Changes for page RS485-LN – RS485 to LoRaWAN Converter User Manual
Last modified by Xiaoling on 2025/04/23 15:56
Summary
-
Page properties (1 modified, 0 added, 0 removed)
-
Attachments (0 modified, 15 added, 0 removed)
- 1653269403619-508.png
- 1653269438444-278.png
- 1653269551753-223.png
- 1653269568276-930.png
- 1653269593172-426.png
- 1653269618463-608.png
- 1653269759169-150.png
- 1653269916228-732.png
- 1653270130359-810.png
- 1654157178836-407.png
- 1654157342174-798.png
- image-20220602153621-1.png
- image-20220602153621-2.png
- image-20220602153621-3.png
- image-20220602155039-4.png
Details
- Page properties
-
- Content
-
... ... @@ -18,40 +18,42 @@ 18 18 19 19 ((( 20 20 ((( 21 -The Dragino RS485-LN is a RS485 to LoRaWAN Converter. It converts the RS485 signal into LoRaWAN wireless signal which simplify the IoT installation and reduce the installation/maintaining cost. 21 +The Dragino RS485-LN is a (% style="color:blue" %)**RS485 to LoRaWAN Converter**(%%). It converts the RS485 signal into LoRaWAN wireless signal which simplify the IoT installation and reduce the installation/maintaining cost. 22 22 ))) 23 23 24 24 ((( 25 -RS485-LN allows user to monitor / control RS485 devices and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on. 25 +RS485-LN allows user to (% style="color:blue" %)**monitor / control RS485 devices**(%%) and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on. 26 26 ))) 27 27 28 28 ((( 29 -For data uplink, RS485-LN sends user-defined commands to RS485 devices and gets the return from the RS485 devices. RS485-LN will process these returns according to user-define rules to get the final payload and upload to LoRaWAN server. 29 +(% style="color:blue" %)**For data uplink**(%%), RS485-LN sends user-defined commands to RS485 devices and gets the return from the RS485 devices. RS485-LN will process these returns according to user-define rules to get the final payload and upload to LoRaWAN server. 30 30 ))) 31 31 32 32 ((( 33 -For data downlink, RS485-LN runs in LoRaWAN Class C. When there downlink commands from LoRaWAN server, RS485-LN will forward the commands from LoRaWAN server to RS485 devices. 33 +(% style="color:blue" %)**For data downlink**(%%), RS485-LN runs in LoRaWAN Class C. When there downlink commands from LoRaWAN server, RS485-LN will forward the commands from LoRaWAN server to RS485 devices. 34 + 35 +(% style="color:blue" %)**Demo Dashboard for RS485-LN**(%%) connect to two energy meters: [[https:~~/~~/app.datacake.de/dashboard/d/58844a26-378d-4c5a-aaf5-b5b5b153447a>>url:https://app.datacake.de/dashboard/d/58844a26-378d-4c5a-aaf5-b5b5b153447a]] 34 34 ))) 35 35 ))) 36 36 37 37 [[image:1653267211009-519.png||height="419" width="724"]] 38 38 41 + 39 39 == 1.2 Specifications == 40 40 44 + 41 41 **Hardware System:** 42 42 43 43 * STM32L072CZT6 MCU 44 -* SX1276/78 Wireless Chip 48 +* SX1276/78 Wireless Chip 45 45 * Power Consumption (exclude RS485 device): 46 46 ** Idle: 32mA@12v 47 - 48 -* 49 49 ** 20dB Transmit: 65mA@12v 50 50 51 51 **Interface for Model:** 52 52 53 53 * RS485 54 -* Power Input 7~~ 24V DC. 56 +* Power Input 7~~ 24V DC. 55 55 56 56 **LoRa Spec:** 57 57 ... ... @@ -98,6 +98,7 @@ 98 98 99 99 [[RS485-LN Image files – Download link and Change log>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/]] 100 100 103 + 101 101 == 1.6 Hardware Change log == 102 102 103 103 ((( ... ... @@ -105,6 +105,8 @@ 105 105 v1.2: Add External Interrupt Pin. 106 106 107 107 v1.0: Release 111 + 112 + 108 108 ))) 109 109 ))) 110 110 ... ... @@ -121,6 +121,8 @@ 121 121 ))) 122 122 123 123 [[image:1653268091319-405.png]] 