS485 / UART to LoRaWAN Converter** for Internet of Things solutions. User can connect RS485 or UART sensor to RS485-BL converter, and configure RS485-BL to periodically read sensor data and upload via LoRaWAN network to IoT server.
22 22  )))
23 23  
24 24  (((
25 -RS485-LN allows user to monitor / control RS485 devices and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
30 +RS485-BL can interface to RS485 sensor, 3.3v/5v UART sensor or interrupt sensor. RS485-BL provides **a 3.3v output** and** a 5v output** to power external sensors. Both output voltages are controllable to minimize the total system power consumption.
26 26  )))
27 27  
28 28  (((
29 -For data uplink, RS485-LN sends user-defined commands to RS485 devices and gets the return from the RS485 devices. RS485-LN will process these returns according to user-define rules to get the final payload and upload to LoRaWAN server.
34 +RS485-BL is IP67 **waterproof** and powered by **8500mAh Li-SOCI2 battery**, it is designed for long term use for several years.
30 30  )))
31 31  
32 32  (((
33 -For data downlink, RS485-LN runs in LoRaWAN Class C. When there downlink commands from LoRaWAN server, RS485-LN will forward the commands from LoRaWAN server to RS485 devices.
38 +RS485-BL runs standard **LoRaWAN 1.0.3 in Class A**. It can reach long transfer range and easy to integrate with LoRaWAN compatible gateway and IoT server.
34 34  )))
40 +
41 +(((
42 +For data uplink, RS485-BL sends user-defined commands to RS485 devices and gets the return from the RS485 devices. RS485-BL will process these returns data according to user-define rules to get the final payload and upload to LoRaWAN server.
35 35  )))
36 36  
37 -[[image:1653267211009-519.png||height="419" width="724"]]
45 +(((
46 +For data downlink, RS485-BL runs in LoRaWAN Class A. When there is downlink commands from LoRaWAN server, RS485-BL will forward the commands from LoRaWAN server to RS485 devices.
47 +)))
38 38  
49 +(((
50 +Each RS485-BL pre-load with a set of unique keys for LoRaWAN registration, register these keys to LoRaWAN server and it will auto connect after power on.
51 +)))
52 +
53 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image002.png]]
54 +
39 39  == 1.2 Specifications ==
40 40  
41 41  **Hardware System:**
42 42  
43 43  * STM32L072CZT6 MCU
44 -* SX1276/78 Wireless Chip 
60 +* SX1276/78 Wireless Chip
45 45  * Power Consumption (exclude RS485 device):
46 -** Idle: 32mA@12v
62 +** Idle: 6uA@3.3v
47 47  
48 -*
49 -** 20dB Transmit: 65mA@12v
64 +*
65 +** 20dB Transmit: 130mA@3.3v
50 50  
51 51  **Interface for Model:**
52 52  
53 -* RS485
54 -* Power Input 7~~ 24V DC. 
69 +* 1 x RS485 Interface
70 +* 1 x TTL Serial , 3.3v or 5v.
71 +* 1 x I2C Interface, 3.3v or 5v.
72 +* 1 x one wire interface
73 +* 1 x Interrupt Interface
74 +* 1 x Controllable 5V output, max
55 55  
56 56  **LoRa Spec:**
57 57  
... ... @@ -60,30 +60,27 @@
60 60  ** Band 2 (LF): 410 ~~ 528 Mhz
61 61  * 168 dB maximum link budget.
62 62  * +20 dBm - 100 mW constant RF output vs.
63 -* +14 dBm high efficiency PA.
64 64  * Programmable bit rate up to 300 kbps.
65 65  * High sensitivity: down to -148 dBm.
66 66  * Bullet-proof front end: IIP3 = -12.5 dBm.
67 67  * Excellent blocking immunity.
68 -* Low RX current of 10.3 mA, 200 nA register retention.
69 69  * Fully integrated synthesizer with a resolution of 61 Hz.
70 -* FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation.
88 +* LoRa modulation.
71 71  * Built-in bit synchronizer for clock recovery.
72 72  * Preamble detection.
73 73  * 127 dB Dynamic Range RSSI.
74 -* Automatic RF Sense and CAD with ultra-fast AFC.
75 -* Packet engine up to 256 bytes with CRC.
92 +* Automatic RF Sense and CAD with ultra-fast AFC. ​​​
76 76  
77 77  == 1.3 Features ==
78 78  
79 -* LoRaWAN Class A & Class C protocol (default Class C)
96 +* LoRaWAN Class A & Class C protocol (default Class A)
80 80  * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865/RU864
81 81  * AT Commands to change parameters
82 -* Remote configure parameters via LoRa Downlink
99 +* Remote configure parameters via LoRaWAN Downlink
83 83  * Firmware upgradable via program port
84 84  * Support multiply RS485 devices by flexible rules
85 85  * Support Modbus protocol
86 -* Support Interrupt uplink (Since hardware version v1.2)
103 +* Support Interrupt uplink
87 87  
88 88  == 1.4 Applications ==
89 89  
... ... @@ -94,269 +94,262 @@
94 94  * Smart Cities
95 95  * Smart Factory
96 96  
97 -== 1.5 Firmware Change log ==
114 +== 1.5 Firmware Change log ==
98 98  
99 -[[RS485-LN Image files – Download link and Change log>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/]]
116 +[[RS485-BL Image files – Download link and Change log>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/RS485-BL/Firmware/||style="background-color: rgb(255, 255, 255);"]]
100 100  
101 101  == 1.6 Hardware Change log ==
102 102  
103 103  (((
104 -(((
105 -v1.2: Add External Interrupt Pin.
