<
From version < 22.3 >
edited by Xiaoling
on 2022/05/23 09:12
To version < 32.2 >
edited by Xiaoling
on 2022/06/02 15:22
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -18,19 +18,21 @@
18 18  
19 19  (((
20 20  (((
21 -The Dragino RS485-LN is a RS485 to LoRaWAN Converter. It converts the RS485 signal into LoRaWAN wireless signal which simplify the IoT installation and reduce the installation/maintaining cost.
21 +The Dragino RS485-LN is a **RS485 to LoRaWAN Converter**. It converts the RS485 signal into LoRaWAN wireless signal which simplify the IoT installation and reduce the installation/maintaining cost.
22 22  )))
23 23  
24 24  (((
25 -RS485-LN allows user to monitor / control RS485 devices and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
25 +RS485-LN allows user to **monitor / control RS485 devices** and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
26 26  )))
27 27  
28 28  (((
29 -For data uplink, RS485-LN sends user-defined commands to RS485 devices and gets the return from the RS485 devices. RS485-LN will process these returns according to user-define rules to get the final payload and upload to LoRaWAN server.
29 +**For data uplink**, RS485-LN sends user-defined commands to RS485 devices and gets the return from the RS485 devices. RS485-LN will process these returns according to user-define rules to get the final payload and upload to LoRaWAN server.
30 30  )))
31 31  
32 32  (((
33 -For data downlink, RS485-LN runs in LoRaWAN Class C. When there downlink commands from LoRaWAN server, RS485-LN will forward the commands from LoRaWAN server to RS485 devices.
33 +**For data downlink**, RS485-LN runs in LoRaWAN Class C. When there downlink commands from LoRaWAN server, RS485-LN will forward the commands from LoRaWAN server to RS485 devices.
34 +
35 +**Demo Dashboard for RS485-LN** connect to two energy meters: [[https:~~/~~/app.datacake.de/dashboard/d/58844a26-378d-4c5a-aaf5-b5b5b153447a>>url:https://app.datacake.de/dashboard/d/58844a26-378d-4c5a-aaf5-b5b5b153447a]]
34 34  )))
35 35  )))
36 36  
... ... @@ -41,17 +41,17 @@
41 41  **Hardware System:**
42 42  
43 43  * STM32L072CZT6 MCU
44 -* SX1276/78 Wireless Chip
46 +* SX1276/78 Wireless Chip 
45 45  * Power Consumption (exclude RS485 device):
46 46  ** Idle: 32mA@12v
47 47  
48 -*
50 +*
49 49  ** 20dB Transmit: 65mA@12v
50 50  
51 51  **Interface for Model:**
52 52  
53 53  * RS485
54 -* Power Input 7~~ 24V DC.
56 +* Power Input 7~~ 24V DC. 
55 55  
56 56  **LoRa Spec:**
57 57  
... ... @@ -187,7 +187,7 @@
187 187  
188 188  
189 189  (((
190 -**Step 2**: Power on RS485-BL and it will auto join to the TTN V3 network. After join success, it will start to upload message to TTN V3 and user can see in the panel.
192 +**Step 2**: Power on RS485-LN and it will auto join to the TTN V3 network. After join success, it will start to upload message to TTN V3 and user can see in the panel.
191 191  )))
192 192  
193 193  [[image:1652953568895-172.png||height="232" width="724"]]
... ... @@ -195,23 +195,19 @@
195 195  == 3.3 Configure Commands to read data ==
196 196  
197 197  (((
198 -There are plenty of RS485 and TTL level devices in the market and each device has different command to read the valid data. To support these devices in flexible, RS485-BL supports flexible command set. User can use [[AT Commands or LoRaWAN Downlink>>path:#AT_COMMAND]] Command to configure how RS485-BL should read the sensor and how to handle the return from RS485 or TTL sensors.
200 +(((
201 +There are plenty of RS485 devices in the market and each device has different command to read the valid data. To support these devices in flexible, RS485-LN supports flexible command set. User can use [[AT Commands>>path:#AT_COMMAND]] or LoRaWAN Downlink Command to configure what commands RS485-LN should send for each sampling and how to handle the return from RS485 devices.
199 199  )))
200 200  
204 +(((
205 +(% style="color:red" %)Note: below description and commands are for firmware version >v1.1, if you have firmware version v1.0. Please check the [[user manual v1.0>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/&file=RS485-LN_UserManual_v1.0.1.pdf]] or upgrade the firmware to v1.1
206 +)))
207 +)))
208 +
201 201  === 3.3.1 onfigure UART settings for RS485 or TTL communication ===
202 202  
203 -RS485-BL can connect to either RS485 sensors or TTL sensor. User need to specify what type of sensor need to connect.