129 + 130 + 124 124 ))) 125 125 126 126 = 3. Operation Mode = ... ... @@ -129,6 +129,8 @@ 129 129 130 130 ((( 131 131 The RS485-LN is configured as LoRaWAN OTAA Class C mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the RS485-LN. It will auto join the network via OTAA. 139 + 140 + 132 132 ))) 133 133 134 134 == 3.2 Example to join LoRaWAN network == ... ... @@ -137,10 +137,15 @@ 137 137 138 138 [[image:1653268155545-638.png||height="334" width="724"]] 139 139 149 + 140 140 ((( 151 +((( 141 141 The RS485-LN in this example connected to two RS485 devices for demonstration, user can connect to other RS485 devices via the same method. The connection is as below: 153 +))) 142 142 155 +((( 143 143 485A+ and 485B- of the sensor are connected to RS485A and RA485B of RS485-LN respectively. 157 +))) 144 144 145 145 [[image:1653268227651-549.png||height="592" width="720"]] 146 146 ... ... @@ -187,44 +187,43 @@ 187 187 188 188 189 189 ((( 190 -**Step 2**: Power on RS485- BL and it will auto join to the TTN V3 network. After join success, it will start to upload message to TTN V3 and user can see in the panel.204 +**Step 2**: Power on RS485-LN and it will auto join to the TTN V3 network. After join success, it will start to upload message to TTN V3 and user can see in the panel. 191 191 ))) 192 192 193 193 [[image:1652953568895-172.png||height="232" width="724"]] 194 194 209 + 195 195 == 3.3 Configure Commands to read data == 196 196 197 197 ((( 198 -There are plenty of RS485 and TTL level devices in the market and each device has different command to read the valid data. To support these devices in flexible, RS485-BL supports flexible command set. User can use [[AT Commands or LoRaWAN Downlink>>path:#AT_COMMAND]] Command to configure how RS485-BL should read the sensor and how to handle the return from RS485 or TTL sensors. 213 +((( 214 +There are plenty of RS485 devices in the market and each device has different command to read the valid data. To support these devices in flexible, RS485-LN supports flexible command set. User can use [[AT Commands>>path:#AT_COMMAND]] or LoRaWAN Downlink Command to configure what commands RS485-LN should send for each sampling and how to handle the return from RS485 devices. 199 199 ))) 200 200 201 -=== 3.3.1 onfigure UART settings for RS485 or TTL communication === 217 +((( 218 +(% style="color:red" %)Note: below description and commands are for firmware version >v1.1, if you have firmware version v1.0. Please check the [[user manual v1.0>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/&file=RS485-LN_UserManual_v1.0.1.pdf]] or upgrade the firmware to v1.1 202 202 203 -RS485-BL can connect to either RS485 sensors or TTL sensor. User need to specify what type of sensor need to connect. 220 + 221 +))) 222 +))) 204 204 205 - **~1. RS485-MODBUSmode:**224 +=== 3.3.1 onfigure UART settings for RS485 or TTL communication === 206 206 207 - AT+MOD=1~/~/Support RS485-MODBUStype sensors.Usercanconnect multiplyRS485,Modbus sensorstotheA/Bpins.226 +To use RS485-LN to read data from RS485 sensors, connect the RS485-LN A/B traces to the sensors. And user need to make sure RS485-LN use the match UART setting to access the sensors. The related commands for UART settings are: 208 208 209 -**2. TTL mode:** 210 - 211 -AT+MOD=2 ~/~/ Support TTL Level sensors, User can connect one TTL Sensor to the TXD/RXD/GND pins. 212 - 213 -RS485-BL default UART settings is **9600, no parity, stop bit 1**. If the sensor has a different settings, user can change the RS485-BL setting to match. 