106 -
107 -v1.0: Release
121 +v1.4
108 108  )))
109 -)))
110 110  
111 -= 2. Power ON Device =
112 -
113 113  (((
114 -The RS485-LN can be powered by 7 ~~ 24V DC power source. Connection as below
125 +~1. Change Power IC to TPS22916
126 +)))
115 115  
116 -* Power Source VIN to RS485-LN VIN+
117 -* Power Source GND to RS485-LN VIN-
118 118  
119 119  (((
120 -Once there is power, the RS485-LN will be on.
130 +v1.3
121 121  )))
122 122  
123 -[[image:1653268091319-405.png]]
133 +(((
134 +~1. Change JP3 from KF350-8P to KF350-11P, Add one extra interface for I2C and one extra interface for one-wire
124 124  )))
125 125  
126 -= 3. Operation Mode =
127 127  
128 -== 3.1 How it works? ==
138 +(((
139 +v1.2
140 +)))
129 129  
130 130  (((
131 -The RS485-LN is configured as LoRaWAN OTAA Class C mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the RS485-LN. It will auto join the network via OTAA.
143 +Release version ​​​​​
132 132  )))
133 133  
134 -== 3.2 Example to join LoRaWAN network ==
146 += 2. Pin mapping and Power ON Device =
135 135  
136 -Here shows an example for how to join the TTN V3 Network. Below is the network structure, we use [[LG308>>url:http://www.dragino.com/products/lora-lorawan-gateway/item/140-lg308.html]] as LoRaWAN gateway here. 
148 +The RS485-BL is powered on by 8500mAh battery. To save battery life, RS485-BL is shipped with power off. User can put the jumper to power on RS485-BL.
137 137  
138 -[[image:1653268155545-638.png||height="334" width="724"]]
150 +[[image:1652953055962-143.png||height="387" width="728"]]
139 139  
140 -(((
141 -The RS485-LN in this example connected to two RS485 devices for demonstration, user can connect to other RS485 devices via the same method. The connection is as below:
152 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image003.png]]
142 142  
143 -485A+ and 485B- of the sensor are connected to RS485A and RA485B of RS485-LN respectively.
154 +The Left TXD and RXD are TTL interface for external sensor. TTL level is controlled by 3.3/5v Jumper.
144 144  
145 -[[image:1653268227651-549.png||height="592" width="720"]]
146 146  
147 -(((
148 -The LG308 is already set to connect to [[TTN V3 network >>path:eu1.cloud.thethings.network/]]. So what we need to now is only configure the TTN V3:
149 -)))
150 150  
151 -(((
152 -**Step 1**: Create a device in TTN V3 with the OTAA keys from RS485-LN.
153 -)))
158 +3. Operation Mode
159 +3.1 How it works?
154 154  
155 -(((
156 -Each RS485-LN is shipped with a sticker with unique device EUI:
157 -)))
158 -)))
161 +The RS485-BL is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the RS485-BL. It will auto join the network via OTAA.
159 159  
160 -[[image:1652953462722-299.png]]
161 161  
162 -(((
163 -(((
164 +1.
165 +11. Example to join LoRaWAN network
166 +
167 +Here shows an example for how to join the TTN V3 Network. Below is the network structure, we use [[LG308>>url:http://www.dragino.com/products/lora-lorawan-gateway/item/140-lg308.html]] as LoRaWAN gateway here.
168 +
169 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image004.png]]
170 +
171 +
172 +The RS485-BL in this example connected to two RS485 devices for demonstration, user can connect to other RS485 devices via the same method.
173 +
174 +
175 +The LG308 is already set to connect to [[TTN V3 network >>url:https://www.thethingsnetwork.org/]]. So what we need to now is only configure the TTN V3:
176 +
177 +**Step 1**: Create a device in TTN V3 with the OTAA keys from RS485-BL.
178 +
179 +Each RS485-BL is shipped with a sticker with unique device EUI:
180 +
181 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image005.png]]
182 +
183 +
184 +
185 +
164 164  User can enter this key in their LoRaWAN Server portal. Below is TTN V3 screen shot:
165 -)))
166 166  
167 -(((
168 168  Add APP EUI in the application.
