<
From version < 22.2 >
edited by Xiaoling
on 2022/05/23 09:11
To version < 32.3 >
edited by Xiaoling
on 2022/06/02 15:23
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -18,19 +18,21 @@
18 18  
19 19  (((
20 20  (((
21 -The Dragino RS485-LN is a RS485 to LoRaWAN Converter. It converts the RS485 signal into LoRaWAN wireless signal which simplify the IoT installation and reduce the installation/maintaining cost.
21 +The Dragino RS485-LN is a (% style="color:blue" %)**RS485 to LoRaWAN Converter**(%%). It converts the RS485 signal into LoRaWAN wireless signal which simplify the IoT installation and reduce the installation/maintaining cost.
22 22  )))
23 23  
24 24  (((
25 -RS485-LN allows user to monitor / control RS485 devices and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
25 +RS485-LN allows user to (% style="color:blue" %)**monitor / control RS485 devices**(%%) and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
26 26  )))
27 27  
28 28  (((
29 -For data uplink, RS485-LN sends user-defined commands to RS485 devices and gets the return from the RS485 devices. RS485-LN will process these returns according to user-define rules to get the final payload and upload to LoRaWAN server.
29 +(% style="color:blue" %)**For data uplink**(%%), RS485-LN sends user-defined commands to RS485 devices and gets the return from the RS485 devices. RS485-LN will process these returns according to user-define rules to get the final payload and upload to LoRaWAN server.
30 30  )))
31 31  
32 32  (((
33 -For data downlink, RS485-LN runs in LoRaWAN Class C. When there downlink commands from LoRaWAN server, RS485-LN will forward the commands from LoRaWAN server to RS485 devices.
33 +(% style="color:blue" %)**For data downlink**(%%), RS485-LN runs in LoRaWAN Class C. When there downlink commands from LoRaWAN server, RS485-LN will forward the commands from LoRaWAN server to RS485 devices.
34 +
35 +(% style="color:blue" %)**Demo Dashboard for RS485-LN**(%%) connect to two energy meters: [[https:~~/~~/app.datacake.de/dashboard/d/58844a26-378d-4c5a-aaf5-b5b5b153447a>>url:https://app.datacake.de/dashboard/d/58844a26-378d-4c5a-aaf5-b5b5b153447a]]
34 34  )))
35 35  )))
36 36  
... ... @@ -41,7 +41,7 @@
41 41  **Hardware System:**
42 42  
43 43  * STM32L072CZT6 MCU
44 -* SX1276/78 Wireless Chip
46 +* SX1276/78 Wireless Chip 
45 45  * Power Consumption (exclude RS485 device):
46 46  ** Idle: 32mA@12v
47 47  
... ... @@ -51,7 +51,7 @@
51 51  **Interface for Model:**
52 52  
53 53  * RS485
54 -* Power Input 7~~ 24V DC.
56 +* Power Input 7~~ 24V DC. 
55 55  
56 56  **LoRa Spec:**
57 57  
... ... @@ -160,6 +160,7 @@
160 160  [[image:1652953462722-299.png]]
161 161  
162 162  (((
165 +(((
163 163  User can enter this key in their LoRaWAN Server portal. Below is TTN V3 screen shot:
164 164  )))
165 165  
... ... @@ -166,13 +166,11 @@
166 166  (((
167 167  Add APP EUI in the application.
168 168  )))
172 +)))
169 169  
170 -
171 -
172 -
173 173  [[image:image-20220519174512-1.png]]
174 174  
175 -[[image:image-20220519174512-2.png||height="328" width="731"]]
176 +[[image:image-20220519174512-2.png||height="323" width="720"]]
176 176  
177 177  [[image:image-20220519174512-3.png||height="556" width="724"]]
178 178  
... ... @@ -188,7 +188,7 @@
188 188  
189 189  
190 190  (((
191 -**Step 2**: Power on RS485-BL and it will auto join to the TTN V3 network. After join success, it will start to upload message to TTN V3 and user can see in the panel.
192 +**Step 2**: Power on RS485-LN and it will auto join to the TTN V3 network. After join success, it will start to upload message to TTN V3 and user can see in the panel.
192 192  )))
193 193  
194 194  [[image:1652953568895-172.png||height="232" width="724"]]
... ... @@ -196,23 +196,19 @@
196 196  == 3.3 Configure Commands to read data ==
197 197  
198 198  (((
199 -There are plenty of RS485 and TTL level devices in the market and each device has different command to read the valid data. To support these devices in flexible, RS485-BL supports flexible command set. User can use [[AT Commands or LoRaWAN Downlink>>path:#AT_COMMAND]] Command to configure how RS485-BL should read the sensor and how to handle the return from RS485 or TTL sensors.
