<
From version < 22.7 >
edited by Xiaoling
on 2022/05/23 09:20
To version < 38.3 >
edited by Xiaoling
on 2022/06/02 16:10
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -18,26 +18,30 @@
18 18  
19 19  (((
20 20  (((
21 -The Dragino RS485-LN is a RS485 to LoRaWAN Converter. It converts the RS485 signal into LoRaWAN wireless signal which simplify the IoT installation and reduce the installation/maintaining cost.
21 +The Dragino RS485-LN is a (% style="color:blue" %)**RS485 to LoRaWAN Converter**(%%). It converts the RS485 signal into LoRaWAN wireless signal which simplify the IoT installation and reduce the installation/maintaining cost.
22 22  )))
23 23  
24 24  (((
25 -RS485-LN allows user to monitor / control RS485 devices and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
25 +RS485-LN allows user to (% style="color:blue" %)**monitor / control RS485 devices**(%%) and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
26 26  )))
27 27  
28 28  (((
29 -For data uplink, RS485-LN sends user-defined commands to RS485 devices and gets the return from the RS485 devices. RS485-LN will process these returns according to user-define rules to get the final payload and upload to LoRaWAN server.
29 +(% style="color:blue" %)**For data uplink**(%%), RS485-LN sends user-defined commands to RS485 devices and gets the return from the RS485 devices. RS485-LN will process these returns according to user-define rules to get the final payload and upload to LoRaWAN server.
30 30  )))
31 31  
32 32  (((
33 -For data downlink, RS485-LN runs in LoRaWAN Class C. When there downlink commands from LoRaWAN server, RS485-LN will forward the commands from LoRaWAN server to RS485 devices.
33 +(% style="color:blue" %)**For data downlink**(%%), RS485-LN runs in LoRaWAN Class C. When there downlink commands from LoRaWAN server, RS485-LN will forward the commands from LoRaWAN server to RS485 devices.
34 +
35 +(% style="color:blue" %)**Demo Dashboard for RS485-LN**(%%) connect to two energy meters: [[https:~~/~~/app.datacake.de/dashboard/d/58844a26-378d-4c5a-aaf5-b5b5b153447a>>url:https://app.datacake.de/dashboard/d/58844a26-378d-4c5a-aaf5-b5b5b153447a]]
34 34  )))
35 35  )))
36 36  
37 37  [[image:1653267211009-519.png||height="419" width="724"]]
38 38  
41 +
39 39  == 1.2 Specifications ==
40 40  
44 +
41 41  **Hardware System:**
42 42  
43 43  * STM32L072CZT6 MCU
... ... @@ -44,8 +44,6 @@
44 44  * SX1276/78 Wireless Chip 
45 45  * Power Consumption (exclude RS485 device):
46 46  ** Idle: 32mA@12v
47 -
48 -*
49 49  ** 20dB Transmit: 65mA@12v
50 50  
51 51  **Interface for Model:**
... ... @@ -98,6 +98,7 @@
98 98  
99 99  [[RS485-LN Image files – Download link and Change log>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/]]
100 100  
103 +
101 101  == 1.6 Hardware Change log ==
102 102  
103 103  (((
... ... @@ -105,6 +105,8 @@
105 105  v1.2: Add External Interrupt Pin.
106 106  
107 107  v1.0: Release
111 +
112 +
108 108  )))
109 109  )))
110 110  
... ... @@ -121,6 +121,8 @@
121 121  )))
122 122  
123 123  [[image:1653268091319-405.png]]
129 +
130 +
124 124  )))
125 125  
126 126  = 3. Operation Mode =
... ... @@ -129,6 +129,8 @@
129 129  
130 130  (((
131 131  The RS485-LN is configured as LoRaWAN OTAA Class C mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the RS485-LN. It will auto join the network via OTAA.
