<
From version < 22.3 >
edited by Xiaoling
on 2022/05/23 09:12
To version < 38.2 >
edited by Xiaoling
on 2022/06/02 16:10
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -18,40 +18,42 @@
18 18  
19 19  (((
20 20  (((
21 -The Dragino RS485-LN is a RS485 to LoRaWAN Converter. It converts the RS485 signal into LoRaWAN wireless signal which simplify the IoT installation and reduce the installation/maintaining cost.
21 +The Dragino RS485-LN is a (% style="color:blue" %)**RS485 to LoRaWAN Converter**(%%). It converts the RS485 signal into LoRaWAN wireless signal which simplify the IoT installation and reduce the installation/maintaining cost.
22 22  )))
23 23  
24 24  (((
25 -RS485-LN allows user to monitor / control RS485 devices and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
25 +RS485-LN allows user to (% style="color:blue" %)**monitor / control RS485 devices**(%%) and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
26 26  )))
27 27  
28 28  (((
29 -For data uplink, RS485-LN sends user-defined commands to RS485 devices and gets the return from the RS485 devices. RS485-LN will process these returns according to user-define rules to get the final payload and upload to LoRaWAN server.
29 +(% style="color:blue" %)**For data uplink**(%%), RS485-LN sends user-defined commands to RS485 devices and gets the return from the RS485 devices. RS485-LN will process these returns according to user-define rules to get the final payload and upload to LoRaWAN server.
30 30  )))
31 31  
32 32  (((
33 -For data downlink, RS485-LN runs in LoRaWAN Class C. When there downlink commands from LoRaWAN server, RS485-LN will forward the commands from LoRaWAN server to RS485 devices.
33 +(% style="color:blue" %)**For data downlink**(%%), RS485-LN runs in LoRaWAN Class C. When there downlink commands from LoRaWAN server, RS485-LN will forward the commands from LoRaWAN server to RS485 devices.
34 +
35 +(% style="color:blue" %)**Demo Dashboard for RS485-LN**(%%) connect to two energy meters: [[https:~~/~~/app.datacake.de/dashboard/d/58844a26-378d-4c5a-aaf5-b5b5b153447a>>url:https://app.datacake.de/dashboard/d/58844a26-378d-4c5a-aaf5-b5b5b153447a]]
34 34  )))
35 35  )))
36 36  
37 37  [[image:1653267211009-519.png||height="419" width="724"]]
38 38  
41 +
39 39  == 1.2 Specifications ==
40 40  
44 +
41 41  **Hardware System:**
42 42  
43 43  * STM32L072CZT6 MCU
44 -* SX1276/78 Wireless Chip
48 +* SX1276/78 Wireless Chip 
45 45  * Power Consumption (exclude RS485 device):
46 46  ** Idle: 32mA@12v
47 -
48 -*
49 49  ** 20dB Transmit: 65mA@12v
50 50  
51 51  **Interface for Model:**
52 52  
53 53  * RS485
54 -* Power Input 7~~ 24V DC.
56 +* Power Input 7~~ 24V DC. 
55 55  
56 56  **LoRa Spec:**
57 57  
... ... @@ -98,6 +98,7 @@
98 98  
99 99  [[RS485-LN Image files – Download link and Change log>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/]]
100 100  
103 +
101 101  == 1.6 Hardware Change log ==
102 102  
103 103  (((
... ... @@ -105,6 +105,8 @@
105 105  v1.2: Add External Interrupt Pin.
106 106  
107 107  v1.0: Release
111 +
112 +
108 108  )))
109 109  )))
110 110  
... ... @@ -121,6 +121,8 @@
121 121  )))
122 122  
123 123  [[image:1653268091319-405.png]]
129 +
130 +
124 124  )))
125 125  
126 126  = 3. Operation Mode =
... ... @@ -129,6 +129,8 @@
129 129  
130 130  (((
131 131  The RS485-LN is configured as LoRaWAN OTAA Class C mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the RS485-LN. It will auto join the network via OTAA.