200 +(((
201 +There are plenty of RS485 devices in the market and each device has different command to read the valid data. To support these devices in flexible, RS485-LN supports flexible command set. User can use [[AT Commands>>path:#AT_COMMAND]] or LoRaWAN Downlink Command to configure what commands RS485-LN should send for each sampling and how to handle the return from RS485 devices.
200 200  )))
201 201  
204 +(((
205 +(% style="color:red" %)Note: below description and commands are for firmware version >v1.1, if you have firmware version v1.0. Please check the [[user manual v1.0>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/&file=RS485-LN_UserManual_v1.0.1.pdf]] or upgrade the firmware to v1.1
206 +)))
207 +)))
208 +
202 202  === 3.3.1 onfigure UART settings for RS485 or TTL communication ===
203 203  
204 -RS485-BL can connect to either RS485 sensors or TTL sensor. User need to specify what type of sensor need to connect.
211 +To use RS485-LN to read data from RS485 sensors, connect the RS485-LN A/B traces to the sensors. And user need to make sure RS485-LN use the match UART setting to access the sensors. The related commands for UART settings are:
205 205  
206 -**~1. RS485-MODBUS mode:**
207 -
208 -AT+MOD=1 ~/~/ Support RS485-MODBUS type sensors. User can connect multiply RS485 , Modbus sensors to the A / B pins.
209 -
210 -**2. TTL mode:**
211 -
212 -AT+MOD=2 ~/~/ Support TTL Level sensors, User can connect one TTL Sensor to the TXD/RXD/GND pins.
213 -
214 -RS485-BL default UART settings is **9600, no parity, stop bit 1**. If the sensor has a different settings, user can change the RS485-BL setting to match.
215 -
216 216  (% border="1" style="background-color:#ffffcc; color:green; width:795px" %)
217 217  |(((
218 218  **AT Commands**
... ... @@ -237,13 +237,7 @@
237 237  |(((
238 238  AT+PARITY
239 239  )))|(% style="width:285px" %)(((
240 -(((
241 241  Set UART parity (for RS485 connection)
242 -)))
243 -
244 -(((
245 -Default Value is: no parity.
246 -)))
247 247  )))|(% style="width:347px" %)(((
248 248  (((
249 249  AT+PARITY=0
... ... @@ -261,7 +261,7 @@
261 261  )))
262 262  
263 263  (((
264 -Default Value is: 1bit.
255 +
265 265  )))
266 266  )))|(% style="width:347px" %)(((
267 267  (((
... ... @@ -280,12 +280,10 @@
280 280  === 3.3.2 Configure sensors ===
281 281  
282 282  (((
283 -Some sensors might need to configure before normal operation. User can configure such sensor via PC or through RS485-BL AT Commands (% style="color:#4f81bd" %)**AT+CFGDEV**.
284 -)))
285 -
286 286  (((
287 -When user issue an (% style="color:#4f81bd" %)**AT+CFGDEV**(%%) command, Each (% style="color:#4f81bd" %)**AT+CFGDEV**(%%) equals to send a command to the RS485 or TTL sensors. This command will only run when user input it and won’t run during each sampling.
275 +Some sensors might need to configure before normal operation. User can configure such sensor via PC and RS485 adapter or through RS485-LN AT Commands (% style="color:#4f81bd" %)**AT+CFGDEV**(%%). Each (% style="color:#4f81bd" %)**AT+CFGDEV **(%%)equals to send a RS485 command to sensors. This command will only run when user input it and won’t run during each sampling.
288 288  )))
277 +)))
289 289  
290 290  (% border="1" style="background-color:#ffffcc; color:green; width:806px" %)
291 291  |**AT Commands**|(% style="width:418px" %)**Description**|(% style="width:256px" %)**Example**
... ... @@ -297,8 +297,6 @@
297 297  mm: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command
298 298  )))|(% style="width:256px" %)AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m
299 299  
300 -Detail of AT+CFGDEV command see [[AT+CFGDEV detail>>path:#AT_CFGDEV]].
