<
From version < 22.4 >
edited by Xiaoling
on 2022/05/23 09:15
To version < 38.2 >
edited by Xiaoling
on 2022/06/02 16:10
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -18,26 +18,30 @@
18 18  
19 19  (((
20 20  (((
21 -The Dragino RS485-LN is a RS485 to LoRaWAN Converter. It converts the RS485 signal into LoRaWAN wireless signal which simplify the IoT installation and reduce the installation/maintaining cost.
21 +The Dragino RS485-LN is a (% style="color:blue" %)**RS485 to LoRaWAN Converter**(%%). It converts the RS485 signal into LoRaWAN wireless signal which simplify the IoT installation and reduce the installation/maintaining cost.
22 22  )))
23 23  
24 24  (((
25 -RS485-LN allows user to monitor / control RS485 devices and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
25 +RS485-LN allows user to (% style="color:blue" %)**monitor / control RS485 devices**(%%) and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
26 26  )))
27 27  
28 28  (((
29 -For data uplink, RS485-LN sends user-defined commands to RS485 devices and gets the return from the RS485 devices. RS485-LN will process these returns according to user-define rules to get the final payload and upload to LoRaWAN server.
29 +(% style="color:blue" %)**For data uplink**(%%), RS485-LN sends user-defined commands to RS485 devices and gets the return from the RS485 devices. RS485-LN will process these returns according to user-define rules to get the final payload and upload to LoRaWAN server.
30 30  )))
31 31  
32 32  (((
33 -For data downlink, RS485-LN runs in LoRaWAN Class C. When there downlink commands from LoRaWAN server, RS485-LN will forward the commands from LoRaWAN server to RS485 devices.
33 +(% style="color:blue" %)**For data downlink**(%%), RS485-LN runs in LoRaWAN Class C. When there downlink commands from LoRaWAN server, RS485-LN will forward the commands from LoRaWAN server to RS485 devices.
34 +
35 +(% style="color:blue" %)**Demo Dashboard for RS485-LN**(%%) connect to two energy meters: [[https:~~/~~/app.datacake.de/dashboard/d/58844a26-378d-4c5a-aaf5-b5b5b153447a>>url:https://app.datacake.de/dashboard/d/58844a26-378d-4c5a-aaf5-b5b5b153447a]]
34 34  )))
35 35  )))
36 36  
37 37  [[image:1653267211009-519.png||height="419" width="724"]]
38 38  
41 +
39 39  == 1.2 Specifications ==
40 40  
44 +
41 41  **Hardware System:**
42 42  
43 43  * STM32L072CZT6 MCU
... ... @@ -44,8 +44,6 @@
44 44  * SX1276/78 Wireless Chip 
45 45  * Power Consumption (exclude RS485 device):
46 46  ** Idle: 32mA@12v
47 -
48 -*
49 49  ** 20dB Transmit: 65mA@12v
50 50  
51 51  **Interface for Model:**
... ... @@ -98,6 +98,7 @@
98 98  
99 99  [[RS485-LN Image files – Download link and Change log>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/]]
100 100  
103 +
101 101  == 1.6 Hardware Change log ==
102 102  
103 103  (((
... ... @@ -105,6 +105,8 @@
105 105  v1.2: Add External Interrupt Pin.
106 106  
107 107  v1.0: Release
111 +
112 +
108 108  )))
109 109  )))
110 110  
... ... @@ -121,6 +121,8 @@
121 121  )))
122 122  
123 123  [[image:1653268091319-405.png]]
129 +
130 +
124 124  )))
125 125  
126 126  = 3. Operation Mode =
... ... @@ -129,6 +129,8 @@
129 129  
130 130  (((
131 131  The RS485-LN is configured as LoRaWAN OTAA Class C mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the RS485-LN. It will auto join the network via OTAA.
139 +
140 +
132 132  )))
133 133  
134 134  == 3.2 Example to join LoRaWAN network ==
... ... @@ -137,10 +137,15 @@
137 137  
138 138  [[image:1653268155545-638.png||height="334" width="724"]]
139 139  
149 +
140 140  (((
151 +(((
141 141  The RS485-LN in this example connected to two RS485 devices for demonstration, user can connect to other RS485 devices via the same method. The connection is as below:
153 +)))
142 142  
155 +(((
143 143  485A+ and 485B- of the sensor are connected to RS485A and RA485B of RS485-LN respectively.