139 +
140 +
132 132  )))
133 133  
134 134  == 3.2 Example to join LoRaWAN network ==
... ... @@ -137,10 +137,15 @@
137 137  
138 138  [[image:1653268155545-638.png||height="334" width="724"]]
139 139  
149 +
140 140  (((
151 +(((
141 141  The RS485-LN in this example connected to two RS485 devices for demonstration, user can connect to other RS485 devices via the same method. The connection is as below:
153 +)))
142 142  
155 +(((
143 143  485A+ and 485B- of the sensor are connected to RS485A and RA485B of RS485-LN respectively.
157 +)))
144 144  
145 145  [[image:1653268227651-549.png||height="592" width="720"]]
146 146  
... ... @@ -187,44 +187,43 @@
187 187  
188 188  
189 189  (((
190 -**Step 2**: Power on RS485-BL and it will auto join to the TTN V3 network. After join success, it will start to upload message to TTN V3 and user can see in the panel.
204 +**Step 2**: Power on RS485-LN and it will auto join to the TTN V3 network. After join success, it will start to upload message to TTN V3 and user can see in the panel.
191 191  )))
192 192  
193 193  [[image:1652953568895-172.png||height="232" width="724"]]
194 194  
209 +
195 195  == 3.3 Configure Commands to read data ==
196 196  
197 197  (((
198 -There are plenty of RS485 and TTL level devices in the market and each device has different command to read the valid data. To support these devices in flexible, RS485-BL supports flexible command set. User can use [[AT Commands or LoRaWAN Downlink>>path:#AT_COMMAND]] Command to configure how RS485-BL should read the sensor and how to handle the return from RS485 or TTL sensors.
213 +(((
214 +There are plenty of RS485 devices in the market and each device has different command to read the valid data. To support these devices in flexible, RS485-LN supports flexible command set. User can use [[AT Commands>>path:#AT_COMMAND]] or LoRaWAN Downlink Command to configure what commands RS485-LN should send for each sampling and how to handle the return from RS485 devices.
199 199  )))
200 200  
201 -=== 3.3.1 onfigure UART settings for RS485 or TTL communication ===
217 +(((
218 +(% style="color:red" %)Note: below description and commands are for firmware version >v1.1, if you have firmware version v1.0. Please check the [[user manual v1.0>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/&file=RS485-LN_UserManual_v1.0.1.pdf]] or upgrade the firmware to v1.1
202 202  
203 -RS485-BL can connect to either RS485 sensors or TTL sensor. User need to specify what type of sensor need to connect.
220 +
221 +)))
222 +)))
204 204  
205 -**~1. RS485-MODBUS mode:**
224 +=== 3.3.1 onfigure UART settings for RS485 or TTL communication ===
206 206  
207 -AT+MOD=1 ~/~/ Support RS485-MODBUS type sensors. User can connect multiply RS485 , Modbus sensors to the A / B pins.
226 +To use RS485-LN to read data from RS485 sensors, connect the RS485-LN A/B traces to the sensors. And user need to make sure RS485-LN use the match UART setting to access the sensors. The related commands for UART settings are:
208 208  
209 -**2. TTL mode:**
210 -
211 -AT+MOD=2 ~/~/ Support TTL Level sensors, User can connect one TTL Sensor to the TXD/RXD/GND pins.
212 -
213 -RS485-BL default UART settings is **9600, no parity, stop bit 1**. If the sensor has a different settings, user can change the RS485-BL setting to match.
214 -
215 -(% border="1" style="background-color:#ffffcc; color:green; width:795px" %)
216 -|(((
228 +(% border="1" style="background-color:#ffffcc; color:green; width:782px" %)
229 +|(% style="width:128px" %)(((
217 217  **AT Commands**
218 -)))|(% style="width:285px" %)(((
231 +)))|(% style="width:305px" %)(((
219 219  **Description**
220 -)))|(% style="width:347px" %)(((
233 +)))|(% style="width:346px" %)(((
221 221  **Example**
222 222  )))
223 -|(((
236 +|(% style="width:128px" %)(((
224 224  AT+BAUDR
225 -)))|(% style="width:285px" %)(((
238 +)))|(% style="width:305px" %)(((
226 226  Set the baud rate (for RS485 connection). Default Value is: 9600.