301 -
302 302  === 3.3.3 Configure read commands for each sampling ===
303 303  
304 304  (((
... ... @@ -380,11 +380,17 @@
380 380  **m: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command**
381 381  )))
382 382  
370 +(((
383 383  For example, if we have a RS485 sensor. The command to get sensor value is: 01 03 0B B8 00 02 46 0A. Where 01 03 0B B8 00 02 is the Modbus command to read the register 0B B8 where stored the sensor value. The 46 0A is the CRC-16/MODBUS which calculate manually.
372 +)))
384 384  
374 +(((
385 385  In the RS485-BL, we should use this command AT+COMMAND1=01 03 0B B8 00 02,1 for the same.
376 +)))
386 386  
378 +(((
387 387  **AT+SEARCHx**: This command defines how to handle the return from AT+COMMANDx.
380 +)))
388 388  
389 389  (% border="1" class="table-bordered" %)
390 390  |(((
... ... @@ -396,26 +396,24 @@
396 396  
397 397  )))
398 398  
399 -Examples:
392 +**Examples:**
400 400  
401 -1. For a return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
394 +~1. For a return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
402 402  
403 403  If we set AT+SEARCH1=1,1E 56 34.      (max 5 bytes for prefix)
404 404  
405 -The valid data will be all bytes after 1E 56 34 , so it is 2e 30 58 5f 36 41 30 31 00 49
398 +The valid data will be all bytes after 1E 56 34 , so it is (% style="background-color:yellow" %)** 2e 30 58 5f 36 41 30 31 00 49**
406 406  
407 -[[image:1652954654347-831.png]]
400 +[[image:1653269403619-508.png]]
408 408  
402 +2. For a return string from AT+COMMAND1:  16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
409 409  
410 -1. For a return string from AT+COMMAND1:  16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
411 -
412 412  If we set AT+SEARCH1=2, 1E 56 34+31 00 49
413 413  
414 -Device will search the bytes between 1E 56 34 and 31 00 49. So it is 2e 30 58 5f 36 41 30
406 +Device will search the bytes between 1E 56 34 and 31 00 49. So it is (% style="background-color:yellow" %)** 2e 30 58 5f 36 41 30**
415 415  
416 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image014.png]]
408 +[[image:1653269438444-278.png]]
417 417  
418 -
419 419  **AT+DATACUTx : **This command defines how to handle the return from AT+COMMANDx, max return length is 45 bytes.
420 420  
421 421  |(((
... ... @@ -430,94 +430,95 @@
430 430  
431 431  * Grab bytes:
432 432  
433 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image015.png]]
424 +[[image:1653269551753-223.png||height="311" width="717"]]
434 434  
435 435  * Grab a section.
436 436  
437 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image016.png]]
428 +[[image:1653269568276-930.png||height="325" width="718"]]
438 438  
439 439  * Grab different sections.
440 440  
441 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image017.png]]
432 +[[image:1653269593172-426.png||height="303" width="725"]]
442 442  
434 +(% style="color:red" %)**Note:**
443 443  
444 -Note:
445 -
446 446  AT+SEARCHx and AT+DATACUTx can be used together, if both commands are set, RS485-BL will first process AT+SEARCHx on the return string and get a temporary string, and then process AT+DATACUTx on this temporary string to get the final payload. In this case, AT+DATACUTx need to set to format AT+DATACUTx=0,xx,xx where the return bytes set to 0.
447 447  
448 448  Example:
449 449  
450 -AT+COMMAND1=11 01 1E D0,0
440 +(% style="color:red" %)AT+COMMAND1=11 01 1E D0,0
451 451  
452 -AT+SEARCH1=1,1E 56 34
442 +(% style="color:red" %)AT+SEARCH1=1,1E 56 34
453 453  
454 -AT+DATACUT1=0,2,1~~5
444 +(% style="color:red" %)AT+DATACUT1=0,2,1~~5
455 455  
456 -Return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
446 +(% style="color:red" %)Return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
457 457  
458 -String after SEARCH command: 2e 30 58 5f 36 41 30 31 00 49
448 +(% style="color:red" %)String after SEARCH command: 2e 30 58 5f 36 41 30 31 00 49
459 459  
460 -Valid payload after DataCUT command: 2e 30 58 5f 36
450 +(% style="color:red" %)Valid payload after DataCUT command: 2e 30 58 5f 36
461 461  
462 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image018.png]]
452 +[[image:1653269618463-608.png]]
463 463  
454 +=== 3.3.4 Compose the uplink payload ===
464 464  
465 -
466 -
467 -1.
468 -11.