139 +
140 +
132 132  )))
133 133  
134 134  == 3.2 Example to join LoRaWAN network ==
... ... @@ -137,10 +137,15 @@
137 137  
138 138  [[image:1653268155545-638.png||height="334" width="724"]]
139 139  
149 +
140 140  (((
151 +(((
141 141  The RS485-LN in this example connected to two RS485 devices for demonstration, user can connect to other RS485 devices via the same method. The connection is as below:
153 +)))
142 142  
155 +(((
143 143  485A+ and 485B- of the sensor are connected to RS485A and RA485B of RS485-LN respectively.
157 +)))
144 144  
145 145  [[image:1653268227651-549.png||height="592" width="720"]]
146 146  
... ... @@ -192,6 +192,7 @@
192 192  
193 193  [[image:1652953568895-172.png||height="232" width="724"]]
194 194  
209 +
195 195  == 3.3 Configure Commands to read data ==
196 196  
197 197  (((
... ... @@ -201,6 +201,8 @@
201 201  
202 202  (((
203 203  (% style="color:red" %)Note: below description and commands are for firmware version >v1.1, if you have firmware version v1.0. Please check the [[user manual v1.0>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/&file=RS485-LN_UserManual_v1.0.1.pdf]] or upgrade the firmware to v1.1
219 +
220 +
204 204  )))
205 205  )))
206 206  
... ... @@ -208,19 +208,19 @@
208 208  
209 209  To use RS485-LN to read data from RS485 sensors, connect the RS485-LN A/B traces to the sensors. And user need to make sure RS485-LN use the match UART setting to access the sensors. The related commands for UART settings are:
210 210  
211 -(% border="1" style="background-color:#ffffcc; color:green; width:795px" %)
212 -|(((
228 +(% border="1" style="background-color:#ffffcc; color:green; width:782px" %)
229 +|(% style="width:128px" %)(((
213 213  **AT Commands**
214 -)))|(% style="width:285px" %)(((
231 +)))|(% style="width:305px" %)(((
215 215  **Description**
216 -)))|(% style="width:347px" %)(((
233 +)))|(% style="width:346px" %)(((
217 217  **Example**
218 218  )))
219 -|(((
236 +|(% style="width:128px" %)(((
220 220  AT+BAUDR
221 -)))|(% style="width:285px" %)(((
238 +)))|(% style="width:305px" %)(((
222 222  Set the baud rate (for RS485 connection). Default Value is: 9600.
223 -)))|(% style="width:347px" %)(((
240 +)))|(% style="width:346px" %)(((
224 224  (((
225 225  AT+BAUDR=9600
226 226  )))
... ... @@ -229,11 +229,11 @@
229 229  Options: (1200,2400,4800,14400,19200,115200)
230 230  )))
231 231  )))
232 -|(((
249 +|(% style="width:128px" %)(((
233 233  AT+PARITY
234 -)))|(% style="width:285px" %)(((
251 +)))|(% style="width:305px" %)(((
235 235  Set UART parity (for RS485 connection)
236 -)))|(% style="width:347px" %)(((
253 +)))|(% style="width:346px" %)(((
237 237  (((
238 238  AT+PARITY=0
239 239  )))
... ... @@ -242,9 +242,9 @@
242 242  Option: 0: no parity, 1: odd parity, 2: even parity
243 243  )))
244 244  )))
245 -|(((
262 +|(% style="width:128px" %)(((
246 246  AT+STOPBIT
247 -)))|(% style="width:285px" %)(((
264 +)))|(% style="width:305px" %)(((
248 248  (((
249 249  Set serial stopbit (for RS485 connection)
250 250  )))
... ... @@ -252,7 +252,7 @@
252 252  (((
253 253  
254 254  )))
255 -)))|(% style="width:347px" %)(((
272 +)))|(% style="width:346px" %)(((
256 256  (((
257 257  AT+STOPBIT=0 for 1bit
258 258  )))
... ... @@ -284,82 +284,37 @@
284 284  mm: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command
285 285  )))|(% style="width:256px" %)AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m
286 286  
287 -Detail of AT+CFGDEV command see [[AT+CFGDEV detail>>path:#AT_CFGDEV]].
288 -
289 289  === 3.3.3 Configure read commands for each sampling ===
290 290  
291 291  (((
292 -RS485-BL is a battery powered device; it will sleep most of time. And wake up on each period and read RS485 / TTL sensor data and uplink.