227 -)))|(% style="width:347px" %)(((
240 +)))|(% style="width:346px" %)(((
228 228  (((
229 229  AT+BAUDR=9600
230 230  )))
... ... @@ -233,18 +233,12 @@
233 233  Options: (1200,2400,4800,14400,19200,115200)
234 234  )))
235 235  )))
236 -|(((
249 +|(% style="width:128px" %)(((
237 237  AT+PARITY
238 -)))|(% style="width:285px" %)(((
239 -(((
251 +)))|(% style="width:305px" %)(((
240 240  Set UART parity (for RS485 connection)
241 -)))
242 -
253 +)))|(% style="width:346px" %)(((
243 243  (((
244 -Default Value is: no parity.
245 -)))
246 -)))|(% style="width:347px" %)(((
247 -(((
248 248  AT+PARITY=0
249 249  )))
250 250  
... ... @@ -252,17 +252,17 @@
252 252  Option: 0: no parity, 1: odd parity, 2: even parity
253 253  )))
254 254  )))
255 -|(((
262 +|(% style="width:128px" %)(((
256 256  AT+STOPBIT
257 -)))|(% style="width:285px" %)(((
264 +)))|(% style="width:305px" %)(((
258 258  (((
259 259  Set serial stopbit (for RS485 connection)
260 260  )))
261 261  
262 262  (((
263 -Default Value is: 1bit.
270 +
264 264  )))
265 -)))|(% style="width:347px" %)(((
272 +)))|(% style="width:346px" %)(((
266 266  (((
267 267  AT+STOPBIT=0 for 1bit
268 268  )))
... ... @@ -279,12 +279,10 @@
279 279  === 3.3.2 Configure sensors ===
280 280  
281 281  (((
282 -Some sensors might need to configure before normal operation. User can configure such sensor via PC or through RS485-BL AT Commands (% style="color:#4f81bd" %)**AT+CFGDEV**.
283 -)))
284 -
285 285  (((
286 -When user issue an (% style="color:#4f81bd" %)**AT+CFGDEV**(%%) command, Each (% style="color:#4f81bd" %)**AT+CFGDEV**(%%) equals to send a command to the RS485 or TTL sensors. This command will only run when user input it and won’t run during each sampling.
290 +Some sensors might need to configure before normal operation. User can configure such sensor via PC and RS485 adapter or through RS485-LN AT Commands (% style="color:#4f81bd" %)**AT+CFGDEV**(%%). Each (% style="color:#4f81bd" %)**AT+CFGDEV **(%%)equals to send a RS485 command to sensors. This command will only run when user input it and won’t run during each sampling.
287 287  )))
292 +)))
288 288  
289 289  (% border="1" style="background-color:#ffffcc; color:green; width:806px" %)
290 290  |**AT Commands**|(% style="width:418px" %)**Description**|(% style="width:256px" %)**Example**
... ... @@ -296,82 +296,37 @@
296 296  mm: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command
297 297  )))|(% style="width:256px" %)AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m
298 298  
299 -Detail of AT+CFGDEV command see [[AT+CFGDEV detail>>path:#AT_CFGDEV]].
300 -
301 301  === 3.3.3 Configure read commands for each sampling ===
302 302  
303 303  (((
304 -RS485-BL is a battery powered device; it will sleep most of time. And wake up on each period and read RS485 / TTL sensor data and uplink.
305 -)))
307 +During each sampling, we need confirm what commands we need to send to the RS485 sensors to read data. After the RS485 sensors send back the value, it normally include some bytes and we only need a few from them for a shorten payload.