169 -)))
170 -)))
171 171  
172 -[[image:image-20220519174512-1.png]]
190 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image006.png]]
173 173  
174 -[[image:image-20220519174512-2.png||height="323" width="720"]]
192 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image007.png]]
175 175  
176 -[[image:image-20220519174512-3.png||height="556" width="724"]]
194 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image008.png]]
177 177  
178 -[[image:image-20220519174512-4.png]]
196 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image009.png]]
179 179  
180 -You can also choose to create the device manually.
181 181  
182 -[[image:1652953542269-423.png||height="710" width="723"]]
183 183  
184 -Add APP KEY and DEV EUI
185 185  
186 -[[image:1652953553383-907.png||height="514" width="724"]]
187 187  
188 188  
189 -(((
190 -**Step 2**: Power on RS485-LN and it will auto join to the TTN V3 network. After join success, it will start to upload message to TTN V3 and user can see in the panel.
191 -)))
192 192  
193 -[[image:1652953568895-172.png||height="232" width="724"]]
194 194  
195 -== 3.3 Configure Commands to read data ==
196 196  
197 -(((
198 -(((
199 -There are plenty of RS485 devices in the market and each device has different command to read the valid data. To support these devices in flexible, RS485-LN supports flexible command set. User can use [[AT Commands>>path:#AT_COMMAND]] or LoRaWAN Downlink Command to configure what commands RS485-LN should send for each sampling and how to handle the return from RS485 devices.
200 -)))
201 201  
202 -(((
203 -(% style="color:red" %)Note: below description and commands are for firmware version >v1.1, if you have firmware version v1.0. Please check the [[user manual v1.0>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/&file=RS485-LN_UserManual_v1.0.1.pdf]] or upgrade the firmware to v1.1
204 -)))
205 -)))
206 206  
207 -=== 3.3.1 onfigure UART settings for RS485 or TTL communication ===
208 208  
209 -To use RS485-LN to read data from RS485 sensors, connect the RS485-LN A/B traces to the sensors. And user need to make sure RS485-LN use the match UART setting to access the sensors. The related commands for UART settings are:
210 210  
211 -(% border="1" style="background-color:#ffffcc; color:green; width:795px" %)
210 +
211 +
212 +
213 +
214 +You can also choose to create the device manually.
215 +
212 212  |(((
213 -**AT Commands**
214 -)))|(% style="width:285px" %)(((
215 -**Description**
216 -)))|(% style="width:347px" %)(((
217 -**Example**
217 +
218 218  )))
219 -|(((
220 -AT+BAUDR
221 -)))|(% style="width:285px" %)(((
222 -Set the baud rate (for RS485 connection). Default Value is: 9600.
223 -)))|(% style="width:347px" %)(((
224 -(((
219 +
220 +
221 +
222 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image010.png]]
223 +
224 +Add APP KEY and DEV EUI
225 +
226 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image011.png]]
227 +
228 +
229 +**Step 2**: Power on RS485-BL and it will auto join to the TTN V3 network. After join success, it will start to upload message to TTN V3 and user can see in the panel.
230 +
231 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image012.png]]
232 +
233 +
234 +
235 +
236 +1.
237 +11. Configure Commands to read data
238 +
239 +There are plenty of RS485 and TTL level devices in the market and each device has different command to read the valid data. To support these devices in flexible, RS485-BL supports flexible command set. User can use [[AT Commands or LoRaWAN Downlink>>path:#AT_COMMAND]] Command to configure how RS485-BL should read the sensor and how to handle the return from RS485 or TTL sensors.
240 +
241 +
242 +1.
243 +11.
244 +111. Configure UART settings for RS485 or TTL communication
245 +
246 +RS485-BL can connect to either RS485 sensors or TTL sensor. User need to specify what type of sensor need to connect.
247 +
248 +1. RS485-MODBUS mode:
249 +
250 +AT+MOD=1 ~/~/ Support RS485-MODBUS type sensors. User can connect multiply RS485 , Modbus sensors to the A / B pins.
251 +
252 +
253 +1. TTL mode:
254 +
255 +AT+MOD=2 ~/~/ Support TTL Level sensors, User can connect one TTL Sensor to the TXD/RXD/GND pins.
256 +
257 +
258 +RS485-BL default UART settings is **9600, no parity, stop bit 1**. If the sensor has a different settings, user can change the RS485-BL setting to match.
259 +
260 +
261 +|**AT Commands**|**Description**|**Example**
262 +|AT+BAUDR|Set the baud rate (for RS485 connection). Default Value is: 9600.|(((
225 225  AT+BAUDR=9600
226 -)))
227 227  
228 -(((
229 229  Options: (1200,2400,4800,14400,19200,115200)
230 230  )))
231 -)))
232 -|(((
233 -AT+PARITY
234 -)))|(% style="width:285px" %)(((
267 +|AT+PARITY|(((
235 235  Set UART parity (for RS485 connection)
236 -)))|(% style="width:347px" %)(((
237 -(((
269 +
270 +Default Value is: no parity.