214 - 215 -(% border="1" style="background-color:#ffffcc; color:green; width:795px" %) 216 -|((( 228 +(% border="1" style="background-color:#ffffcc; color:green; width:782px" %) 229 +|(% style="width:128px" %)((( 217 217 **AT Commands** 218 -)))|(% style="width: 285px" %)(((231 +)))|(% style="width:305px" %)((( 219 219 **Description** 220 -)))|(% style="width:34 7px" %)(((233 +)))|(% style="width:346px" %)((( 221 221 **Example** 222 222 ))) 223 -|((( 236 +|(% style="width:128px" %)((( 224 224 AT+BAUDR 225 -)))|(% style="width: 285px" %)(((238 +)))|(% style="width:305px" %)((( 226 226 Set the baud rate (for RS485 connection). Default Value is: 9600. 227 -)))|(% style="width:34 7px" %)(((240 +)))|(% style="width:346px" %)((( 228 228 ((( 229 229 AT+BAUDR=9600 230 230 ))) ... ... @@ -233,18 +233,12 @@ 233 233 Options: (1200,2400,4800,14400,19200,115200) 234 234 ))) 235 235 ))) 236 -|((( 249 +|(% style="width:128px" %)((( 237 237 AT+PARITY 238 -)))|(% style="width:285px" %)((( 239 -((( 251 +)))|(% style="width:305px" %)((( 240 240 Set UART parity (for RS485 connection) 241 -))) 242 - 253 +)))|(% style="width:346px" %)((( 243 243 ((( 244 -Default Value is: no parity. 245 -))) 246 -)))|(% style="width:347px" %)((( 247 -((( 248 248 AT+PARITY=0 249 249 ))) 250 250 ... ... @@ -252,17 +252,17 @@ 252 252 Option: 0: no parity, 1: odd parity, 2: even parity 253 253 ))) 254 254 ))) 255 -|((( 262 +|(% style="width:128px" %)((( 256 256 AT+STOPBIT 257 -)))|(% style="width: 285px" %)(((264 +)))|(% style="width:305px" %)((( 258 258 ((( 259 259 Set serial stopbit (for RS485 connection) 260 260 ))) 261 261 262 262 ((( 263 - DefaultValue is: 1bit.270 + 264 264 ))) 265 -)))|(% style="width:34 7px" %)(((272 +)))|(% style="width:346px" %)((( 266 266 ((( 267 267 AT+STOPBIT=0 for 1bit 268 268 ))) ... ... @@ -279,12 +279,10 @@ 279 279 === 3.3.2 Configure sensors === 280 280 281 281 ((( 282 -Some sensors might need to configure before normal operation. User can configure such sensor via PC or through RS485-BL AT Commands (% style="color:#4f81bd" %)**AT+CFGDEV**. 283 -))) 284 - 285 285 ((( 286 - When user issue an (% style="color:#4f81bd" %)**AT+CFGDEV**(%%)command,Each (% style="color:#4f81bd" %)**AT+CFGDEV**(%%)the RS485 or TTLsensors. This command will only run when user input it and won’t run during each sampling.290 +Some sensors might need to configure before normal operation. User can configure such sensor via PC and RS485 adapter or through RS485-LN AT Commands (% style="color:#4f81bd" %)**AT+CFGDEV**(%%). Each (% style="color:#4f81bd" %)**AT+CFGDEV **(%%)equals to send a RS485 command to sensors. This command will only run when user input it and won’t run during each sampling. 287 287 ))) 292 +))) 288 288 289 289 (% border="1" style="background-color:#ffffcc; color:green; width:806px" %) 290 290 |**AT Commands**|(% style="width:418px" %)**Description**|(% style="width:256px" %)**Example** ... ... @@ -296,82 +296,37 @@ 296 296 mm: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command 297 297 )))|(% style="width:256px" %)AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m 298 298 299 -Detail of AT+CFGDEV command see [[AT+CFGDEV detail>>path:#AT_CFGDEV]]. 300 - 301 301 === 3.3.3 Configure read commands for each sampling === 302 302 303 303 ((( 304 -RS485-BL is a battery powered device; it will sleep most of time. And wake up on each period and read RS485 / TTL sensor data and uplink. 305 -))) 307 +During each sampling, we need confirm what commands we need to send to the RS485 sensors to read data. After the RS485 sensors send back the value, it normally include some bytes and we only need a few from them for a shorten payload. 