306 306  
307 -(((
308 -During each sampling, we need to confirm what commands we need to send to the sensors to read data. After the RS485/TTL sensors send back the value, it normally includes some bytes and we only need a few from them for a shorten payload.
309 -)))
310 -
311 -(((
312 312  To save the LoRaWAN network bandwidth, we might need to read data from different sensors and combine their valid value into a short payload.
313 -)))
314 314  
315 -(((
316 316  This section describes how to achieve above goals.
317 -)))
318 318  
319 -(((
320 -During each sampling, the RS485-BL can support 15 commands to read sensors. And combine the return to one or several uplink payloads.
321 -)))
313 +During each sampling, the RS485-LN can support 15 commands to read sensors. And combine the return to one or several uplink payloads.
322 322  
323 -(((
324 -**Command from RS485-BL to Sensor:**
325 -)))
326 326  
327 -(((
328 -RS485-BL can send out pre-set max 15 strings via **AT+COMMAD1**, **ATCOMMAND2**,…, to **AT+COMMANDF** . All commands are of same grammar.
329 -)))
316 +**Each RS485 commands include two parts:**
330 330  
331 -(((
332 -**Handle return from sensors to RS485-BL**:
333 -)))
318 +~1. What commands RS485-LN will send to the RS485 sensors. There are total 15 commands from **AT+COMMAD1**, **ATCOMMAND2**,…, to **AT+COMMANDF**. All commands are of same grammar.
334 334  
335 -(((
336 -After RS485-BL send out a string to sensor, RS485-BL will wait for the return from RS485 or TTL sensor. And user can specify how to handle the return, by **AT+DATACUT or AT+SEARCH commands**
337 -)))
320 +2. How to get wanted value the from RS485 sensors returns from by 1). There are total 15 AT Commands to handle the return, commands are **AT+DATACUT1**,**AT+DATACUT2**,…, **AT+DATACUTF** corresponding to the commands from 1). All commands are of same grammar.
338 338  
339 -* (((
340 -**AT+DATACUT**
341 -)))
322 +3. Some RS485 device might has longer delay on reply, so user can use AT+CMDDL to set the timeout for getting reply after the RS485 command is sent. For example **AT+CMDDL1=1000** to send the open time to 1000ms
342 342  
343 -(((
344 -When the return value from sensor have fix length and we know which position the valid value we should get, we can use AT+DATACUT command.
345 -)))
346 346  
347 -* (((
348 -**AT+SEARCH**
349 -)))
350 -
351 -(((
352 -When the return value from sensor is dynamic length and we are not sure which bytes the valid data is, instead, we know what value the valid value following. We can use AT+SEARCH to search the valid value in the return string.
353 -)))
354 -
355 -(((
356 -**Define wait timeout:**
357 -)))
358 -
359 -(((
360 -Some RS485 device might has longer delay on reply, so user can use AT+CMDDL to set the timeout for getting reply after the RS485 command is sent. For example, AT+CMDDL1=1000 to send the open time to 1000ms
361 -)))
362 -
363 -(((
364 364  After we got the valid value from each RS485 commands, we need to combine them together with the command **AT+DATAUP**.
365 -)))
366 366  
367 -**Examples:**
368 368  
369 369  Below are examples for the how above AT Commands works.
370 370  
371 -**AT+COMMANDx : **This command will be sent to RS485/TTL devices during each sampling, Max command length is 14 bytes. The grammar is:
372 372  
373 -(% border="1" class="table-bordered" %)
374 -|(((
331 +**AT+COMMANDx : **This command will be sent to RS485 devices during each sampling, Max command length is 14 bytes. The grammar is:
332 +
333 +(% border="1" style="background-color:#4bacc6; color:white; width:499px" %)
334 +|(% style="width:496px" %)(((
375 375  **AT+COMMANDx=xx xx xx xx xx xx xx xx xx xx xx xx,m**
376 376  
377 377  **xx xx xx xx xx xx xx xx xx xx xx xx: The RS485 command to be sent**
... ... @@ -381,43 +381,13 @@
381 381  
382 382  For example, if we have a RS485 sensor. The command to get sensor value is: 01 03 0B B8 00 02 46 0A. Where 01 03 0B B8 00 02 is the Modbus command to read the register 0B B8 where stored the sensor value. The 46 0A is the CRC-16/MODBUS which calculate manually.