293 -)))
307 +During each sampling, we need confirm what commands we need to send to the RS485 sensors to read data. After the RS485 sensors send back the value, it normally include some bytes and we only need a few from them for a shorten payload.
294 294  
295 -(((
296 -During each sampling, we need to confirm what commands we need to send to the sensors to read data. After the RS485/TTL sensors send back the value, it normally includes some bytes and we only need a few from them for a shorten payload.
297 -)))
298 -
299 -(((
300 300  To save the LoRaWAN network bandwidth, we might need to read data from different sensors and combine their valid value into a short payload.
301 -)))
302 302  
303 -(((
304 304  This section describes how to achieve above goals.
305 -)))
306 306  
307 -(((
308 -During each sampling, the RS485-BL can support 15 commands to read sensors. And combine the return to one or several uplink payloads.
309 -)))
313 +During each sampling, the RS485-LN can support 15 commands to read sensors. And combine the return to one or several uplink payloads.
310 310  
311 -(((
312 -**Command from RS485-BL to Sensor:**
313 -)))
314 314  
315 -(((
316 -RS485-BL can send out pre-set max 15 strings via **AT+COMMAD1**, **ATCOMMAND2**,…, to **AT+COMMANDF** . All commands are of same grammar.
317 -)))
316 +**Each RS485 commands include two parts:**
318 318  
319 -(((
320 -**Handle return from sensors to RS485-BL**:
321 -)))
318 +~1. What commands RS485-LN will send to the RS485 sensors. There are total 15 commands from **AT+COMMAD1**, **ATCOMMAND2**,…, to **AT+COMMANDF**. All commands are of same grammar.
322 322  
323 -(((
324 -After RS485-BL send out a string to sensor, RS485-BL will wait for the return from RS485 or TTL sensor. And user can specify how to handle the return, by **AT+DATACUT or AT+SEARCH commands**
325 -)))
320 +2. How to get wanted value the from RS485 sensors returns from by 1). There are total 15 AT Commands to handle the return, commands are **AT+DATACUT1**,**AT+DATACUT2**,…, **AT+DATACUTF** corresponding to the commands from 1). All commands are of same grammar.
326 326  
327 -* (((
328 -**AT+DATACUT**
329 -)))
322 +3. Some RS485 device might has longer delay on reply, so user can use AT+CMDDL to set the timeout for getting reply after the RS485 command is sent. For example **AT+CMDDL1=1000** to send the open time to 1000ms
330 330  
331 -(((
332 -When the return value from sensor have fix length and we know which position the valid value we should get, we can use AT+DATACUT command.
333 -)))
334 334  
335 -* (((
336 -**AT+SEARCH**
337 -)))
338 -
339 -(((
340 -When the return value from sensor is dynamic length and we are not sure which bytes the valid data is, instead, we know what value the valid value following. We can use AT+SEARCH to search the valid value in the return string.
341 -)))
342 -
343 -(((
344 -**Define wait timeout:**
345 -)))
346 -
347 -(((
348 -Some RS485 device might has longer delay on reply, so user can use AT+CMDDL to set the timeout for getting reply after the RS485 command is sent. For example, AT+CMDDL1=1000 to send the open time to 1000ms
349 -)))
350 -
351 -(((
352 352  After we got the valid value from each RS485 commands, we need to combine them together with the command **AT+DATAUP**.
353 -)))
354 354  
355 -**Examples:**
356 356  
357 357  Below are examples for the how above AT Commands works.
358 358  
359 -**AT+COMMANDx : **This command will be sent to RS485/TTL devices during each sampling, Max command length is 14 bytes. The grammar is:
360 360  
361 -(% border="1" class="table-bordered" %)
362 -|(((
331 +**AT+COMMANDx : **This command will be sent to RS485 devices during each sampling, Max command length is 14 bytes. The grammar is:
332 +
333 +(% border="1" style="background-color:#4bacc6; color:white; width:499px" %)
334 +|(% style="width:496px" %)(((
363 363  **AT+COMMANDx=xx xx xx xx xx xx xx xx xx xx xx xx,m**
364 364  
365 365  **xx xx xx xx xx xx xx xx xx xx xx xx: The RS485 command to be sent**
... ... @@ -369,43 +369,13 @@
369 369  
370 370  For example, if we have a RS485 sensor. The command to get sensor value is: 01 03 0B B8 00 02 46 0A. Where 01 03 0B B8 00 02 is the Modbus command to read the register 0B B8 where stored the sensor value. The 46 0A is the CRC-16/MODBUS which calculate manually.
