<
From version < 22.6 >
edited by Xiaoling
on 2022/05/23 09:17
To version < 32.2 >
edited by Xiaoling
on 2022/06/02 15:22
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -18,19 +18,21 @@
18 18  
19 19  (((
20 20  (((
21 -The Dragino RS485-LN is a RS485 to LoRaWAN Converter. It converts the RS485 signal into LoRaWAN wireless signal which simplify the IoT installation and reduce the installation/maintaining cost.
21 +The Dragino RS485-LN is a **RS485 to LoRaWAN Converter**. It converts the RS485 signal into LoRaWAN wireless signal which simplify the IoT installation and reduce the installation/maintaining cost.
22 22  )))
23 23  
24 24  (((
25 -RS485-LN allows user to monitor / control RS485 devices and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
25 +RS485-LN allows user to **monitor / control RS485 devices** and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
26 26  )))
27 27  
28 28  (((
29 -For data uplink, RS485-LN sends user-defined commands to RS485 devices and gets the return from the RS485 devices. RS485-LN will process these returns according to user-define rules to get the final payload and upload to LoRaWAN server.
29 +**For data uplink**, RS485-LN sends user-defined commands to RS485 devices and gets the return from the RS485 devices. RS485-LN will process these returns according to user-define rules to get the final payload and upload to LoRaWAN server.
30 30  )))
31 31  
32 32  (((
33 -For data downlink, RS485-LN runs in LoRaWAN Class C. When there downlink commands from LoRaWAN server, RS485-LN will forward the commands from LoRaWAN server to RS485 devices.
33 +**For data downlink**, RS485-LN runs in LoRaWAN Class C. When there downlink commands from LoRaWAN server, RS485-LN will forward the commands from LoRaWAN server to RS485 devices.
34 +
35 +**Demo Dashboard for RS485-LN** connect to two energy meters: [[https:~~/~~/app.datacake.de/dashboard/d/58844a26-378d-4c5a-aaf5-b5b5b153447a>>url:https://app.datacake.de/dashboard/d/58844a26-378d-4c5a-aaf5-b5b5b153447a]]
34 34  )))
35 35  )))
36 36  
... ... @@ -269,12 +269,10 @@
269 269  === 3.3.2 Configure sensors ===
270 270  
271 271  (((
272 -Some sensors might need to configure before normal operation. User can configure such sensor via PC or through RS485-BL AT Commands (% style="color:#4f81bd" %)**AT+CFGDEV**.
273 -)))
274 -
275 275  (((
276 -When user issue an (% style="color:#4f81bd" %)**AT+CFGDEV**(%%) command, Each (% style="color:#4f81bd" %)**AT+CFGDEV**(%%) equals to send a command to the RS485 or TTL sensors. This command will only run when user input it and won’t run during each sampling.
275 +Some sensors might need to configure before normal operation. User can configure such sensor via PC and RS485 adapter or through RS485-LN AT Commands (% style="color:#4f81bd" %)**AT+CFGDEV**(%%). Each (% style="color:#4f81bd" %)**AT+CFGDEV **(%%)equals to send a RS485 command to sensors. This command will only run when user input it and won’t run during each sampling.
277 277  )))
277 +)))
278 278  
279 279  (% border="1" style="background-color:#ffffcc; color:green; width:806px" %)
280 280  |**AT Commands**|(% style="width:418px" %)**Description**|(% style="width:256px" %)**Example**
... ... @@ -286,8 +286,6 @@
286 286  mm: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command
287 287  )))|(% style="width:256px" %)AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m
288 288  
289 -Detail of AT+CFGDEV command see [[AT+CFGDEV detail>>path:#AT_CFGDEV]].
290 -
291 291  === 3.3.3 Configure read commands for each sampling ===
292 292  
293 293  (((
... ... @@ -369,11 +369,17 @@
369 369  **m: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command**
370 370  )))
371 371  
370 +(((
372 372  For example, if we have a RS485 sensor. The command to get sensor value is: 01 03 0B B8 00 02 46 0A. Where 01 03 0B B8 00 02 is the Modbus command to read the register 0B B8 where stored the sensor value. The 46 0A is the CRC-16/MODBUS which calculate manually.
372 +)))
373 373  
374 +(((
374 374  In the RS485-BL, we should use this command AT+COMMAND1=01 03 0B B8 00 02,1 for the same.
376 +)))
375 375  
378 +(((
376 376  **AT+SEARCHx**: This command defines how to handle the return from AT+COMMANDx.