383 383  
384 -In the RS485-BL, we should use this command AT+COMMAND1=01 03 0B B8 00 02,1 for the same.
344 +In the RS485-LN, we should use this command AT+COMMAND1=01 03 0B B8 00 02,1 for the same.
385 385  
386 -**AT+SEARCHx**: This command defines how to handle the return from AT+COMMANDx.
387 387  
388 -(% border="1" class="table-bordered" %)
389 -|(((
390 -**AT+SEARCHx=aa,xx xx xx xx xx**
391 -
392 -* **aa: 1: prefix match mode; 2: prefix and suffix match mode**
393 -* **xx xx xx xx xx: match string. Max 5 bytes for prefix and 5 bytes for suffix**
394 -
395 -
396 -)))
397 -
398 -Examples:
399 -
400 -1. For a return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
401 -
402 -If we set AT+SEARCH1=1,1E 56 34.      (max 5 bytes for prefix)
403 -
404 -The valid data will be all bytes after 1E 56 34 , so it is 2e 30 58 5f 36 41 30 31 00 49
405 -
406 -[[image:1652954654347-831.png]]
407 -
408 -
409 -1. For a return string from AT+COMMAND1:  16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
410 -
411 -If we set AT+SEARCH1=2, 1E 56 34+31 00 49
412 -
413 -Device will search the bytes between 1E 56 34 and 31 00 49. So it is 2e 30 58 5f 36 41 30
414 -
415 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image014.png]]
416 -
417 -
418 418  **AT+DATACUTx : **This command defines how to handle the return from AT+COMMANDx, max return length is 45 bytes.
419 419  
420 -|(((
349 +(% border="1" style="background-color:#4bacc6; color:white; width:725px" %)
350 +|(% style="width:722px" %)(((
421 421  **AT+DATACUTx=a,b,c**
422 422  
423 423  * **a: length for the return of AT+COMMAND**
... ... @@ -425,139 +425,122 @@
425 425  * **c: define the position for valid value.  **
426 426  )))
427 427  
428 -Examples:
358 +**Examples:**
429 429  
430 430  * Grab bytes:
431 431  
432 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image015.png]]
362 +[[image:image-20220602153621-1.png]]
433 433  
364 +
434 434  * Grab a section.
435 435  
436 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image016.png]]
367 +[[image:image-20220602153621-2.png]]
437 437  
369 +
438 438  * Grab different sections.
439 439  
440 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image017.png]]
372 +[[image:image-20220602153621-3.png]]
441 441  
374 +
375 +)))
442 442  
443 -Note:
377 +=== 3.3.4 Compose the uplink payload ===
444 444  
445 -AT+SEARCHx and AT+DATACUTx can be used together, if both commands are set, RS485-BL will first process AT+SEARCHx on the return string and get a temporary string, and then process AT+DATACUTx on this temporary string to get the final payload. In this case, AT+DATACUTx need to set to format AT+DATACUTx=0,xx,xx where the return bytes set to 0.
446 -
447 -Example:
448 -
449 -AT+COMMAND1=11 01 1E D0,0
450 -
451 -AT+SEARCH1=1,1E 56 34
452 -
453 -AT+DATACUT1=0,2,1~~5
454 -
455 -Return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
456 -
457 -String after SEARCH command: 2e 30 58 5f 36 41 30 31 00 49
458 -
459 -Valid payload after DataCUT command: 2e 30 58 5f 36
460 -
461 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image018.png]]
462 -
463 -
464 -
465 -
466 -1.
467 -11.