271 +)))|(((
238 238  AT+PARITY=0
239 -)))
240 240  
241 -(((
242 242  Option: 0: no parity, 1: odd parity, 2: even parity
243 243  )))
244 -)))
245 -|(((
246 -AT+STOPBIT
247 -)))|(% style="width:285px" %)(((
248 -(((
276 +|AT+STOPBIT|(((
249 249  Set serial stopbit (for RS485 connection)
250 -)))
251 251  
252 -(((
253 -
254 -)))
255 -)))|(% style="width:347px" %)(((
256 -(((
279 +Default Value is: 1bit.
280 +)))|(((
257 257  AT+STOPBIT=0 for 1bit
258 -)))
259 259  
260 -(((
261 261  AT+STOPBIT=1 for 1.5 bit
262 -)))
263 263  
264 -(((
265 265  AT+STOPBIT=2 for 2 bits
266 266  )))
267 -)))
268 268  
269 -=== 3.3.2 Configure sensors ===
270 270  
271 -(((
272 -(((
273 -Some sensors might need to configure before normal operation. User can configure such sensor via PC and RS485 adapter or through RS485-LN AT Commands (% style="color:#4f81bd" %)**AT+CFGDEV**(%%). Each (% style="color:#4f81bd" %)**AT+CFGDEV **(%%)equals to send a RS485 command to sensors. This command will only run when user input it and won’t run during each sampling.
274 -)))
275 -)))
276 276  
277 -(% border="1" style="background-color:#ffffcc; color:green; width:806px" %)
278 -|**AT Commands**|(% style="width:418px" %)**Description**|(% style="width:256px" %)**Example**
279 -|AT+CFGDEV|(% style="width:418px" %)(((
290 +
291 +
292 +1.
293 +11.
294 +111. Configure sensors
295 +
296 +Some sensors might need to configure before normal operation. User can configure such sensor via PC or through RS485-BL AT Commands AT+CFGDEV.
297 +
298 +
299 +When user issue an AT+CFGDEV command, Each AT+CFGDEV equals to send a command to the RS485 or TTL sensors. This command will only run when user input it and won’t run during each sampling.
300 +
301 +|**AT Commands**|**Description**|**Example**
302 +|AT+CFGDEV|(((
280 280  This command is used to configure the RS485/TTL devices; they won’t be used during sampling.
281 281  
282 -AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,
305 +AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m
283 283  
284 -mm: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command
285 -)))|(% style="width:256px" %)AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m
307 +m: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command
308 +)))|AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m
286 286  
287 -=== 3.3.3 Configure read commands for each sampling ===
310 +Detail of AT+CFGDEV command see [[AT+CFGDEV detail>>path:#AT_CFGDEV]].
288 288  
289 -(((
312 +
313 +
314 +
315 +
316 +1.
317 +11.
318 +111. Configure read commands for each sampling
319 +
290 290  RS485-BL is a battery powered device; it will sleep most of time. And wake up on each period and read RS485 / TTL sensor data and uplink.
291 -)))
292 292  
293 -(((
322 +
294 294  During each sampling, we need to confirm what commands we need to send to the sensors to read data. After the RS485/TTL sensors send back the value, it normally includes some bytes and we only need a few from them for a shorten payload.
295 -)))
296 296  
297 -(((
325 +
298 298  To save the LoRaWAN network bandwidth, we might need to read data from different sensors and combine their valid value into a short payload.
299 -)))
300 300  
301 -(((
328 +
302 302  This section describes how to achieve above goals.
303 -)))
304 304  
305 -(((
331 +
306 306  During each sampling, the RS485-BL can support 15 commands to read sensors. And combine the return to one or several uplink payloads.
307 -)))
308 308  
309 -(((
334 +
310 310  **Command from RS485-BL to Sensor:**
311 -)))
312 312  
313 -(((
314 314  RS485-BL can send out pre-set max 15 strings via **AT+COMMAD1**, **ATCOMMAND2**,…, to **AT+COMMANDF** . All commands are of same grammar.
315 -)))
316 316  
317 -(((
339 +
318 318  **Handle return from sensors to RS485-BL**:
319 -)))
320 320  
321 -(((
322 322  After RS485-BL send out a string to sensor, RS485-BL will wait for the return from RS485 or TTL sensor. And user can specify how to handle the return, by **AT+DATACUT or AT+SEARCH commands**
323 -)))
324 324  
325 -* (((
326 -**AT+DATACUT**
327 -)))
328 328  
329 -(((
345 +* **AT+DATACUT**
346 +
330 330  When the return value from sensor have fix length and we know which position the valid value we should get, we can use AT+DATACUT command.
331 -)))
332 332  
333 -* (((
334 -**AT+SEARCH**
335 -)))
336 336  
337 -(((
350 +* **AT+SEARCH**
351 +
338 338  When the return value from sensor is dynamic length and we are not sure which bytes the valid data is, instead, we know what value the valid value following. We can use AT+SEARCH to search the valid value in the return string.