211 +To use RS485-LN to read data from RS485 sensors, connect the RS485-LN A/B traces to the sensors. And user need to make sure RS485-LN use the match UART setting to access the sensors. The related commands for UART settings are:
204 204  
205 -**~1. RS485-MODBUS mode:**
206 -
207 -AT+MOD=1 ~/~/ Support RS485-MODBUS type sensors. User can connect multiply RS485 , Modbus sensors to the A / B pins.
208 -
209 -**2. TTL mode:**
210 -
211 -AT+MOD=2 ~/~/ Support TTL Level sensors, User can connect one TTL Sensor to the TXD/RXD/GND pins.
212 -
213 -RS485-BL default UART settings is **9600, no parity, stop bit 1**. If the sensor has a different settings, user can change the RS485-BL setting to match.
214 -
215 215  (% border="1" style="background-color:#ffffcc; color:green; width:795px" %)
216 216  |(((
217 217  **AT Commands**
... ... @@ -236,13 +236,7 @@
236 236  |(((
237 237  AT+PARITY
238 238  )))|(% style="width:285px" %)(((
239 -(((
240 240  Set UART parity (for RS485 connection)
241 -)))
242 -
243 -(((
244 -Default Value is: no parity.
245 -)))
246 246  )))|(% style="width:347px" %)(((
247 247  (((
248 248  AT+PARITY=0
... ... @@ -260,7 +260,7 @@
260 260  )))
261 261  
262 262  (((
263 -Default Value is: 1bit.
255 +
264 264  )))
265 265  )))|(% style="width:347px" %)(((
266 266  (((
... ... @@ -279,12 +279,10 @@
279 279  === 3.3.2 Configure sensors ===
280 280  
281 281  (((
282 -Some sensors might need to configure before normal operation. User can configure such sensor via PC or through RS485-BL AT Commands (% style="color:#4f81bd" %)**AT+CFGDEV**.
283 -)))
284 -
285 285  (((
286 -When user issue an (% style="color:#4f81bd" %)**AT+CFGDEV**(%%) command, Each (% style="color:#4f81bd" %)**AT+CFGDEV**(%%) equals to send a command to the RS485 or TTL sensors. This command will only run when user input it and won’t run during each sampling.
275 +Some sensors might need to configure before normal operation. User can configure such sensor via PC and RS485 adapter or through RS485-LN AT Commands (% style="color:#4f81bd" %)**AT+CFGDEV**(%%). Each (% style="color:#4f81bd" %)**AT+CFGDEV **(%%)equals to send a RS485 command to sensors. This command will only run when user input it and won’t run during each sampling.
287 287  )))
277 +)))
288 288  
289 289  (% border="1" style="background-color:#ffffcc; color:green; width:806px" %)
290 290  |**AT Commands**|(% style="width:418px" %)**Description**|(% style="width:256px" %)**Example**
... ... @@ -296,8 +296,6 @@
296 296  mm: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command
297 297  )))|(% style="width:256px" %)AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m
298 298  
299 -Detail of AT+CFGDEV command see [[AT+CFGDEV detail>>path:#AT_CFGDEV]].
300 -
301 301  === 3.3.3 Configure read commands for each sampling ===
302 302  
303 303  (((
... ... @@ -379,11 +379,17 @@
379 379  **m: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command**
380 380  )))
381 381  
370 +(((
382 382  For example, if we have a RS485 sensor. The command to get sensor value is: 01 03 0B B8 00 02 46 0A. Where 01 03 0B B8 00 02 is the Modbus command to read the register 0B B8 where stored the sensor value. The 46 0A is the CRC-16/MODBUS which calculate manually.
372 +)))
383 383  
374 +(((
384 384  In the RS485-BL, we should use this command AT+COMMAND1=01 03 0B B8 00 02,1 for the same.
376 +)))
385 385  
378 +(((
386 386  **AT+SEARCHx**: This command defines how to handle the return from AT+COMMANDx.