380 +)))
377 377  
378 378  (% border="1" class="table-bordered" %)
379 379  |(((
... ... @@ -385,26 +385,24 @@
385 385  
386 386  )))
387 387  
388 -Examples:
392 +**Examples:**
389 389  
390 -1. For a return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
394 +~1. For a return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
391 391  
392 392  If we set AT+SEARCH1=1,1E 56 34.      (max 5 bytes for prefix)
393 393  
394 -The valid data will be all bytes after 1E 56 34 , so it is 2e 30 58 5f 36 41 30 31 00 49
398 +The valid data will be all bytes after 1E 56 34 , so it is (% style="background-color:yellow" %)** 2e 30 58 5f 36 41 30 31 00 49**
395 395  
396 -[[image:1652954654347-831.png]]
400 +[[image:1653269403619-508.png]]
397 397  
402 +2. For a return string from AT+COMMAND1:  16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
398 398  
399 -1. For a return string from AT+COMMAND1:  16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
400 -
401 401  If we set AT+SEARCH1=2, 1E 56 34+31 00 49
402 402  
403 -Device will search the bytes between 1E 56 34 and 31 00 49. So it is 2e 30 58 5f 36 41 30
406 +Device will search the bytes between 1E 56 34 and 31 00 49. So it is (% style="background-color:yellow" %)** 2e 30 58 5f 36 41 30**
404 404  
405 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image014.png]]
408 +[[image:1653269438444-278.png]]
406 406  
407 -
408 408  **AT+DATACUTx : **This command defines how to handle the return from AT+COMMANDx, max return length is 45 bytes.
409 409  
410 410  |(((
... ... @@ -419,94 +419,95 @@
419 419  
420 420  * Grab bytes:
421 421  
422 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image015.png]]
424 +[[image:1653269551753-223.png||height="311" width="717"]]
423 423  
424 424  * Grab a section.
425 425  
426 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image016.png]]
428 +[[image:1653269568276-930.png||height="325" width="718"]]
427 427  
428 428  * Grab different sections.
429 429  
430 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image017.png]]
432 +[[image:1653269593172-426.png||height="303" width="725"]]
431 431  
434 +(% style="color:red" %)**Note:**
432 432  
433 -Note:
434 -
435 435  AT+SEARCHx and AT+DATACUTx can be used together, if both commands are set, RS485-BL will first process AT+SEARCHx on the return string and get a temporary string, and then process AT+DATACUTx on this temporary string to get the final payload. In this case, AT+DATACUTx need to set to format AT+DATACUTx=0,xx,xx where the return bytes set to 0.
436 436  
437 437  Example:
438 438  
439 -AT+COMMAND1=11 01 1E D0,0
440 +(% style="color:red" %)AT+COMMAND1=11 01 1E D0,0
440 440  
441 -AT+SEARCH1=1,1E 56 34
442 +(% style="color:red" %)AT+SEARCH1=1,1E 56 34
442 442  
443 -AT+DATACUT1=0,2,1~~5
444 +(% style="color:red" %)AT+DATACUT1=0,2,1~~5
444 444  
445 -Return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
446 +(% style="color:red" %)Return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
446 446  
447 -String after SEARCH command: 2e 30 58 5f 36 41 30 31 00 49
448 +(% style="color:red" %)String after SEARCH command: 2e 30 58 5f 36 41 30 31 00 49
448 448  
449 -Valid payload after DataCUT command: 2e 30 58 5f 36
450 +(% style="color:red" %)Valid payload after DataCUT command: 2e 30 58 5f 36
450 450  
451 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image018.png]]
452 +[[image:1653269618463-608.png]]
452 452  
454 +=== 3.3.4 Compose the uplink payload ===
453 453  
454 -
455 -
456 -1.
457 -11.
458 -111. Compose the uplink payload
459 -
456 +(((
460 460  Through AT+COMMANDx and AT+DATACUTx we got valid value from each RS485 commands, Assume these valid value are RETURN1, RETURN2, .., to RETURNx. The next step is how to compose the LoRa Uplink Payload by these RETURNs. The command is **AT+DATAUP.**
458 +)))
461 461  
460 +(((
461 +(% style="color:#4f81bd" %)**Examples: AT+DATAUP=0**
462 +)))
462 462  
463 -**Examples: AT+DATAUP=0**
464 +(((
465 +Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**A SIGNLE UPLINK**.
466 +)))
464 464  
465 -Compose the uplink payload with value returns in sequence and send with **A SIGNLE UPLINK**.