339 -)))
340 340  
341 -(((
354 +
342 342  **Define wait timeout:**
343 -)))
344 344  
345 -(((
346 346  Some RS485 device might has longer delay on reply, so user can use AT+CMDDL to set the timeout for getting reply after the RS485 command is sent. For example, AT+CMDDL1=1000 to send the open time to 1000ms
347 -)))
348 348  
349 -(((
359 +
350 350  After we got the valid value from each RS485 commands, we need to combine them together with the command **AT+DATAUP**.
351 -)))
352 352  
362 +
353 353  **Examples:**
354 354  
355 355  Below are examples for the how above AT Commands works.
356 356  
367 +
357 357  **AT+COMMANDx : **This command will be sent to RS485/TTL devices during each sampling, Max command length is 14 bytes. The grammar is:
358 358  
359 -(% border="1" class="table-bordered" %)
360 360  |(((
361 361  **AT+COMMANDx=xx xx xx xx xx xx xx xx xx xx xx xx,m**
362 362  
... ... @@ -365,19 +365,13 @@
365 365  **m: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command**
366 366  )))
367 367  
368 -(((
369 369  For example, if we have a RS485 sensor. The command to get sensor value is: 01 03 0B B8 00 02 46 0A. Where 01 03 0B B8 00 02 is the Modbus command to read the register 0B B8 where stored the sensor value. The 46 0A is the CRC-16/MODBUS which calculate manually.
370 -)))
371 371  
372 -(((
373 373  In the RS485-BL, we should use this command AT+COMMAND1=01 03 0B B8 00 02,1 for the same.
374 -)))
375 375  
376 -(((
382 +
377 377  **AT+SEARCHx**: This command defines how to handle the return from AT+COMMANDx.
378 -)))
379 379  
380 -(% border="1" class="table-bordered" %)
381 381  |(((
382 382  **AT+SEARCHx=aa,xx xx xx xx xx**
383 383  
... ... @@ -387,24 +387,26 @@
387 387  
388 388  )))
389 389  
390 -**Examples:**
394 +Examples:
391 391  
392 -~1. For a return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
396 +1. For a return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
393 393  
394 394  If we set AT+SEARCH1=1,1E 56 34.      (max 5 bytes for prefix)
395 395  
396 -The valid data will be all bytes after 1E 56 34 , so it is (% style="background-color:yellow" %)** 2e 30 58 5f 36 41 30 31 00 49**
400 +The valid data will be all bytes after 1E 56 34 , so it is 2e 30 58 5f 36 41 30 31 00 49
397 397  
398 -[[image:1653269403619-508.png]]
402 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image013.png]]
399 399  
400 -2. For a return string from AT+COMMAND1:  16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
401 401  
405 +1. For a return string from AT+COMMAND1:  16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
406 +
402 402  If we set AT+SEARCH1=2, 1E 56 34+31 00 49
403 403  
404 -Device will search the bytes between 1E 56 34 and 31 00 49. So it is (% style="background-color:yellow" %)** 2e 30 58 5f 36 41 30**
409 +Device will search the bytes between 1E 56 34 and 31 00 49. So it is 2e 30 58 5f 36 41 30
405 405  
406 -[[image:1653269438444-278.png]]
411 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image014.png]]
407 407  
413 +
408 408  **AT+DATACUTx : **This command defines how to handle the return from AT+COMMANDx, max return length is 45 bytes.
409 409  
410 410  |(((
... ... @@ -412,7 +412,7 @@
412 412  
413 413  * **a: length for the return of AT+COMMAND**
414 414  * **b:1: grab valid value by byte, max 6 bytes. 2: grab valid value by bytes section, max 3 sections.**
415 -* **c: define the position for valid value.  **
421 +* **c: define the position for valid value. **
416 416  )))
417 417  
418 418  Examples:
... ... @@ -419,79 +419,76 @@
419 419  
420 420  * Grab bytes:
421 421  
422 -[[image:1653269551753-223.png||height="311" width="717"]]
428 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image015.png]]
423 423  
424 424  * Grab a section.
425 425  
426 -[[image:1653269568276-930.png||height="325" width="718"]]
432 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image016.png]]
427 427  
428 428  * Grab different sections.
429 429  
430 -[[image:1653269593172-426.png||height="303" width="725"]]
436 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image017.png]]
431 431  
432 -(% style="color:red" %)**Note:**
433 433  
439 +Note:
440 +
434 434  AT+SEARCHx and AT+DATACUTx can be used together, if both commands are set, RS485-BL will first process AT+SEARCHx on the return string and get a temporary string, and then process AT+DATACUTx on this temporary string to get the final payload. In this case, AT+DATACUTx need to set to format AT+DATACUTx=0,xx,xx where the return bytes set to 0.