306 306 307 -((( 308 -During each sampling, we need to confirm what commands we need to send to the sensors to read data. After the RS485/TTL sensors send back the value, it normally includes some bytes and we only need a few from them for a shorten payload. 309 -))) 310 - 311 -((( 312 312 To save the LoRaWAN network bandwidth, we might need to read data from different sensors and combine their valid value into a short payload. 313 -))) 314 314 315 -((( 316 316 This section describes how to achieve above goals. 317 -))) 318 318 319 -((( 320 -During each sampling, the RS485-BL can support 15 commands to read sensors. And combine the return to one or several uplink payloads. 321 -))) 313 +During each sampling, the RS485-LN can support 15 commands to read sensors. And combine the return to one or several uplink payloads. 322 322 323 -((( 324 -**Command from RS485-BL to Sensor:** 325 -))) 326 326 327 -((( 328 -RS485-BL can send out pre-set max 15 strings via **AT+COMMAD1**, **ATCOMMAND2**,…, to **AT+COMMANDF** . All commands are of same grammar. 329 -))) 316 +**Each RS485 commands include two parts:** 330 330 331 -((( 332 -**Handle return from sensors to RS485-BL**: 333 -))) 318 +~1. What commands RS485-LN will send to the RS485 sensors. There are total 15 commands from **AT+COMMAD1**, **ATCOMMAND2**,…, to **AT+COMMANDF**. All commands are of same grammar. 334 334 335 -((( 336 -After RS485-BL send out a string to sensor, RS485-BL will wait for the return from RS485 or TTL sensor. And user can specify how to handle the return, by **AT+DATACUT or AT+SEARCH commands** 337 -))) 320 +2. How to get wanted value the from RS485 sensors returns from by 1). There are total 15 AT Commands to handle the return, commands are **AT+DATACUT1**,**AT+DATACUT2**,…, **AT+DATACUTF** corresponding to the commands from 1). All commands are of same grammar. 338 338 339 -* ((( 340 -**AT+DATACUT** 341 -))) 322 +3. Some RS485 device might has longer delay on reply, so user can use AT+CMDDL to set the timeout for getting reply after the RS485 command is sent. For example **AT+CMDDL1=1000** to send the open time to 1000ms 342 342 343 -((( 344 -When the return value from sensor have fix length and we know which position the valid value we should get, we can use AT+DATACUT command. 345 -))) 346 346 347 -* ((( 348 -**AT+SEARCH** 349 -))) 350 - 351 -((( 352 -When the return value from sensor is dynamic length and we are not sure which bytes the valid data is, instead, we know what value the valid value following. We can use AT+SEARCH to search the valid value in the return string. 353 -))) 354 - 355 -((( 356 -**Define wait timeout:** 357 -))) 358 - 359 -((( 360 -Some RS485 device might has longer delay on reply, so user can use AT+CMDDL to set the timeout for getting reply after the RS485 command is sent. For example, AT+CMDDL1=1000 to send the open time to 1000ms 361 -))) 362 - 363 -((( 364 364 After we got the valid value from each RS485 commands, we need to combine them together with the command **AT+DATAUP**. 365 -))) 366 366 367 -**Examples:** 368 368 369 369 Below are examples for the how above AT Commands works. 