371 371  
372 -In the RS485-BL, we should use this command AT+COMMAND1=01 03 0B B8 00 02,1 for the same.
344 +In the RS485-LN, we should use this command AT+COMMAND1=01 03 0B B8 00 02,1 for the same.
373 373  
374 -**AT+SEARCHx**: This command defines how to handle the return from AT+COMMANDx.
375 375  
376 -(% border="1" class="table-bordered" %)
377 -|(((
378 -**AT+SEARCHx=aa,xx xx xx xx xx**
379 -
380 -* **aa: 1: prefix match mode; 2: prefix and suffix match mode**
381 -* **xx xx xx xx xx: match string. Max 5 bytes for prefix and 5 bytes for suffix**
382 -
383 -
384 -)))
385 -
386 -Examples:
387 -
388 -1. For a return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
389 -
390 -If we set AT+SEARCH1=1,1E 56 34.      (max 5 bytes for prefix)
391 -
392 -The valid data will be all bytes after 1E 56 34 , so it is 2e 30 58 5f 36 41 30 31 00 49
393 -
394 -[[image:1652954654347-831.png]]
395 -
396 -
397 -1. For a return string from AT+COMMAND1:  16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
398 -
399 -If we set AT+SEARCH1=2, 1E 56 34+31 00 49
400 -
401 -Device will search the bytes between 1E 56 34 and 31 00 49. So it is 2e 30 58 5f 36 41 30
402 -
403 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image014.png]]
404 -
405 -
406 406  **AT+DATACUTx : **This command defines how to handle the return from AT+COMMANDx, max return length is 45 bytes.
407 407  
408 -|(((
349 +(% border="1" style="background-color:#4bacc6; color:white; width:725px" %)
350 +|(% style="width:722px" %)(((
409 409  **AT+DATACUTx=a,b,c**
410 410  
411 411  * **a: length for the return of AT+COMMAND**
... ... @@ -413,138 +413,121 @@
413 413  * **c: define the position for valid value.  **
414 414  )))
415 415  
416 -Examples:
358 +**Examples:**
417 417  
418 418  * Grab bytes:
419 419  
420 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image015.png]]
362 +[[image:image-20220602153621-1.png]]
421 421  
364 +
422 422  * Grab a section.
423 423  
424 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image016.png]]
367 +[[image:image-20220602153621-2.png]]
425 425  
369 +
426 426  * Grab different sections.
427 427  
428 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image017.png]]
372 +[[image:image-20220602153621-3.png]]
429 429  
374 +
375 +)))
430 430  
431 -Note:
377 +=== 3.3.4 Compose the uplink payload ===
432 432  
433 -AT+SEARCHx and AT+DATACUTx can be used together, if both commands are set, RS485-BL will first process AT+SEARCHx on the return string and get a temporary string, and then process AT+DATACUTx on this temporary string to get the final payload. In this case, AT+DATACUTx need to set to format AT+DATACUTx=0,xx,xx where the return bytes set to 0.
434 -
435 -Example:
436 -
437 -AT+COMMAND1=11 01 1E D0,0
438 -
439 -AT+SEARCH1=1,1E 56 34
440 -
441 -AT+DATACUT1=0,2,1~~5
442 -
443 -Return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
444 -
445 -String after SEARCH command: 2e 30 58 5f 36 41 30 31 00 49
446 -
447 -Valid payload after DataCUT command: 2e 30 58 5f 36
448 -
449 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image018.png]]
450 -
451 -
452 -
453 -
454 -1.
455 -11.