435 435  
436 436  Example:
437 437  
438 -(% style="color:red" %)AT+COMMAND1=11 01 1E D0,0
445 +AT+COMMAND1=11 01 1E D0,0
439 439  
440 -(% style="color:red" %)AT+SEARCH1=1,1E 56 34
447 +AT+SEARCH1=1,1E 56 34
441 441  
442 -(% style="color:red" %)AT+DATACUT1=0,2,1~~5
449 +AT+DATACUT1=0,2,1~~5
443 443  
444 -(% style="color:red" %)Return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
451 +Return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
445 445  
446 -(% style="color:red" %)String after SEARCH command: 2e 30 58 5f 36 41 30 31 00 49
453 +String after SEARCH command: 2e 30 58 5f 36 41 30 31 00 49
447 447  
448 -(% style="color:red" %)Valid payload after DataCUT command: 2e 30 58 5f 36
455 +Valid payload after DataCUT command: 2e 30 58 5f 36
449 449  
450 -[[image:1653269618463-608.png]]
457 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image018.png]]
451 451  
452 -=== 3.3.4 Compose the uplink payload ===
453 453  
454 -(((
460 +
461 +
462 +1.
463 +11.
464 +111. Compose the uplink payload
465 +
455 455  Through AT+COMMANDx and AT+DATACUTx we got valid value from each RS485 commands, Assume these valid value are RETURN1, RETURN2, .., to RETURNx. The next step is how to compose the LoRa Uplink Payload by these RETURNs. The command is **AT+DATAUP.**
456 -)))
457 457  
458 -(((
459 -(% style="color:#4f81bd" %)**Examples: AT+DATAUP=0**
460 -)))
461 461  
462 -(((
463 -Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**A SIGNLE UPLINK**.
464 -)))
469 +**Examples: AT+DATAUP=0**
465 465  
466 -(((
471 +Compose the uplink payload with value returns in sequence and send with **A SIGNLE UPLINK**.
472 +
467 467  Final Payload is
468 -)))
469 469  
470 -(((
471 -(% style="color:#4f81bd" %)**Battery Info+PAYVER + VALID Value from RETURN1 + Valid Value from RETURN2 + … + RETURNx**
472 -)))
475 +Battery Info+PAYVER + VALID Value from RETURN1 + Valid Value from RETURN2 + … + RETURNx
473 473  
474 -(((
475 475  Where PAYVER is defined by AT+PAYVER, below is an example screen shot.
476 -)))
477 477  
478 -[[image:1653269759169-150.png||height="513" width="716"]]
479 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image019.png]]
479 479  
480 -(% style="color:#4f81bd" %)**Examples: AT+DATAUP=1**
481 481  
482 -Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**Multiply UPLINKs**.
483 483  
483 +**Examples: AT+DATAUP=1**
484 +
485 +Compose the uplink payload with value returns in sequence and send with **Multiply UPLINKs**.
486 +
484 484  Final Payload is
485 485  
486 -(% style="color:#4f81bd" %)**Battery Info+PAYVER + PAYLOAD COUNT + PAYLOAD# + DATA**
489 +Battery Info+PAYVER + PAYLOAD COUNT + PAYLOAD# + DATA
487 487  
488 488  1. Battery Info (2 bytes): Battery voltage
489 489  1. PAYVER (1 byte): Defined by AT+PAYVER
490 490  1. PAYLOAD COUNT (1 byte): Total how many uplinks of this sampling.
491 491  1. PAYLOAD# (1 byte): Number of this uplink. (from 0,1,2,3…,to PAYLOAD COUNT)
492 -1. DATA: Valid value: max 6 bytes(US915 version here, Notice*!) for each uplink so each uplink <= 11 bytes. For the last uplink, DATA will might less than 6 bytes
495 +1. DATA: Valid value: max 6 bytes(US915 version here, [[Notice*!>>path:#max_byte]]) for each uplink so each uplink <= 11 bytes. For the last uplink, DATA will might less than 6 bytes
493 493  
494 -[[image:1653269916228-732.png]]
497 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
495 495  
496 496  
497 497  So totally there will be 3 uplinks for this sampling, each uplink includes 6 bytes DATA
... ... @@ -521,8 +521,8 @@
521 521  
522 522  
523 523  
524 -1.
525 -11.
527 +1.
528 +11.
526 526  111. Uplink on demand
527 527  
528 528  Except uplink periodically, RS485-BL is able to uplink on demand. The server sends downlink command to RS485-BL and RS485 will uplink data base on the command.
... ... @@ -535,8 +535,8 @@
535 535  
536 536  
537 537  
538 -1.
539 -11.
541 +1.
542 +11.
540 540  111. Uplink on Interrupt
541 541  
542 542  Put the interrupt sensor between 3.3v_out and GPIO ext.[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image022.png]]
... ... @@ -550,9 +550,10 @@
550 550  AT+INTMOD=3  Interrupt trigger by rising edge.
551 551  
552 552  
553 -1.
556 +1.
554 554  11. Uplink Payload
555 555  
559 +
556 556  |**Size(bytes)**|**2**|**1**|**Length depends on the return from the commands**
557 557  |Value|(((
558 558  Battery(mV)
... ... @@ -601,7 +601,7 @@
601 601  
602 602  [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image023.png]]
603 603  
604 -1.
608 +1.