370 370 371 -**AT+COMMANDx : **This command will be sent to RS485/TTL devices during each sampling, Max command length is 14 bytes. The grammar is: 372 372 373 -(% border="1" class="table-bordered" %) 374 -|((( 331 +**AT+COMMANDx : **This command will be sent to RS485 devices during each sampling, Max command length is 14 bytes. The grammar is: 332 + 333 +(% border="1" style="background-color:#4bacc6; color:white; width:499px" %) 334 +|(% style="width:496px" %)((( 375 375 **AT+COMMANDx=xx xx xx xx xx xx xx xx xx xx xx xx,m** 376 376 377 377 **xx xx xx xx xx xx xx xx xx xx xx xx: The RS485 command to be sent** ... ... @@ -381,43 +381,13 @@ 381 381 382 382 For example, if we have a RS485 sensor. The command to get sensor value is: 01 03 0B B8 00 02 46 0A. Where 01 03 0B B8 00 02 is the Modbus command to read the register 0B B8 where stored the sensor value. The 46 0A is the CRC-16/MODBUS which calculate manually. 383 383 384 -In the RS485- BL, we should use this command AT+COMMAND1=01 03 0B B8 00 02,1 for the same.344 +In the RS485-LN, we should use this command AT+COMMAND1=01 03 0B B8 00 02,1 for the same. 385 385 386 -**AT+SEARCHx**: This command defines how to handle the return from AT+COMMANDx. 387 387 388 -(% border="1" class="table-bordered" %) 389 -|((( 390 -**AT+SEARCHx=aa,xx xx xx xx xx** 391 - 392 -* **aa: 1: prefix match mode; 2: prefix and suffix match mode** 393 -* **xx xx xx xx xx: match string. Max 5 bytes for prefix and 5 bytes for suffix** 394 - 395 - 396 -))) 397 - 398 -Examples: 399 - 400 -1. For a return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49 401 - 402 -If we set AT+SEARCH1=1,1E 56 34. (max 5 bytes for prefix) 403 - 404 -The valid data will be all bytes after 1E 56 34 , so it is 2e 30 58 5f 36 41 30 31 00 49 405 - 406 -[[image:1652954654347-831.png]] 407 - 408 - 409 -1. For a return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49 410 - 411 -If we set AT+SEARCH1=2, 1E 56 34+31 00 49 412 - 413 -Device will search the bytes between 1E 56 34 and 31 00 49. So it is 2e 30 58 5f 36 41 30 414 - 415 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image014.png]] 416 - 417 - 418 418 **AT+DATACUTx : **This command defines how to handle the return from AT+COMMANDx, max return length is 45 bytes. 419 419 420 -|((( 349 +(% border="1" style="background-color:#4bacc6; color:white; width:725px" %) 350 +|(% style="width:722px" %)((( 421 421 **AT+DATACUTx=a,b,c** 422 422 423 423 * **a: length for the return of AT+COMMAND** ... ... @@ -425,139 +425,122 @@ 425 425 * **c: define the position for valid value. ** 426 426 ))) 427 427 428 -Examples: 358 +**Examples:** 429 429 430 430 * Grab bytes: 431 431 432 -[[image: file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image015.png]]362 +[[image:image-20220602153621-1.png]] 433 433 364 + 434 434 * Grab a section. 435 435 436 -[[image: file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image016.png]]367 +[[image:image-20220602153621-2.png]] 437 437 369 + 438 438 * Grab different sections. 439 439 440 -[[image: file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image017.png]]372 +[[image:image-20220602153621-3.png]] 441 441 374 + 375 +))) 442 442 443 - Note:377 +=== 3.3.4 Compose the uplink payload === 444 444 445 -AT+SEARCHx and AT+DATACUTx can be used together, if both commands are set, RS485-BL will first process AT+SEARCHx on the return string and get a temporary string, and then process AT+DATACUTx on this temporary string to get the final payload. In this case, AT+DATACUTx need to set to format AT+DATACUTx=0,xx,xx where the return bytes set to 0. 446 - 447 -Example: 448 - 449 -AT+COMMAND1=11 01 1E D0,0 450 - 451 -AT+SEARCH1=1,1E 56 34 452 - 453 -AT+DATACUT1=0,2,1~~5 454 - 455 -Return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49 456 - 457 -String after SEARCH command: 2e 30 58 5f 36 41 30 31 00 49 458 - 459 -Valid payload after DataCUT command: 2e 30 58 5f 36 460 - 461 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image018.png]] 462 - 463 - 464 - 465 - 466 -1. 