466 -
468 +(((
467 467  Final Payload is
470 +)))
468 468  
469 -Battery Info+PAYVER + VALID Value from RETURN1 + Valid Value from RETURN2 + … + RETURNx
472 +(((
473 +(% style="color:#4f81bd" %)**Battery Info+PAYVER + VALID Value from RETURN1 + Valid Value from RETURN2 + … + RETURNx**
474 +)))
470 470  
476 +(((
471 471  Where PAYVER is defined by AT+PAYVER, below is an example screen shot.
478 +)))
472 472  
473 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image019.png]]
480 +[[image:1653269759169-150.png||height="513" width="716"]]
474 474  
482 +(% style="color:#4f81bd" %)**Examples: AT+DATAUP=1**
475 475  
484 +Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**Multiply UPLINKs**.
476 476  
477 -**Examples: AT+DATAUP=1**
478 -
479 -Compose the uplink payload with value returns in sequence and send with **Multiply UPLINKs**.
480 -
481 481  Final Payload is
482 482  
483 -Battery Info+PAYVER + PAYLOAD COUNT + PAYLOAD# + DATA
488 +(% style="color:#4f81bd" %)**Battery Info+PAYVER + PAYLOAD COUNT + PAYLOAD# + DATA**
484 484  
485 485  1. Battery Info (2 bytes): Battery voltage
486 486  1. PAYVER (1 byte): Defined by AT+PAYVER
487 487  1. PAYLOAD COUNT (1 byte): Total how many uplinks of this sampling.
488 488  1. PAYLOAD# (1 byte): Number of this uplink. (from 0,1,2,3…,to PAYLOAD COUNT)
489 -1. DATA: Valid value: max 6 bytes(US915 version here, [[Notice*!>>path:#max_byte]]) for each uplink so each uplink <= 11 bytes. For the last uplink, DATA will might less than 6 bytes
494 +1. DATA: Valid value: max 6 bytes(US915 version here, Notice*!) for each uplink so each uplink <= 11 bytes. For the last uplink, DATA will might less than 6 bytes
490 490  
491 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
496 +[[image:1653269916228-732.png||height="433" width="711"]]
492 492  
493 493  
494 494  So totally there will be 3 uplinks for this sampling, each uplink includes 6 bytes DATA
495 495  
496 -DATA1=RETURN1 Valid Value = 20 20 0a 33 90 41
501 +DATA1=RETURN1 Valid Value = (% style="background-color:green; color:white" %)20 20 0a 33 90 41
497 497  
498 -DATA2=1^^st^^ ~~ 6^^th^^ byte of Valid value of RETURN10= 02 aa 05 81 0a 20
503 +DATA2=1^^st^^ ~~ 6^^th^^ byte of Valid value of RETURN10=(% style="background-color:green; color:white" %) 02 aa 05 81 0a 20
499 499  
500 -DATA3=7^^th^^ ~~ 11^^th^^ bytes of Valid value of RETURN10 = 20 20 20 2d 30
505 +DATA3=7^^th^^ ~~ 11^^th^^ bytes of Valid value of RETURN10 = (% style="background-color:green; color:white" %)20 20 20 2d 30
501 501  
502 -
503 -
504 504  Below are the uplink payloads:
505 505  
506 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image021.png]]
509 +[[image:1653270130359-810.png]]
507 507  
508 508  
509 -Notice: the Max bytes is according to the max support bytes in different Frequency Bands for lowest SF. As below:
512 +(% style="color:red" %)**Notice: the Max bytes is according to the max support bytes in different Frequency Bands for lowest SF. As below:**
510 510  
511 511   ~* For AU915/AS923 bands, if UplinkDwell time=0, max 51 bytes for each uplink ( so 51 -5 = 46 max valid date)
512 512  
... ... @@ -516,12 +516,8 @@
516 516  
517 517   ~* For all other bands: max 51 bytes for each uplink  ( so 51 -5 = 46 max valid date).
518 518  
522 +=== 3.3.5 Uplink on demand ===
519 519  
520 -
521 -1.
522 -11.
523 -111. Uplink on demand
524 -
525 525  Except uplink periodically, RS485-BL is able to uplink on demand. The server sends downlink command to RS485-BL and RS485 will uplink data base on the command.
526 526  
527 527  Downlink control command:
1653269403619-508.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +27.8 KB
Content
1653269438444-278.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +26.6 KB
Content
1653269551753-223.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +138.7 KB
Content
1653269568276-930.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +131.4 KB
Content
1653269593172-426.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +142.6 KB
Content
1653269618463-608.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +27.7 KB
Content
1653269759169-150.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +294.0 KB
Content
1653269916228-732.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +143.3 KB
Content
1653270130359-810.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +197.8 KB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0