605 605  11. Configure RS485-BL via AT or Downlink
606 606  
607 607  User can configure RS485-BL via [[AT Commands >>path:#_​Using_the_AT]]or LoRaWAN Downlink Commands
... ... @@ -612,17 +612,20 @@
612 612  
613 613  * **Sensor Related Commands**: These commands are special designed for RS485-BL.  User can see these commands below:
614 614  
615 -1.
616 -11.
619 +
620 +1.
621 +11.
617 617  111. Common Commands:
618 618  
624 +
619 619  They should be available for each of Dragino Sensors, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: [[http:~~/~~/wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands>>url:http://wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands]]
620 620  
621 621  
622 -1.
623 -11.
628 +1.
629 +11.
624 624  111. Sensor related commands:
625 625  
632 +
626 626  ==== Choose Device Type (RS485 or TTL) ====
627 627  
628 628  RS485-BL can connect to either RS485 sensors or TTL sensor. User need to specify what type of sensor need to connect.
... ... @@ -663,6 +663,7 @@
663 663  * XX XX XX XX: RS485 command total NN bytes
664 664  * YY: How many bytes will be uplink from the return of this RS485 command, if YY=0, RS485-BL will execute the downlink command without uplink; if YY>0, RS485-BL will uplink total YY bytes from the output of this RS485 command
665 665  
673 +
666 666  **Example 1:**
667 667  
668 668  To connect a Modbus Alarm with below commands.
... ... @@ -771,6 +771,7 @@
771 771  
772 772  * AT+MBFUN=0: Disable Modbus fast reading.
773 773  
782 +
774 774  Example:
775 775  
776 776  * AT+MBFUN=1 and AT+DATACUT1/AT+DATACUT2 are not configure (0,0,0).
... ... @@ -855,7 +855,7 @@
855 855  
856 856  Etc. AT+CMDEAR=1,10 means erase AT+COMMAND1/AT+DATACUT1 to AT+COMMAND10/AT+DATACUT10
857 857  
858 -Example screen shot after clear all RS485 commands. 
867 +Example screen shot after clear all RS485 commands.
859 859  
860 860  
861 861  
... ... @@ -899,6 +899,7 @@
899 899  * A7 01 00 60   same as AT+BAUDR=9600
900 900  * A7 01 04 80  same as AT+BAUDR=115200
901 901  
911 +
902 902  A7 02 aa: Same as  AT+PARITY=aa  (aa value: 00 , 01 or 02)
903 903  
904 904  A7 03 aa: Same as  AT+STOPBIT=aa  (aa value: 00 , 01 or 02)
... ... @@ -926,18 +926,20 @@
926 926  
927 927  
928 928  
929 -1.
939 +1.
930 930  11. Buttons
931 931  
942 +
932 932  |**Button**|**Feature**
933 933  |**RST**|Reboot RS485-BL
934 934  
935 -1.
946 +
947 +1.
936 936  11. +3V3 Output
937 937  
938 938  RS485-BL has a Controllable +3V3 output, user can use this output to power external sensor.
939 939  
940 -The +3V3 output will be valid for every sampling. RS485-BL will enable +3V3 output before all sampling and disable the +3V3 after all sampling. 
952 +The +3V3 output will be valid for every sampling. RS485-BL will enable +3V3 output before all sampling and disable the +3V3 after all sampling.
941 941  
942 942  
943 943  The +3V3 output time can be controlled by AT Command.
... ... @@ -950,12 +950,12 @@
950 950  By default, the AT+3V3T=0. This is a special case, means the +3V3 output is always on at any time
951 951  
952 952  
953 -1.
965 +1.
954 954  11. +5V Output
955 955  
956 956  RS485-BL has a Controllable +5V output, user can use this output to power external sensor.
957 957  
958 -The +5V output will be valid for every sampling. RS485-BL will enable +5V output before all sampling and disable the +5v after all sampling. 
970 +The +5V output will be valid for every sampling. RS485-BL will enable +5V output before all sampling and disable the +5v after all sampling.
959 959  
960 960  
961 961  The 5V output time can be controlled by AT Command.
... ... @@ -970,13 +970,14 @@
970 970  
971 971  
972 972  
973 -1.
985 +1.
974 974  11. LEDs
975 975  
976 976  |**LEDs**|**Feature**
977 977  |**LED1**|Blink when device transmit a packet.
978 978  
979 -1.
991 +
992 +1.
980 980  11. Switch Jumper
981 981  
982 982  |**Switch Jumper**|**Feature**
... ... @@ -997,6 +997,7 @@
997 997  
998 998  1. Case Study
999 999  
1013 +
1000 1000  User can check this URL for some case studies.
1001 1001  
1002 1002  [[http:~~/~~/wiki.dragino.com/index.php?title=APP_RS485_COMMUNICATE_WITH_SENSORS>>url:http://wiki.dragino.com/index.php?title=APP_RS485_COMMUNICATE_WITH_SENSORS]]
... ... @@ -1022,7 +1022,7 @@
1022 1022  
1023 1023  
1024 1024  
1025 -1.
1039 +1.