467 -11. 468 -111. Compose the uplink payload 469 - 379 +((( 470 470 Through AT+COMMANDx and AT+DATACUTx we got valid value from each RS485 commands, Assume these valid value are RETURN1, RETURN2, .., to RETURNx. The next step is how to compose the LoRa Uplink Payload by these RETURNs. The command is **AT+DATAUP.** 471 471 382 + 383 +))) 472 472 473 -**Examples: AT+DATAUP=0** 385 +((( 386 +(% style="color:#037691" %)**Examples: AT+DATAUP=0** 474 474 475 -Compose the uplink payload with value returns in sequence and send with **A SIGNLE UPLINK**. 388 + 389 +))) 476 476 391 +((( 392 +Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**A SIGNLE UPLINK**. 393 +))) 394 + 395 +((( 477 477 Final Payload is 397 +))) 478 478 479 -Battery Info+PAYVER + VALID Value from RETURN1 + Valid Value from RETURN2 + … + RETURNx 399 +((( 400 +(% style="color:#4f81bd" %)**Battery Info+PAYVER + VALID Value from RETURN1 + Valid Value from RETURN2 + … + RETURNx** 401 +))) 480 480 403 +((( 481 481 Where PAYVER is defined by AT+PAYVER, below is an example screen shot. 405 +))) 482 482 483 -[[image: file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image019.png]]407 +[[image:1653269759169-150.png||height="513" width="716"]] 484 484 485 485 410 +(% style="color:#037691" %)**Examples: AT+DATAUP=1** 486 486 487 -**Examples: AT+DATAUP=1** 488 488 489 -Compose the uplink payload with value returns in sequence and send with **Multiply UPLINKs**. 413 +Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**Multiply UPLINKs**. 490 490 491 491 Final Payload is 492 492 493 -Battery Info+PAYVER + PAYLOAD COUNT + PAYLOAD# + DATA 417 +(% style="color:#4f81bd" %)**Battery Info+PAYVER + PAYLOAD COUNT + PAYLOAD# + DATA** 494 494 495 -1. Battery Info (2 bytes): Battery voltage 496 -1. PAYVER (1 byte): Defined by AT+PAYVER 497 -1. PAYLOAD COUNT (1 byte): Total how many uplinks of this sampling. 498 -1. PAYLOAD# (1 byte): Number of this uplink. (from 0,1,2,3…,to PAYLOAD COUNT) 499 -1. DATA: Valid value: max 6 bytes(US915 version here, [[Notice*!>>path:#max_byte]]) for each uplink so each uplink <= 11 bytes. For the last uplink, DATA will might less than 6 bytes 419 +1. PAYVER: Defined by AT+PAYVER 420 +1. PAYLOAD COUNT: Total how many uplinks of this sampling. 421 +1. PAYLOAD#: Number of this uplink. (from 0,1,2,3…,to PAYLOAD COUNT) 422 +1. DATA: Valid value: max 8 bytes for each uplink so each uplink <= 11 bytes. For the last uplink, DATA will might less than 8 bytes 500 500 501 -[[image: file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]424 +[[image:image-20220602155039-4.png]] 502 502 503 503 504 -So totally there will be 3 uplinks for this sampling, each uplink include s6bytes DATA427 +So totally there will be 3 uplinks for this sampling, each uplink include 8 bytes DATA 505 505 506 -DATA1=RETURN1 Valid Value = 20 20 0a 33 90 41 429 +DATA1=RETURN1 Valid Value + the first two of Valid value of RETURN10= **20 20 0a 33 90 41 02 aa** 507 507 508 -DATA2= 1^^st^^ ~~6^^th^^ byte of Valid value of RETURN10= 02 aa 05 81 0a 20431 +DATA2=3^^rd^^ ~~ 10^^th^^ byte of Valid value of RETURN10= **05 81 0a 20 20 20 20 2d** 509 509 510 -DATA3= 7^^th^^~~ 11^^th^^ bytes of Valid value of RETURN1020 20 20 2d30433 +DATA3=the rest of Valid value of RETURN10= **30** 511 511 512 512 436 +(% style="color:red" %)Notice: In firmware v1.3, the Max bytes has been changed according to the max bytes in different Frequency Bands for lowest SF. As below: 513 513 514 - Beloware the uplinkpayloads:438 + ~* For AU915/AS923 bands, if UplinkDwell time=0, max 51 bytes for each uplink. 