468 -111. Compose the uplink payload
469 -
379 +(((
470 470  Through AT+COMMANDx and AT+DATACUTx we got valid value from each RS485 commands, Assume these valid value are RETURN1, RETURN2, .., to RETURNx. The next step is how to compose the LoRa Uplink Payload by these RETURNs. The command is **AT+DATAUP.**
471 471  
382 +
383 +)))
472 472  
473 -**Examples: AT+DATAUP=0**
385 +(((
386 +(% style="color:#037691" %)**Examples: AT+DATAUP=0**
474 474  
475 -Compose the uplink payload with value returns in sequence and send with **A SIGNLE UPLINK**.
388 +
389 +)))
476 476  
391 +(((
392 +Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**A SIGNLE UPLINK**.
393 +)))
394 +
395 +(((
477 477  Final Payload is
397 +)))
478 478  
479 -Battery Info+PAYVER + VALID Value from RETURN1 + Valid Value from RETURN2 + … + RETURNx
399 +(((
400 +(% style="color:#4f81bd" %)**Battery Info+PAYVER + VALID Value from RETURN1 + Valid Value from RETURN2 + … + RETURNx**
401 +)))
480 480  
403 +(((
481 481  Where PAYVER is defined by AT+PAYVER, below is an example screen shot.
405 +)))
482 482  
483 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image019.png]]
407 +[[image:1653269759169-150.png||height="513" width="716"]]
484 484  
485 485  
410 +(% style="color:#037691" %)**Examples: AT+DATAUP=1**
486 486  
487 -**Examples: AT+DATAUP=1**
488 488  
489 -Compose the uplink payload with value returns in sequence and send with **Multiply UPLINKs**.
413 +Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**Multiply UPLINKs**.
490 490  
491 491  Final Payload is
492 492  
493 -Battery Info+PAYVER + PAYLOAD COUNT + PAYLOAD# + DATA
417 +(% style="color:#4f81bd" %)**Battery Info+PAYVER + PAYLOAD COUNT + PAYLOAD# + DATA**
494 494  
495 -1. Battery Info (2 bytes): Battery voltage
496 -1. PAYVER (1 byte): Defined by AT+PAYVER
497 -1. PAYLOAD COUNT (1 byte): Total how many uplinks of this sampling.
498 -1. PAYLOAD# (1 byte): Number of this uplink. (from 0,1,2,3…,to PAYLOAD COUNT)
499 -1. DATA: Valid value: max 6 bytes(US915 version here, [[Notice*!>>path:#max_byte]]) for each uplink so each uplink <= 11 bytes. For the last uplink, DATA will might less than 6 bytes
419 +1. PAYVER: Defined by AT+PAYVER
420 +1. PAYLOAD COUNT: Total how many uplinks of this sampling.
421 +1. PAYLOAD#: Number of this uplink. (from 0,1,2,3…,to PAYLOAD COUNT)
422 +1. DATA: Valid value: max 8 bytes for each uplink so each uplink <= 11 bytes. For the last uplink, DATA will might less than 8 bytes
500 500  
501 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
424 +[[image:image-20220602155039-4.png]]
502 502  
503 503  
504 -So totally there will be 3 uplinks for this sampling, each uplink includes 6 bytes DATA
427 +So totally there will be 3 uplinks for this sampling, each uplink include 8 bytes DATA
505 505  
506 -DATA1=RETURN1 Valid Value = 20 20 0a 33 90 41
429 +DATA1=RETURN1 Valid Value + the first two of Valid value of RETURN10= **20 20 0a 33 90 41 02 aa**
507 507  
508 -DATA2=1^^st^^ ~~ 6^^th^^ byte of Valid value of RETURN10= 02 aa 05 81 0a 20
431 +DATA2=3^^rd^^ ~~ 10^^th^^ byte of Valid value of RETURN10= **05 81 0a 20 20 20 20 2d**
509 509  
510 -DATA3=7^^th^^ ~~ 11^^th^^ bytes of Valid value of RETURN10 = 20 20 20 2d 30
433 +DATA3=the rest of Valid value of RETURN10= **30**
511 511  
512 512  
436 +(% style="color:red" %)Notice: In firmware v1.3, the Max bytes has been changed according to the max bytes in different Frequency Bands for lowest SF. As below:
513 513  
514 -Below are the uplink payloads:
438 + ~* For AU915/AS923 bands, if UplinkDwell time=0, max 51 bytes for each uplink.