380 +)))
387 387  
388 388  (% border="1" class="table-bordered" %)
389 389  |(((
... ... @@ -395,26 +395,24 @@
395 395  
396 396  )))
397 397  
398 -Examples:
392 +**Examples:**
399 399  
400 -1. For a return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
394 +~1. For a return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
401 401  
402 402  If we set AT+SEARCH1=1,1E 56 34.      (max 5 bytes for prefix)
403 403  
404 -The valid data will be all bytes after 1E 56 34 , so it is 2e 30 58 5f 36 41 30 31 00 49
398 +The valid data will be all bytes after 1E 56 34 , so it is (% style="background-color:yellow" %)** 2e 30 58 5f 36 41 30 31 00 49**
405 405  
406 -[[image:1652954654347-831.png]]
400 +[[image:1653269403619-508.png]]
407 407  
402 +2. For a return string from AT+COMMAND1:  16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
408 408  
409 -1. For a return string from AT+COMMAND1:  16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
410 -
411 411  If we set AT+SEARCH1=2, 1E 56 34+31 00 49
412 412  
413 -Device will search the bytes between 1E 56 34 and 31 00 49. So it is 2e 30 58 5f 36 41 30
406 +Device will search the bytes between 1E 56 34 and 31 00 49. So it is (% style="background-color:yellow" %)** 2e 30 58 5f 36 41 30**
414 414  
415 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image014.png]]
408 +[[image:1653269438444-278.png]]
416 416  
417 -
418 418  **AT+DATACUTx : **This command defines how to handle the return from AT+COMMANDx, max return length is 45 bytes.
419 419  
420 420  |(((
... ... @@ -429,94 +429,95 @@
429 429  
430 430  * Grab bytes:
431 431  
432 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image015.png]]
424 +[[image:1653269551753-223.png||height="311" width="717"]]
433 433  
434 434  * Grab a section.
435 435  
436 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image016.png]]
428 +[[image:1653269568276-930.png||height="325" width="718"]]
437 437  
438 438  * Grab different sections.
439 439  
440 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image017.png]]
432 +[[image:1653269593172-426.png||height="303" width="725"]]
441 441  
434 +(% style="color:red" %)**Note:**
442 442  
443 -Note:
444 -
445 445  AT+SEARCHx and AT+DATACUTx can be used together, if both commands are set, RS485-BL will first process AT+SEARCHx on the return string and get a temporary string, and then process AT+DATACUTx on this temporary string to get the final payload. In this case, AT+DATACUTx need to set to format AT+DATACUTx=0,xx,xx where the return bytes set to 0.
446 446  
447 447  Example:
448 448  
449 -AT+COMMAND1=11 01 1E D0,0
440 +(% style="color:red" %)AT+COMMAND1=11 01 1E D0,0
450 450  
451 -AT+SEARCH1=1,1E 56 34
442 +(% style="color:red" %)AT+SEARCH1=1,1E 56 34
452 452  
453 -AT+DATACUT1=0,2,1~~5
444 +(% style="color:red" %)AT+DATACUT1=0,2,1~~5
454 454  
455 -Return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
446 +(% style="color:red" %)Return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
456 456  
457 -String after SEARCH command: 2e 30 58 5f 36 41 30 31 00 49
448 +(% style="color:red" %)String after SEARCH command: 2e 30 58 5f 36 41 30 31 00 49
458 458  
459 -Valid payload after DataCUT command: 2e 30 58 5f 36
450 +(% style="color:red" %)Valid payload after DataCUT command: 2e 30 58 5f 36
460 460  
461 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image018.png]]
452 +[[image:1653269618463-608.png]]
462 462  
454 +=== 3.3.4 Compose the uplink payload ===
463 463  
464 -
465 -
466 -1.
467 -11.
468 -111. Compose the uplink payload
469 -
456 +(((
470 470  Through AT+COMMANDx and AT+DATACUTx we got valid value from each RS485 commands, Assume these valid value are RETURN1, RETURN2, .., to RETURNx. The next step is how to compose the LoRa Uplink Payload by these RETURNs. The command is **AT+DATAUP.**
458 +)))
471 471  
460 +(((
461 +(% style="color:#4f81bd" %)**Examples: AT+DATAUP=0**
462 +)))
472 472  
473 -**Examples: AT+DATAUP=0**
464 +(((
465 +Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**A SIGNLE UPLINK**.
466 +)))
474 474  
475 -Compose the uplink payload with value returns in sequence and send with **A SIGNLE UPLINK**.