515 515 516 - [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image021.png]]440 + * For AU915/AS923 bands, if UplinkDwell time=0, max 11 bytes for each uplink. 517 517 442 + * For US915 band, max 11 bytes for each uplink. 518 518 519 - Notice:theMaxbytesis accordingtothe maxsupportbytesin differentFrequencyBands forlowest SF.As below:444 + ~* For all other bands: max 51 bytes for each uplink. 520 520 521 - ~* For AU915/AS923 bands, if UplinkDwell time=0, max 51 bytes for each uplink ( so 51 -5 = 46 max valid date) 522 522 523 - * ForAU915/AS923 bands, if UplinkDwelltime=1,max 11 bytes for eachuplink( so 11 -5 = 6 max valid date).447 +Below are the uplink payloads: 524 524 525 - * For US915 band,max 11 bytes for each uplink ( so11-5=6max valid date).449 +[[image:1654157178836-407.png]] 526 526 527 - ~* For all other bands: max 51 bytes for each uplink ( so 51 -5 = 46 max valid date). 528 528 452 +=== 3.3.5 Uplink on demand === 529 529 454 +Except uplink periodically, RS485-LN is able to uplink on demand. The server send downlink command to RS485-LN and RS485 will uplink data base on the command. 530 530 531 -1. 532 -11. 533 -111. Uplink on demand 534 - 535 -Except uplink periodically, RS485-BL is able to uplink on demand. The server sends downlink command to RS485-BL and RS485 will uplink data base on the command. 536 - 537 537 Downlink control command: 538 538 539 - [[0x08 command>>path:#downlink_08]]:Poll an uplink with current command set in RS485-BL.458 +**0x08 command**: Poll an uplink with current command set in RS485-LN. 540 540 541 - [[0xA8 command>>path:#downlink_A8]]:Send a command to RS485-BL and uplink the output from sensors.460 +**0xA8 command**: Send a command to RS485-LN and uplink the output from sensors. 542 542 543 543 544 544 545 -1. 546 -11. 547 -111. Uplink on Interrupt 464 +=== 3.3.6 Uplink on Interrupt === 548 548 549 - Put theinterruptsensorbetween3.3v_outand GPIOext.[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image022.png]]466 +RS485-LN support external Interrupt uplink since hardware v1.2 release. 550 550 551 - AT+INTMOD=0 DisableInterrupt468 +[[image:1654157342174-798.png]] 552 552 553 - AT+INTMOD=1Interrupt triggerbyrising orfallingedge.470 +Connect the Interrupt pin to RS485-LN INT port and connect the GND pin to V- port. When there is a high voltage (Max 24v) on INT pin. Device will send an uplink packet. 554 554 555 -AT+INTMOD=2 Interrupt trigger by falling edge. ( Default Value) 556 556 557 -AT+INTMOD=3 Interrupt trigger by rising edge. 558 - 559 - 560 -1. 473 +1. 561 561 11. Uplink Payload 562 562 563 563 |**Size(bytes)**|**2**|**1**|**Length depends on the return from the commands** ... ... @@ -619,15 +619,15 @@ 619 619 620 620 * **Sensor Related Commands**: These commands are special designed for RS485-BL. User can see these commands below: 621 621 622 -1. 623 -11. 535 +1. 536 +11. 624 624 111. Common Commands: 625 625 626 626 They should be available for each of Dragino Sensors, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: [[http:~~/~~/wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands>>url:http://wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands]] 627 627 628 628 629 -1. 630 -11. 542 +1. 543 +11. 631 631 111. Sensor related commands: 632 632 633 633 ==== Choose Device Type (RS485 or TTL) ==== ... ... @@ -933,13 +933,13 @@ 933 933 934 934 935 935 936 -1. 849 +1. 937 937 11. Buttons 938 938 939 939 |**Button**|**Feature** 940 940 |**RST**|Reboot RS485-BL 941 941 942 -1. 855 +1. 