456 -111. Compose the uplink payload
457 -
379 +(((
458 458  Through AT+COMMANDx and AT+DATACUTx we got valid value from each RS485 commands, Assume these valid value are RETURN1, RETURN2, .., to RETURNx. The next step is how to compose the LoRa Uplink Payload by these RETURNs. The command is **AT+DATAUP.**
459 459  
382 +
383 +)))
460 460  
461 -**Examples: AT+DATAUP=0**
385 +(((
386 +(% style="color:#037691" %)**Examples: AT+DATAUP=0**
462 462  
463 -Compose the uplink payload with value returns in sequence and send with **A SIGNLE UPLINK**.
388 +
389 +)))
464 464  
391 +(((
392 +Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**A SIGNLE UPLINK**.
393 +)))
394 +
395 +(((
465 465  Final Payload is
397 +)))
466 466  
467 -Battery Info+PAYVER + VALID Value from RETURN1 + Valid Value from RETURN2 + … + RETURNx
399 +(((
400 +(% style="color:#4f81bd" %)**Battery Info+PAYVER + VALID Value from RETURN1 + Valid Value from RETURN2 + … + RETURNx**
401 +)))
468 468  
403 +(((
469 469  Where PAYVER is defined by AT+PAYVER, below is an example screen shot.
405 +)))
470 470  
471 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image019.png]]
407 +[[image:1653269759169-150.png||height="513" width="716"]]
472 472  
473 473  
410 +(% style="color:#037691" %)**Examples: AT+DATAUP=1**
474 474  
475 -**Examples: AT+DATAUP=1**
476 476  
477 -Compose the uplink payload with value returns in sequence and send with **Multiply UPLINKs**.
413 +Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**Multiply UPLINKs**.
478 478  
479 479  Final Payload is
480 480  
481 -Battery Info+PAYVER + PAYLOAD COUNT + PAYLOAD# + DATA
417 +(% style="color:#4f81bd" %)**Battery Info+PAYVER + PAYLOAD COUNT + PAYLOAD# + DATA**
482 482  
483 -1. Battery Info (2 bytes): Battery voltage
484 -1. PAYVER (1 byte): Defined by AT+PAYVER
485 -1. PAYLOAD COUNT (1 byte): Total how many uplinks of this sampling.
486 -1. PAYLOAD# (1 byte): Number of this uplink. (from 0,1,2,3…,to PAYLOAD COUNT)
487 -1. DATA: Valid value: max 6 bytes(US915 version here, [[Notice*!>>path:#max_byte]]) for each uplink so each uplink <= 11 bytes. For the last uplink, DATA will might less than 6 bytes
419 +1. PAYVER: Defined by AT+PAYVER
420 +1. PAYLOAD COUNT: Total how many uplinks of this sampling.
421 +1. PAYLOAD#: Number of this uplink. (from 0,1,2,3…,to PAYLOAD COUNT)
422 +1. DATA: Valid value: max 8 bytes for each uplink so each uplink <= 11 bytes. For the last uplink, DATA will might less than 8 bytes
488 488  
489 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
424 +[[image:image-20220602155039-4.png]]
490 490  
491 491  
492 -So totally there will be 3 uplinks for this sampling, each uplink includes 6 bytes DATA
427 +So totally there will be 3 uplinks for this sampling, each uplink include 8 bytes DATA
493 493  
494 -DATA1=RETURN1 Valid Value = 20 20 0a 33 90 41
429 +DATA1=RETURN1 Valid Value + the first two of Valid value of RETURN10= **20 20 0a 33 90 41 02 aa**
495 495  
496 -DATA2=1^^st^^ ~~ 6^^th^^ byte of Valid value of RETURN10= 02 aa 05 81 0a 20
431 +DATA2=3^^rd^^ ~~ 10^^th^^ byte of Valid value of RETURN10= **05 81 0a 20 20 20 20 2d**
497 497  
498 -DATA3=7^^th^^ ~~ 11^^th^^ bytes of Valid value of RETURN10 = 20 20 20 2d 30
433 +DATA3=the rest of Valid value of RETURN10= **30**
499 499  
500 500  
436 +(% style="color:red" %)Notice: In firmware v1.3, the Max bytes has been changed according to the max bytes in different Frequency Bands for lowest SF. As below:
501 501  
502 -Below are the uplink payloads:
438 + ~* For AU915/AS923 bands, if UplinkDwell time=0, max 51 bytes for each uplink.