157 +)))
144 144  
145 145  [[image:1653268227651-549.png||height="592" width="720"]]
146 146  
... ... @@ -192,6 +192,7 @@
192 192  
193 193  [[image:1652953568895-172.png||height="232" width="724"]]
194 194  
209 +
195 195  == 3.3 Configure Commands to read data ==
196 196  
197 197  (((
... ... @@ -201,36 +201,28 @@
201 201  
202 202  (((
203 203  (% style="color:red" %)Note: below description and commands are for firmware version >v1.1, if you have firmware version v1.0. Please check the [[user manual v1.0>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/&file=RS485-LN_UserManual_v1.0.1.pdf]] or upgrade the firmware to v1.1
219 +
220 +
204 204  )))
205 205  )))
206 206  
207 207  === 3.3.1 onfigure UART settings for RS485 or TTL communication ===
208 208  
209 -RS485-BL can connect to either RS485 sensors or TTL sensor. User need to specify what type of sensor need to connect.
226 +To use RS485-LN to read data from RS485 sensors, connect the RS485-LN A/B traces to the sensors. And user need to make sure RS485-LN use the match UART setting to access the sensors. The related commands for UART settings are:
210 210  
211 -**~1. RS485-MODBUS mode:**
212 -
213 -AT+MOD=1 ~/~/ Support RS485-MODBUS type sensors. User can connect multiply RS485 , Modbus sensors to the A / B pins.
214 -
215 -**2. TTL mode:**
216 -
217 -AT+MOD=2 ~/~/ Support TTL Level sensors, User can connect one TTL Sensor to the TXD/RXD/GND pins.
218 -
219 -RS485-BL default UART settings is **9600, no parity, stop bit 1**. If the sensor has a different settings, user can change the RS485-BL setting to match.
220 -
221 -(% border="1" style="background-color:#ffffcc; color:green; width:795px" %)
222 -|(((
228 +(% border="1" style="background-color:#ffffcc; color:green; width:782px" %)
229 +|(% style="width:128px" %)(((
223 223  **AT Commands**
224 -)))|(% style="width:285px" %)(((
231 +)))|(% style="width:305px" %)(((
225 225  **Description**
226 -)))|(% style="width:347px" %)(((
233 +)))|(% style="width:346px" %)(((
227 227  **Example**
228 228  )))
229 -|(((
236 +|(% style="width:128px" %)(((
230 230  AT+BAUDR
231 -)))|(% style="width:285px" %)(((
238 +)))|(% style="width:305px" %)(((
232 232  Set the baud rate (for RS485 connection). Default Value is: 9600.
233 -)))|(% style="width:347px" %)(((
240 +)))|(% style="width:346px" %)(((
234 234  (((
235 235  AT+BAUDR=9600
236 236  )))
... ... @@ -239,18 +239,12 @@
239 239  Options: (1200,2400,4800,14400,19200,115200)
240 240  )))
241 241  )))
242 -|(((
249 +|(% style="width:128px" %)(((
243 243  AT+PARITY
244 -)))|(% style="width:285px" %)(((
245 -(((
251 +)))|(% style="width:305px" %)(((
246 246  Set UART parity (for RS485 connection)
247 -)))
248 -
253 +)))|(% style="width:346px" %)(((
249 249  (((
250 -Default Value is: no parity.
251 -)))
252 -)))|(% style="width:347px" %)(((
253 -(((
254 254  AT+PARITY=0
255 255  )))
256 256  
... ... @@ -258,17 +258,17 @@
258 258  Option: 0: no parity, 1: odd parity, 2: even parity
259 259  )))
260 260  )))
261 -|(((
262 +|(% style="width:128px" %)(((
262 262  AT+STOPBIT
263 -)))|(% style="width:285px" %)(((
264 +)))|(% style="width:305px" %)(((
264 264  (((
265 265  Set serial stopbit (for RS485 connection)
266 266  )))
267 267  
268 268  (((
269 -Default Value is: 1bit.
270 +
270 270  )))
271 -)))|(% style="width:347px" %)(((
272 +)))|(% style="width:346px" %)(((
272 272  (((
273 273  AT+STOPBIT=0 for 1bit
274 274  )))
... ... @@ -285,12 +285,10 @@
285 285  === 3.3.2 Configure sensors ===
286 286  
287 287  (((
288 -Some sensors might need to configure before normal operation. User can configure such sensor via PC or through RS485-BL AT Commands (% style="color:#4f81bd" %)**AT+CFGDEV**.