476 -
468 +(((
477 477  Final Payload is
470 +)))
478 478  
479 -Battery Info+PAYVER + VALID Value from RETURN1 + Valid Value from RETURN2 + … + RETURNx
472 +(((
473 +(% style="color:#4f81bd" %)**Battery Info+PAYVER + VALID Value from RETURN1 + Valid Value from RETURN2 + … + RETURNx**
474 +)))
480 480  
476 +(((
481 481  Where PAYVER is defined by AT+PAYVER, below is an example screen shot.
478 +)))
482 482  
483 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image019.png]]
480 +[[image:1653269759169-150.png||height="513" width="716"]]
484 484  
482 +(% style="color:#4f81bd" %)**Examples: AT+DATAUP=1**
485 485  
484 +Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**Multiply UPLINKs**.
486 486  
487 -**Examples: AT+DATAUP=1**
488 -
489 -Compose the uplink payload with value returns in sequence and send with **Multiply UPLINKs**.
490 -
491 491  Final Payload is
492 492  
493 -Battery Info+PAYVER + PAYLOAD COUNT + PAYLOAD# + DATA
488 +(% style="color:#4f81bd" %)**Battery Info+PAYVER + PAYLOAD COUNT + PAYLOAD# + DATA**
494 494  
495 495  1. Battery Info (2 bytes): Battery voltage
496 496  1. PAYVER (1 byte): Defined by AT+PAYVER
497 497  1. PAYLOAD COUNT (1 byte): Total how many uplinks of this sampling.
498 498  1. PAYLOAD# (1 byte): Number of this uplink. (from 0,1,2,3…,to PAYLOAD COUNT)
499 -1. DATA: Valid value: max 6 bytes(US915 version here, [[Notice*!>>path:#max_byte]]) for each uplink so each uplink <= 11 bytes. For the last uplink, DATA will might less than 6 bytes
494 +1. DATA: Valid value: max 6 bytes(US915 version here, Notice*!) for each uplink so each uplink <= 11 bytes. For the last uplink, DATA will might less than 6 bytes
500 500  
501 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
496 +[[image:1653269916228-732.png||height="433" width="711"]]
502 502  
503 503  
504 504  So totally there will be 3 uplinks for this sampling, each uplink includes 6 bytes DATA
505 505  
506 -DATA1=RETURN1 Valid Value = 20 20 0a 33 90 41
501 +DATA1=RETURN1 Valid Value = (% style="background-color:green; color:white" %)20 20 0a 33 90 41
507 507  
508 -DATA2=1^^st^^ ~~ 6^^th^^ byte of Valid value of RETURN10= 02 aa 05 81 0a 20
503 +DATA2=1^^st^^ ~~ 6^^th^^ byte of Valid value of RETURN10=(% style="background-color:green; color:white" %) 02 aa 05 81 0a 20
509 509  
510 -DATA3=7^^th^^ ~~ 11^^th^^ bytes of Valid value of RETURN10 = 20 20 20 2d 30
505 +DATA3=7^^th^^ ~~ 11^^th^^ bytes of Valid value of RETURN10 = (% style="background-color:green; color:white" %)20 20 20 2d 30
511 511  
512 -
513 -
514 514  Below are the uplink payloads:
515 515  
516 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image021.png]]
509 +[[image:1653270130359-810.png]]
517 517  
518 518  
519 -Notice: the Max bytes is according to the max support bytes in different Frequency Bands for lowest SF. As below:
512 +(% style="color:red" %)**Notice: the Max bytes is according to the max support bytes in different Frequency Bands for lowest SF. As below:**
520 520  
521 521   ~* For AU915/AS923 bands, if UplinkDwell time=0, max 51 bytes for each uplink ( so 51 -5 = 46 max valid date)
522 522  
... ... @@ -526,12 +526,8 @@
526 526  
527 527   ~* For all other bands: max 51 bytes for each uplink  ( so 51 -5 = 46 max valid date).
528 528  
522 +=== 3.3.5 Uplink on demand ===
529 529  
530 -
531 -1.
532 -11.
533 -111. Uplink on demand
534 -
535 535  Except uplink periodically, RS485-BL is able to uplink on demand. The server sends downlink command to RS485-BL and RS485 will uplink data base on the command.
536 536  
537 537  Downlink control command:
... ... @@ -542,8 +542,8 @@
542 542  
543 543  
544 544  
545 -1.
546 -11.
534 +1.
535 +11.
547 547  111. Uplink on Interrupt
548 548  
549 549  Put the interrupt sensor between 3.3v_out and GPIO ext.[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image022.png]]
... ... @@ -557,7 +557,7 @@
557 557  AT+INTMOD=3  Interrupt trigger by rising edge.