515 515  
516 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image021.png]]
440 + * For AU915/AS923 bands, if UplinkDwell time=0, max 11 bytes for each uplink.
517 517  
442 + * For US915 band, max 11 bytes for each uplink.
518 518  
519 -Notice: the Max bytes is according to the max support bytes in different Frequency Bands for lowest SF. As below:
444 + ~* For all other bands: max 51 bytes for each uplink.
520 520  
521 - ~* For AU915/AS923 bands, if UplinkDwell time=0, max 51 bytes for each uplink ( so 51 -5 = 46 max valid date)
522 522  
523 - * For AU915/AS923 bands, if UplinkDwell time=1, max 11 bytes for each uplink ( so 11 -5 = 6 max valid date).
447 +Below are the uplink payloads:
524 524  
525 - * For US915 band, max 11 bytes for each uplink ( so 11 -5 = 6 max valid date).
449 +[[image:1654157178836-407.png]]
526 526  
527 - ~* For all other bands: max 51 bytes for each uplink  ( so 51 -5 = 46 max valid date).
528 528  
452 +=== 3.3.5 Uplink on demand ===
529 529  
454 +Except uplink periodically, RS485-LN is able to uplink on demand. The server send downlink command to RS485-LN and RS485 will uplink data base on the command.
530 530  
531 -1.
532 -11.
533 -111. Uplink on demand
534 -
535 -Except uplink periodically, RS485-BL is able to uplink on demand. The server sends downlink command to RS485-BL and RS485 will uplink data base on the command.
536 -
537 537  Downlink control command:
538 538  
539 -[[0x08 command>>path:#downlink_08]]: Poll an uplink with current command set in RS485-BL.
458 +**0x08 command**: Poll an uplink with current command set in RS485-LN.
540 540  
541 -[[0xA8 command>>path:#downlink_A8]]: Send a command to RS485-BL and uplink the output from sensors.
460 +**0xA8 command**: Send a command to RS485-LN and uplink the output from sensors.
542 542  
543 543  
544 544  
545 -1.
546 -11.
547 -111. Uplink on Interrupt
464 +=== 3.3.6 Uplink on Interrupt ===
548 548  
549 -Put the interrupt sensor between 3.3v_out and GPIO ext.[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image022.png]]
466 +RS485-LN support external Interrupt uplink since hardware v1.2 release.
550 550  
551 -AT+INTMOD=0  Disable Interrupt
468 +[[image:1654157342174-798.png]]
552 552  
553 -AT+INTMOD=1  Interrupt trigger by rising or falling edge.
470 +Connect the Interrupt pin to RS485-LN INT port and connect the GND pin to V- port. When there is a high voltage (Max 24v) on INT pin. Device will send an uplink packet.
554 554  
555 -AT+INTMOD=2  Interrupt trigger by falling edge. ( Default Value)
556 556  
557 -AT+INTMOD=3  Interrupt trigger by rising edge.
558 -
559 -
560 -1.
473 +1.
561 561  11. Uplink Payload
562 562  
563 563  |**Size(bytes)**|**2**|**1**|**Length depends on the return from the commands**
... ... @@ -619,15 +619,15 @@
619 619  
620 620  * **Sensor Related Commands**: These commands are special designed for RS485-BL.  User can see these commands below:
621 621  
622 -1.
623 -11.
535 +1.
536 +11.
624 624  111. Common Commands:
625 625  
626 626  They should be available for each of Dragino Sensors, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: [[http:~~/~~/wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands>>url:http://wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands]]
627 627  
628 628  
629 -1.
630 -11.
542 +1.
543 +11.