289 -)))
290 -
291 291  (((
292 -When user issue an (% style="color:#4f81bd" %)**AT+CFGDEV**(%%) command, Each (% style="color:#4f81bd" %)**AT+CFGDEV**(%%) equals to send a command to the RS485 or TTL sensors. This command will only run when user input it and won’t run during each sampling.
290 +Some sensors might need to configure before normal operation. User can configure such sensor via PC and RS485 adapter or through RS485-LN AT Commands (% style="color:#4f81bd" %)**AT+CFGDEV**(%%). Each (% style="color:#4f81bd" %)**AT+CFGDEV **(%%)equals to send a RS485 command to sensors. This command will only run when user input it and won’t run during each sampling.
293 293  )))
292 +)))
294 294  
295 295  (% border="1" style="background-color:#ffffcc; color:green; width:806px" %)
296 296  |**AT Commands**|(% style="width:418px" %)**Description**|(% style="width:256px" %)**Example**
... ... @@ -302,82 +302,37 @@
302 302  mm: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command
303 303  )))|(% style="width:256px" %)AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m
304 304  
305 -Detail of AT+CFGDEV command see [[AT+CFGDEV detail>>path:#AT_CFGDEV]].
306 -
307 307  === 3.3.3 Configure read commands for each sampling ===
308 308  
309 309  (((
310 -RS485-BL is a battery powered device; it will sleep most of time. And wake up on each period and read RS485 / TTL sensor data and uplink.
311 -)))
307 +During each sampling, we need confirm what commands we need to send to the RS485 sensors to read data. After the RS485 sensors send back the value, it normally include some bytes and we only need a few from them for a shorten payload.
312 312  
313 -(((
314 -During each sampling, we need to confirm what commands we need to send to the sensors to read data. After the RS485/TTL sensors send back the value, it normally includes some bytes and we only need a few from them for a shorten payload.
315 -)))
316 -
317 -(((
318 318  To save the LoRaWAN network bandwidth, we might need to read data from different sensors and combine their valid value into a short payload.
319 -)))
320 320  
321 -(((
322 322  This section describes how to achieve above goals.
323 -)))
324 324  
325 -(((
326 -During each sampling, the RS485-BL can support 15 commands to read sensors. And combine the return to one or several uplink payloads.
327 -)))
313 +During each sampling, the RS485-LN can support 15 commands to read sensors. And combine the return to one or several uplink payloads.
328 328  
329 -(((
330 -**Command from RS485-BL to Sensor:**
331 -)))
332 332  
333 -(((
334 -RS485-BL can send out pre-set max 15 strings via **AT+COMMAD1**, **ATCOMMAND2**,…, to **AT+COMMANDF** . All commands are of same grammar.
335 -)))
316 +**Each RS485 commands include two parts:**
336 336  
337 -(((
338 -**Handle return from sensors to RS485-BL**:
339 -)))
318 +~1. What commands RS485-LN will send to the RS485 sensors. There are total 15 commands from **AT+COMMAD1**, **ATCOMMAND2**,…, to **AT+COMMANDF**. All commands are of same grammar.
340 340  
341 -(((
342 -After RS485-BL send out a string to sensor, RS485-BL will wait for the return from RS485 or TTL sensor. And user can specify how to handle the return, by **AT+DATACUT or AT+SEARCH commands**
343 -)))
320 +2. How to get wanted value the from RS485 sensors returns from by 1). There are total 15 AT Commands to handle the return, commands are **AT+DATACUT1**,**AT+DATACUT2**,…, **AT+DATACUTF** corresponding to the commands from 1). All commands are of same grammar.
344 344  
345 -* (((
346 -**AT+DATACUT**
347 -)))
322 +3. Some RS485 device might has longer delay on reply, so user can use AT+CMDDL to set the timeout for getting reply after the RS485 command is sent. For example **AT+CMDDL1=1000** to send the open time to 1000ms
348 348  
349 -(((
350 -When the return value from sensor have fix length and we know which position the valid value we should get, we can use AT+DATACUT command.
351 -)))
352 352  
353 -* (((
354 -**AT+SEARCH**
355 -)))
356 -
357 -(((
358 -When the return value from sensor is dynamic length and we are not sure which bytes the valid data is, instead, we know what value the valid value following. We can use AT+SEARCH to search the valid value in the return string.