1026 1026  11. Common AT Command Sequence
1027 1027  111. Multi-channel ABP mode (Use with SX1301/LG308)
1028 1028  
... ... @@ -1041,8 +1041,8 @@
1041 1041  
1042 1042  ATZ
1043 1043  
1044 -1.
1045 -11.
1058 +1.
1059 +11.
1046 1046  111. Single-channel ABP mode (Use with LG01/LG02)
1047 1047  
1048 1048  AT+FDR   Reset Parameters to Factory Default, Keys Reserve
... ... @@ -1084,6 +1084,7 @@
1084 1084  * For bug fix
1085 1085  * Change LoRaWAN bands.
1086 1086  
1101 +
1087 1087  Below shows the hardware connection for how to upload an image to RS485-BL:
1088 1088  
1089 1089  [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image030.png]]
... ... @@ -1117,7 +1117,7 @@
1117 1117  [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image035.png]] [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image036.png]]
1118 1118  
1119 1119  
1120 -1.
1135 +1.
1121 1121  11. How to change the LoRa Frequency Bands/Region?
1122 1122  
1123 1123  User can follow the introduction for [[how to upgrade image>>path:#upgrade_image]]. When download the images, choose the required image file for download.
... ... @@ -1124,9 +1124,10 @@
1124 1124  
1125 1125  
1126 1126  
1127 -1.
1142 +1.
1128 1128  11. How many RS485-Slave can RS485-BL connects?
1129 1129  
1145 +
1130 1130  The RS485-BL can support max 32 RS485 devices. Each uplink command of RS485-BL can support max 16 different RS485 command. So RS485-BL can support max 16 RS485 devices pre-program in the device for uplink. For other devices no pre-program, user can use the [[downlink message (type code 0xA8) to poll their info>>path:#downlink_A8]].
1131 1131  
1132 1132  
... ... @@ -1137,11 +1137,11 @@
1137 1137  
1138 1138  Please see this link for debug:
1139 1139  
1140 -[[http:~~/~~/wiki.dragino.com/index.php?title=Main_Page#LoRaWAN_Communication_Debug>>url:http://wiki.dragino.com/index.php?title=Main_Page#LoRaWAN_Communication_Debug]] 
1156 +[[http:~~/~~/wiki.dragino.com/index.php?title=Main_Page#LoRaWAN_Communication_Debug>>url:http://wiki.dragino.com/index.php?title=Main_Page#LoRaWAN_Communication_Debug]]
1141 1141  
1142 1142  
1143 1143  
1144 -1.
1160 +1.
1145 1145  11. Why I can’t join TTN V3 in US915 /AU915 bands?
1146 1146  
1147 1147  It might about the channels mapping. Please see for detail.
... ... @@ -1152,6 +1152,7 @@
1152 1152  
1153 1153  1. Order Info
1154 1154  
1171 +
1155 1155  **Part Number: RS485-BL-XXX**
1156 1156  
1157 1157  **XXX:**
... ... @@ -1167,6 +1167,7 @@
1167 1167  * **RU864**: frequency bands RU864
1168 1168  * **KZ865: **frequency bands KZ865
1169 1169  
1187 +
1170 1170  1. Packing Info
1171 1171  
1172 1172  **Package Includes**:
... ... @@ -1175,6 +1175,7 @@
1175 1175  * Stick Antenna for LoRa RF part x 1
1176 1176  * Program cable x 1
1177 1177  
1196 +
1178 1178  **Dimension and weight**:
1179 1179  
1180 1180  * Device Size: 13.5 x 7 x 3 cm
... ... @@ -1182,6 +1182,7 @@
1182 1182  * Package Size / pcs : 14.5 x 8 x 5 cm
1183 1183  * Weight / pcs : 170g
1184 1184  
1204 +
1185 1185  1. Support
1186 1186  
1187 1187  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1652953304999-717.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -139.7 KB
Content
1652953414711-647.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -119.3 KB
Content
1652953462722-299.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -202.7 KB
Content
1652953542269-423.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -118.5 KB
Content
1652953553383-907.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -94.0 KB
Content
1652953568895-172.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -109.3 KB
Content
1652954654347-831.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -138.7 KB
Content
1653266934636-343.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -176.5 KB
Content
1653267211009-519.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -138.7 KB
Content
1653268091319-405.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -399.3 KB
Content
1653268155545-638.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -113.7 KB
Content
1653268227651-549.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -1.3 MB
Content
1653269403619-508.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -27.8 KB
Content
1653269438444-278.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -26.6 KB
Content
1653269551753-223.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -138.7 KB
Content
1653269568276-930.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -131.4 KB
Content
1653269593172-426.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -142.6 KB
Content
1653269618463-608.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -27.7 KB
Content
1653269759169-150.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -294.0 KB
Content
1653269916228-732.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -143.3 KB
Content
image-20220519174512-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -32.2 KB
Content
image-20220519174512-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -42.7 KB
Content
image-20220519174512-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -36.3 KB
Content
image-20220519174512-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -19.1 KB
Content