631 631  111. Sensor related commands:
632 632  
633 633  ==== Choose Device Type (RS485 or TTL) ====
... ... @@ -933,13 +933,13 @@
933 933  
934 934  
935 935  
936 -1.
849 +1.
937 937  11. Buttons
938 938  
939 939  |**Button**|**Feature**
940 940  |**RST**|Reboot RS485-BL
941 941  
942 -1.
855 +1.
943 943  11. +3V3 Output
944 944  
945 945  RS485-BL has a Controllable +3V3 output, user can use this output to power external sensor.
... ... @@ -957,7 +957,7 @@
957 957  By default, the AT+3V3T=0. This is a special case, means the +3V3 output is always on at any time
958 958  
959 959  
960 -1.
873 +1.
961 961  11. +5V Output
962 962  
963 963  RS485-BL has a Controllable +5V output, user can use this output to power external sensor.
... ... @@ -977,13 +977,13 @@
977 977  
978 978  
979 979  
980 -1.
893 +1.
981 981  11. LEDs
982 982  
983 983  |**LEDs**|**Feature**
984 984  |**LED1**|Blink when device transmit a packet.
985 985  
986 -1.
899 +1.
987 987  11. Switch Jumper
988 988  
989 989  |**Switch Jumper**|**Feature**
... ... @@ -1029,7 +1029,7 @@
1029 1029  
1030 1030  
1031 1031  
1032 -1.
945 +1.
1033 1033  11. Common AT Command Sequence
1034 1034  111. Multi-channel ABP mode (Use with SX1301/LG308)
1035 1035  
... ... @@ -1048,8 +1048,8 @@
1048 1048  
1049 1049  ATZ
1050 1050  
1051 -1.
1052 -11.
964 +1.
965 +11.
1053 1053  111. Single-channel ABP mode (Use with LG01/LG02)
1054 1054  
1055 1055  AT+FDR   Reset Parameters to Factory Default, Keys Reserve
... ... @@ -1124,7 +1124,7 @@
1124 1124  [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image035.png]] [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image036.png]]
1125 1125  
1126 1126  
1127 -1.
1040 +1.
1128 1128  11. How to change the LoRa Frequency Bands/Region?
1129 1129  
1130 1130  User can follow the introduction for [[how to upgrade image>>path:#upgrade_image]]. When download the images, choose the required image file for download.
... ... @@ -1131,7 +1131,7 @@
1131 1131  
1132 1132  
1133 1133  
1134 -1.
1047 +1.
1135 1135  11. How many RS485-Slave can RS485-BL connects?
1136 1136  
1137 1137  The RS485-BL can support max 32 RS485 devices. Each uplink command of RS485-BL can support max 16 different RS485 command. So RS485-BL can support max 16 RS485 devices pre-program in the device for uplink. For other devices no pre-program, user can use the [[downlink message (type code 0xA8) to poll their info>>path:#downlink_A8]].
... ... @@ -1148,7 +1148,7 @@
1148 1148  
1149 1149  
1150 1150  
1151 -1.
1064 +1.
1152 1152  11. Why I can’t join TTN V3 in US915 /AU915 bands?
1153 1153  
1154 1154  It might about the channels mapping. Please see for detail.
1653269403619-508.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +27.8 KB
Content
1653269438444-278.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +26.6 KB
Content
1653269551753-223.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +138.7 KB
Content
1653269568276-930.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +131.4 KB
Content
1653269593172-426.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +142.6 KB
Content
1653269618463-608.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +27.7 KB
Content
1653269759169-150.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +294.0 KB
Content
1653269916228-732.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +143.3 KB
Content
1653270130359-810.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +197.8 KB
Content
1654157178836-407.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +179.9 KB
Content
1654157342174-798.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +31.9 KB
Content
image-20220602153621-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +23.4 KB
Content
image-20220602153621-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +22.2 KB
Content
image-20220602153621-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +22.3 KB
Content
image-20220602155039-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +24.6 KB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0