359 -)))
360 -
361 -(((
362 -**Define wait timeout:**
363 -)))
364 -
365 -(((
366 -Some RS485 device might has longer delay on reply, so user can use AT+CMDDL to set the timeout for getting reply after the RS485 command is sent. For example, AT+CMDDL1=1000 to send the open time to 1000ms
367 -)))
368 -
369 -(((
370 370  After we got the valid value from each RS485 commands, we need to combine them together with the command **AT+DATAUP**.
371 -)))
372 372  
373 -**Examples:**
374 374  
375 375  Below are examples for the how above AT Commands works.
376 376  
377 -**AT+COMMANDx : **This command will be sent to RS485/TTL devices during each sampling, Max command length is 14 bytes. The grammar is:
378 378  
379 -(% border="1" class="table-bordered" %)
380 -|(((
331 +**AT+COMMANDx : **This command will be sent to RS485 devices during each sampling, Max command length is 14 bytes. The grammar is:
332 +
333 +(% border="1" style="background-color:#4bacc6; color:white; width:499px" %)
334 +|(% style="width:496px" %)(((
381 381  **AT+COMMANDx=xx xx xx xx xx xx xx xx xx xx xx xx,m**
382 382  
383 383  **xx xx xx xx xx xx xx xx xx xx xx xx: The RS485 command to be sent**
... ... @@ -387,43 +387,13 @@
387 387  
388 388  For example, if we have a RS485 sensor. The command to get sensor value is: 01 03 0B B8 00 02 46 0A. Where 01 03 0B B8 00 02 is the Modbus command to read the register 0B B8 where stored the sensor value. The 46 0A is the CRC-16/MODBUS which calculate manually.
389 389  
390 -In the RS485-BL, we should use this command AT+COMMAND1=01 03 0B B8 00 02,1 for the same.
344 +In the RS485-LN, we should use this command AT+COMMAND1=01 03 0B B8 00 02,1 for the same.
391 391  
392 -**AT+SEARCHx**: This command defines how to handle the return from AT+COMMANDx.
393 393  
394 -(% border="1" class="table-bordered" %)
395 -|(((
396 -**AT+SEARCHx=aa,xx xx xx xx xx**
397 -
398 -* **aa: 1: prefix match mode; 2: prefix and suffix match mode**
399 -* **xx xx xx xx xx: match string. Max 5 bytes for prefix and 5 bytes for suffix**
400 -
401 -
402 -)))
403 -
404 -Examples:
405 -
406 -1. For a return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
407 -
408 -If we set AT+SEARCH1=1,1E 56 34.      (max 5 bytes for prefix)
409 -
410 -The valid data will be all bytes after 1E 56 34 , so it is 2e 30 58 5f 36 41 30 31 00 49
411 -
412 -[[image:1652954654347-831.png]]
413 -
414 -
415 -1. For a return string from AT+COMMAND1:  16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
416 -
417 -If we set AT+SEARCH1=2, 1E 56 34+31 00 49
418 -
419 -Device will search the bytes between 1E 56 34 and 31 00 49. So it is 2e 30 58 5f 36 41 30
420 -
421 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image014.png]]
422 -
423 -
424 424  **AT+DATACUTx : **This command defines how to handle the return from AT+COMMANDx, max return length is 45 bytes.
425 425  
426 -|(((
349 +(% border="1" style="background-color:#4bacc6; color:white; width:725px" %)
350 +|(% style="width:722px" %)(((
427 427  **AT+DATACUTx=a,b,c**
428 428  
429 429  * **a: length for the return of AT+COMMAND**
... ... @@ -431,138 +431,121 @@
431 431  * **c: define the position for valid value.  **
432 432  )))
433 433  
434 -Examples:
358 +**Examples:**
435 435  
436 436  * Grab bytes:
437 437  
438 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image015.png]]
362 +[[image:image-20220602153621-1.png]]
439 439  
364 +
440 440  * Grab a section.
441 441  
442 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image016.png]]
367 +[[image:image-20220602153621-2.png]]
443 443  
369 +
444 444  * Grab different sections.
445 445  
446 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image017.png]]
372 +[[image:image-20220602153621-3.png]]
447 447  
374 +
375 +)))
448 448  
449 -Note:
377 +=== 3.3.4 Compose the uplink payload ===
450 450  
451 -AT+SEARCHx and AT+DATACUTx can be used together, if both commands are set, RS485-BL will first process AT+SEARCHx on the return string and get a temporary string, and then process AT+DATACUTx on this temporary string to get the final payload. In this case, AT+DATACUTx need to set to format AT+DATACUTx=0,xx,xx where the return bytes set to 0.