558 558  
559 559  
560 -1.
549 +1.
561 561  11. Uplink Payload
562 562  
563 563  |**Size(bytes)**|**2**|**1**|**Length depends on the return from the commands**
... ... @@ -619,15 +619,15 @@
619 619  
620 620  * **Sensor Related Commands**: These commands are special designed for RS485-BL.  User can see these commands below:
621 621  
622 -1.
623 -11.
611 +1.
612 +11.
624 624  111. Common Commands:
625 625  
626 626  They should be available for each of Dragino Sensors, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: [[http:~~/~~/wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands>>url:http://wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands]]
627 627  
628 628  
629 -1.
630 -11.
618 +1.
619 +11.
631 631  111. Sensor related commands:
632 632  
633 633  ==== Choose Device Type (RS485 or TTL) ====
... ... @@ -933,13 +933,13 @@
933 933  
934 934  
935 935  
936 -1.
925 +1.
937 937  11. Buttons
938 938  
939 939  |**Button**|**Feature**
940 940  |**RST**|Reboot RS485-BL
941 941  
942 -1.
931 +1.
943 943  11. +3V3 Output
944 944  
945 945  RS485-BL has a Controllable +3V3 output, user can use this output to power external sensor.
... ... @@ -957,7 +957,7 @@
957 957  By default, the AT+3V3T=0. This is a special case, means the +3V3 output is always on at any time
958 958  
959 959  
960 -1.
949 +1.
961 961  11. +5V Output
962 962  
963 963  RS485-BL has a Controllable +5V output, user can use this output to power external sensor.
... ... @@ -977,13 +977,13 @@
977 977  
978 978  
979 979  
980 -1.
969 +1.
981 981  11. LEDs
982 982  
983 983  |**LEDs**|**Feature**
984 984  |**LED1**|Blink when device transmit a packet.
985 985  
986 -1.
975 +1.
987 987  11. Switch Jumper
988 988  
989 989  |**Switch Jumper**|**Feature**
... ... @@ -1029,7 +1029,7 @@
1029 1029  
1030 1030  
1031 1031  
1032 -1.
1021 +1.
1033 1033  11. Common AT Command Sequence
1034 1034  111. Multi-channel ABP mode (Use with SX1301/LG308)
1035 1035  
... ... @@ -1048,8 +1048,8 @@
1048 1048  
1049 1049  ATZ
1050 1050  
1051 -1.
1052 -11.
1040 +1.
1041 +11.
1053 1053  111. Single-channel ABP mode (Use with LG01/LG02)
1054 1054  
1055 1055  AT+FDR   Reset Parameters to Factory Default, Keys Reserve
... ... @@ -1124,7 +1124,7 @@
1124 1124  [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image035.png]] [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image036.png]]
1125 1125  
1126 1126  
1127 -1.
1116 +1.
1128 1128  11. How to change the LoRa Frequency Bands/Region?
1129 1129  
1130 1130  User can follow the introduction for [[how to upgrade image>>path:#upgrade_image]]. When download the images, choose the required image file for download.
... ... @@ -1131,7 +1131,7 @@
1131 1131  
1132 1132  
1133 1133  
1134 -1.
1123 +1.
1135 1135  11. How many RS485-Slave can RS485-BL connects?
1136 1136  
1137 1137  The RS485-BL can support max 32 RS485 devices. Each uplink command of RS485-BL can support max 16 different RS485 command. So RS485-BL can support max 16 RS485 devices pre-program in the device for uplink. For other devices no pre-program, user can use the [[downlink message (type code 0xA8) to poll their info>>path:#downlink_A8]].
... ... @@ -1148,7 +1148,7 @@
1148 1148  
1149 1149  
1150 1150  
1151 -1.
1140 +1.
1152 1152  11. Why I can’t join TTN V3 in US915 /AU915 bands?
1153 1153  
1154 1154  It might about the channels mapping. Please see for detail.
1653269403619-508.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +27.8 KB
Content
1653269438444-278.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +26.6 KB
Content
1653269551753-223.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +138.7 KB
Content
1653269568276-930.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +131.4 KB
Content
1653269593172-426.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +142.6 KB
Content
1653269618463-608.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +27.7 KB
Content
1653269759169-150.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +294.0 KB
Content
1653269916228-732.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +143.3 KB
Content
1653270130359-810.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +197.8 KB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0