503 503  
504 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image021.png]]
440 + * For AU915/AS923 bands, if UplinkDwell time=0, max 11 bytes for each uplink.
505 505  
442 + * For US915 band, max 11 bytes for each uplink.
506 506  
507 -Notice: the Max bytes is according to the max support bytes in different Frequency Bands for lowest SF. As below:
444 + ~* For all other bands: max 51 bytes for each uplink.
508 508  
509 - ~* For AU915/AS923 bands, if UplinkDwell time=0, max 51 bytes for each uplink ( so 51 -5 = 46 max valid date)
510 510  
511 - * For AU915/AS923 bands, if UplinkDwell time=1, max 11 bytes for each uplink ( so 11 -5 = 6 max valid date).
447 +Below are the uplink payloads:
512 512  
513 - * For US915 band, max 11 bytes for each uplink ( so 11 -5 = 6 max valid date).
449 +[[image:1654157178836-407.png]]
514 514  
515 - ~* For all other bands: max 51 bytes for each uplink  ( so 51 -5 = 46 max valid date).
516 516  
452 +=== 3.3.5 Uplink on demand ===
517 517  
454 +Except uplink periodically, RS485-LN is able to uplink on demand. The server send downlink command to RS485-LN and RS485 will uplink data base on the command.
518 518  
519 -1.
520 -11.
521 -111. Uplink on demand
522 -
523 -Except uplink periodically, RS485-BL is able to uplink on demand. The server sends downlink command to RS485-BL and RS485 will uplink data base on the command.
524 -
525 525  Downlink control command:
526 526  
527 -[[0x08 command>>path:#downlink_08]]: Poll an uplink with current command set in RS485-BL.
458 +**0x08 command**: Poll an uplink with current command set in RS485-LN.
528 528  
529 -[[0xA8 command>>path:#downlink_A8]]: Send a command to RS485-BL and uplink the output from sensors.
460 +**0xA8 command**: Send a command to RS485-LN and uplink the output from sensors.
530 530  
531 531  
532 532  
533 -1.
534 -11.
535 -111. Uplink on Interrupt
464 +=== 3.3.6 Uplink on Interrupt ===
536 536  
537 -Put the interrupt sensor between 3.3v_out and GPIO ext.[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image022.png]]
466 +RS485-LN support external Interrupt uplink since hardware v1.2 release.
538 538  
539 -AT+INTMOD=0  Disable Interrupt
468 +[[image:1654157342174-798.png]]
540 540  
541 -AT+INTMOD=1  Interrupt trigger by rising or falling edge.
470 +Connect the Interrupt pin to RS485-LN INT port and connect the GND pin to V- port. When there is a high voltage (Max 24v) on INT pin. Device will send an uplink packet.
542 542  
543 -AT+INTMOD=2  Interrupt trigger by falling edge. ( Default Value)
544 544  
545 -AT+INTMOD=3  Interrupt trigger by rising edge.
546 -
547 -
548 548  1.
549 549  11. Uplink Payload
550 550  
1653269403619-508.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +27.8 KB
Content
1653269438444-278.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +26.6 KB
Content
1653269551753-223.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +138.7 KB
Content
1653269568276-930.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +131.4 KB
Content
1653269593172-426.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +142.6 KB
Content
1653269618463-608.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +27.7 KB
Content
1653269759169-150.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +294.0 KB
Content
1653269916228-732.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +143.3 KB
Content
1653270130359-810.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +197.8 KB
Content
1654157178836-407.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +179.9 KB
Content
1654157342174-798.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +31.9 KB
Content
image-20220602153621-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +23.4 KB
Content
image-20220602153621-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +22.2 KB
Content
image-20220602153621-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +22.3 KB
Content
image-20220602155039-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +24.6 KB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0