452 -
453 -Example:
454 -
455 -AT+COMMAND1=11 01 1E D0,0
456 -
457 -AT+SEARCH1=1,1E 56 34
458 -
459 -AT+DATACUT1=0,2,1~~5
460 -
461 -Return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
462 -
463 -String after SEARCH command: 2e 30 58 5f 36 41 30 31 00 49
464 -
465 -Valid payload after DataCUT command: 2e 30 58 5f 36
466 -
467 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image018.png]]
468 -
469 -
470 -
471 -
472 -1.
473 -11.
474 -111. Compose the uplink payload
475 -
379 +(((
476 476  Through AT+COMMANDx and AT+DATACUTx we got valid value from each RS485 commands, Assume these valid value are RETURN1, RETURN2, .., to RETURNx. The next step is how to compose the LoRa Uplink Payload by these RETURNs. The command is **AT+DATAUP.**
477 477  
382 +
383 +)))
478 478  
479 -**Examples: AT+DATAUP=0**
385 +(((
386 +(% style="color:#037691" %)**Examples: AT+DATAUP=0**
480 480  
481 -Compose the uplink payload with value returns in sequence and send with **A SIGNLE UPLINK**.
388 +
389 +)))
482 482  
391 +(((
392 +Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**A SIGNLE UPLINK**.
393 +)))
394 +
395 +(((
483 483  Final Payload is
397 +)))
484 484  
485 -Battery Info+PAYVER + VALID Value from RETURN1 + Valid Value from RETURN2 + … + RETURNx
399 +(((
400 +(% style="color:#4f81bd" %)**Battery Info+PAYVER + VALID Value from RETURN1 + Valid Value from RETURN2 + … + RETURNx**
401 +)))
486 486  
403 +(((
487 487  Where PAYVER is defined by AT+PAYVER, below is an example screen shot.
405 +)))
488 488  
489 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image019.png]]
407 +[[image:1653269759169-150.png||height="513" width="716"]]
490 490  
491 491  
410 +(% style="color:#037691" %)**Examples: AT+DATAUP=1**
492 492  
493 -**Examples: AT+DATAUP=1**
494 494  
495 -Compose the uplink payload with value returns in sequence and send with **Multiply UPLINKs**.
413 +Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**Multiply UPLINKs**.
496 496  
497 497  Final Payload is
498 498  
499 -Battery Info+PAYVER + PAYLOAD COUNT + PAYLOAD# + DATA
417 +(% style="color:#4f81bd" %)**Battery Info+PAYVER + PAYLOAD COUNT + PAYLOAD# + DATA**
500 500  
501 -1. Battery Info (2 bytes): Battery voltage
502 -1. PAYVER (1 byte): Defined by AT+PAYVER
503 -1. PAYLOAD COUNT (1 byte): Total how many uplinks of this sampling.
504 -1. PAYLOAD# (1 byte): Number of this uplink. (from 0,1,2,3…,to PAYLOAD COUNT)
505 -1. DATA: Valid value: max 6 bytes(US915 version here, [[Notice*!>>path:#max_byte]]) for each uplink so each uplink <= 11 bytes. For the last uplink, DATA will might less than 6 bytes
419 +1. PAYVER: Defined by AT+PAYVER
420 +1. PAYLOAD COUNT: Total how many uplinks of this sampling.
421 +1. PAYLOAD#: Number of this uplink. (from 0,1,2,3…,to PAYLOAD COUNT)
422 +1. DATA: Valid value: max 8 bytes for each uplink so each uplink <= 11 bytes. For the last uplink, DATA will might less than 8 bytes
506 506  
507 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
424 +[[image:image-20220602155039-4.png]]
508 508  
509 509  
510 -So totally there will be 3 uplinks for this sampling, each uplink includes 6 bytes DATA
427 +So totally there will be 3 uplinks for this sampling, each uplink include 8 bytes DATA
511 511  
512 -DATA1=RETURN1 Valid Value = 20 20 0a 33 90 41
429 +DATA1=RETURN1 Valid Value + the first two of Valid value of RETURN10= **20 20 0a 33 90 41 02 aa**
513 513  
514 -DATA2=1^^st^^ ~~ 6^^th^^ byte of Valid value of RETURN10= 02 aa 05 81 0a 20
431 +DATA2=3^^rd^^ ~~ 10^^th^^ byte of Valid value of RETURN10= **05 81 0a 20 20 20 20 2d**
515 515  
516 -DATA3=7^^th^^ ~~ 11^^th^^ bytes of Valid value of RETURN10 = 20 20 20 2d 30
433 +DATA3=the rest of Valid value of RETURN10= **30**
517 517  
518 518  
436 +(% style="color:red" %)Notice: In firmware v1.3, the Max bytes has been changed according to the max bytes in different Frequency Bands for lowest SF. As below:
519 519  
520 -Below are the uplink payloads:
438 + ~* For AU915/AS923 bands, if UplinkDwell time=0, max 51 bytes for each uplink.