943 943 11. +3V3 Output 944 944 945 945 RS485-BL has a Controllable +3V3 output, user can use this output to power external sensor. ... ... @@ -957,7 +957,7 @@ 957 957 By default, the AT+3V3T=0. This is a special case, means the +3V3 output is always on at any time 958 958 959 959 960 -1. 873 +1. 961 961 11. +5V Output 962 962 963 963 RS485-BL has a Controllable +5V output, user can use this output to power external sensor. ... ... @@ -977,13 +977,13 @@ 977 977 978 978 979 979 980 -1. 893 +1. 981 981 11. LEDs 982 982 983 983 |**LEDs**|**Feature** 984 984 |**LED1**|Blink when device transmit a packet. 985 985 986 -1. 899 +1. 987 987 11. Switch Jumper 988 988 989 989 |**Switch Jumper**|**Feature** ... ... @@ -1029,7 +1029,7 @@ 1029 1029 1030 1030 1031 1031 1032 -1. 945 +1. 1033 1033 11. Common AT Command Sequence 1034 1034 111. Multi-channel ABP mode (Use with SX1301/LG308) 1035 1035 ... ... @@ -1048,8 +1048,8 @@ 1048 1048 1049 1049 ATZ 1050 1050 1051 -1. 1052 -11. 964 +1. 965 +11. 1053 1053 111. Single-channel ABP mode (Use with LG01/LG02) 1054 1054 1055 1055 AT+FDR Reset Parameters to Factory Default, Keys Reserve ... ... @@ -1124,7 +1124,7 @@ 1124 1124 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image035.png]] [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image036.png]] 1125 1125 1126 1126 1127 -1. 1040 +1. 1128 1128 11. How to change the LoRa Frequency Bands/Region? 1129 1129 1130 1130 User can follow the introduction for [[how to upgrade image>>path:#upgrade_image]]. When download the images, choose the required image file for download. ... ... @@ -1131,7 +1131,7 @@ 1131 1131 1132 1132 1133 1133 1134 -1. 1047 +1. 1135 1135 11. How many RS485-Slave can RS485-BL connects? 1136 1136 1137 1137 The RS485-BL can support max 32 RS485 devices. Each uplink command of RS485-BL can support max 16 different RS485 command. So RS485-BL can support max 16 RS485 devices pre-program in the device for uplink. For other devices no pre-program, user can use the [[downlink message (type code 0xA8) to poll their info>>path:#downlink_A8]]. ... ... @@ -1148,7 +1148,7 @@ 1148 1148 1149 1149 1150 1150 1151 -1. 1064 +1. 1152 1152 11. Why I can’t join TTN V3 in US915 /AU915 bands? 1153 1153 1154 1154 It might about the channels mapping. Please see for detail.
- 1653269403619-508.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +27.8 KB - Content
- 1653269438444-278.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +26.6 KB - Content
- 1653269551753-223.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +138.7 KB - Content
- 1653269568276-930.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +131.4 KB - Content
- 1653269593172-426.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +142.6 KB - Content
- 1653269618463-608.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +27.7 KB - Content
- 1653269759169-150.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +294.0 KB - Content
- 1653269916228-732.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +143.3 KB - Content
- 1653270130359-810.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +197.8 KB - Content
- 1654157178836-407.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +179.9 KB - Content
- 1654157342174-798.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +31.9 KB - Content
- image-20220602153621-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +23.4 KB - Content
- image-20220602153621-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +22.2 KB - Content
- image-20220602153621-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +22.3 KB - Content
- image-20220602155039-4.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +24.6 KB - Content