521 521  
522 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image021.png]]
440 + * For AU915/AS923 bands, if UplinkDwell time=0, max 11 bytes for each uplink.
523 523  
442 + * For US915 band, max 11 bytes for each uplink.
524 524  
525 -Notice: the Max bytes is according to the max support bytes in different Frequency Bands for lowest SF. As below:
444 + ~* For all other bands: max 51 bytes for each uplink.
526 526  
527 - ~* For AU915/AS923 bands, if UplinkDwell time=0, max 51 bytes for each uplink ( so 51 -5 = 46 max valid date)
528 528  
529 - * For AU915/AS923 bands, if UplinkDwell time=1, max 11 bytes for each uplink ( so 11 -5 = 6 max valid date).
447 +Below are the uplink payloads:
530 530  
531 - * For US915 band, max 11 bytes for each uplink ( so 11 -5 = 6 max valid date).
449 +[[image:1654157178836-407.png]]
532 532  
533 - ~* For all other bands: max 51 bytes for each uplink  ( so 51 -5 = 46 max valid date).
534 534  
452 +=== 3.3.5 Uplink on demand ===
535 535  
454 +Except uplink periodically, RS485-LN is able to uplink on demand. The server send downlink command to RS485-LN and RS485 will uplink data base on the command.
536 536  
537 -1.
538 -11.
539 -111. Uplink on demand
540 -
541 -Except uplink periodically, RS485-BL is able to uplink on demand. The server sends downlink command to RS485-BL and RS485 will uplink data base on the command.
542 -
543 543  Downlink control command:
544 544  
545 -[[0x08 command>>path:#downlink_08]]: Poll an uplink with current command set in RS485-BL.
458 +**0x08 command**: Poll an uplink with current command set in RS485-LN.
546 546  
547 -[[0xA8 command>>path:#downlink_A8]]: Send a command to RS485-BL and uplink the output from sensors.
460 +**0xA8 command**: Send a command to RS485-LN and uplink the output from sensors.
548 548  
549 549  
550 550  
551 -1.
552 -11.
553 -111. Uplink on Interrupt
464 +=== 3.3.6 Uplink on Interrupt ===
554 554  
555 -Put the interrupt sensor between 3.3v_out and GPIO ext.[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image022.png]]
466 +RS485-LN support external Interrupt uplink since hardware v1.2 release.
556 556  
557 -AT+INTMOD=0  Disable Interrupt
468 +[[image:1654157342174-798.png]]
558 558  
559 -AT+INTMOD=1  Interrupt trigger by rising or falling edge.
470 +Connect the Interrupt pin to RS485-LN INT port and connect the GND pin to V- port. When there is a high voltage (Max 24v) on INT pin. Device will send an uplink packet.
560 560  
561 -AT+INTMOD=2  Interrupt trigger by falling edge. ( Default Value)
562 562  
563 -AT+INTMOD=3  Interrupt trigger by rising edge.
564 -
565 -
566 566  1.
567 567  11. Uplink Payload
568 568  
1653269403619-508.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +27.8 KB
Content
1653269438444-278.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +26.6 KB
Content
1653269551753-223.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +138.7 KB
Content
1653269568276-930.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +131.4 KB
Content
1653269593172-426.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +142.6 KB
Content
1653269618463-608.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +27.7 KB
Content
1653269759169-150.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +294.0 KB
Content
1653269916228-732.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +143.3 KB
Content
1653270130359-810.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +197.8 KB
Content
1654157178836-407.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +179.9 KB
Content
1654157342174-798.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +31.9 KB
Content
image-20220602153621-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +23.4 KB
Content
image-20220602153621-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +22.2 KB
Content
image-20220602153621-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +22.3 KB
Content
image-20220602155039-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +24.6 KB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0