469 -111. Compose the uplink payload
470 -
456 +(((
471 471  Through AT+COMMANDx and AT+DATACUTx we got valid value from each RS485 commands, Assume these valid value are RETURN1, RETURN2, .., to RETURNx. The next step is how to compose the LoRa Uplink Payload by these RETURNs. The command is **AT+DATAUP.**
458 +)))
472 472  
460 +(((
461 +(% style="color:#4f81bd" %)**Examples: AT+DATAUP=0**
462 +)))
473 473  
474 -**Examples: AT+DATAUP=0**
464 +(((
465 +Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**A SIGNLE UPLINK**.
466 +)))
475 475  
476 -Compose the uplink payload with value returns in sequence and send with **A SIGNLE UPLINK**.
477 -
468 +(((
478 478  Final Payload is
470 +)))
479 479  
480 -Battery Info+PAYVER + VALID Value from RETURN1 + Valid Value from RETURN2 + … + RETURNx
472 +(((
473 +(% style="color:#4f81bd" %)**Battery Info+PAYVER + VALID Value from RETURN1 + Valid Value from RETURN2 + … + RETURNx**
474 +)))
481 481  
476 +(((
482 482  Where PAYVER is defined by AT+PAYVER, below is an example screen shot.
478 +)))
483 483  
484 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image019.png]]
480 +[[image:1653269759169-150.png||height="513" width="716"]]
485 485  
482 +(% style="color:#4f81bd" %)**Examples: AT+DATAUP=1**
486 486  
484 +Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**Multiply UPLINKs**.
487 487  
488 -**Examples: AT+DATAUP=1**
489 -
490 -Compose the uplink payload with value returns in sequence and send with **Multiply UPLINKs**.
491 -
492 492  Final Payload is
493 493  
494 -Battery Info+PAYVER + PAYLOAD COUNT + PAYLOAD# + DATA
488 +(% style="color:#4f81bd" %)**Battery Info+PAYVER + PAYLOAD COUNT + PAYLOAD# + DATA**
495 495  
496 496  1. Battery Info (2 bytes): Battery voltage
497 497  1. PAYVER (1 byte): Defined by AT+PAYVER
498 498  1. PAYLOAD COUNT (1 byte): Total how many uplinks of this sampling.
499 499  1. PAYLOAD# (1 byte): Number of this uplink. (from 0,1,2,3…,to PAYLOAD COUNT)
500 -1. DATA: Valid value: max 6 bytes(US915 version here, [[Notice*!>>path:#max_byte]]) for each uplink so each uplink <= 11 bytes. For the last uplink, DATA will might less than 6 bytes
494 +1. DATA: Valid value: max 6 bytes(US915 version here, Notice*!) for each uplink so each uplink <= 11 bytes. For the last uplink, DATA will might less than 6 bytes
501 501  
502 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
496 +[[image:1653269916228-732.png||height="433" width="711"]]
503 503  
504 504  
505 505  So totally there will be 3 uplinks for this sampling, each uplink includes 6 bytes DATA
506 506  
507 -DATA1=RETURN1 Valid Value = 20 20 0a 33 90 41
501 +DATA1=RETURN1 Valid Value = (% style="background-color:green; color:white" %)20 20 0a 33 90 41
508 508  
509 -DATA2=1^^st^^ ~~ 6^^th^^ byte of Valid value of RETURN10= 02 aa 05 81 0a 20
503 +DATA2=1^^st^^ ~~ 6^^th^^ byte of Valid value of RETURN10=(% style="background-color:green; color:white" %) 02 aa 05 81 0a 20
510 510  
511 -DATA3=7^^th^^ ~~ 11^^th^^ bytes of Valid value of RETURN10 = 20 20 20 2d 30
505 +DATA3=7^^th^^ ~~ 11^^th^^ bytes of Valid value of RETURN10 = (% style="background-color:green; color:white" %)20 20 20 2d 30
512 512  
513 -
514 -
515 515  Below are the uplink payloads:
516 516  
517 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image021.png]]
509 +[[image:1653270130359-810.png]]
518 518  
519 519  
520 -Notice: the Max bytes is according to the max support bytes in different Frequency Bands for lowest SF. As below:
512 +(% style="color:red" %)**Notice: the Max bytes is according to the max support bytes in different Frequency Bands for lowest SF. As below:**
521 521  
522 522   ~* For AU915/AS923 bands, if UplinkDwell time=0, max 51 bytes for each uplink ( so 51 -5 = 46 max valid date)
523 523  
... ... @@ -527,12 +527,8 @@
527 527  
528 528   ~* For all other bands: max 51 bytes for each uplink  ( so 51 -5 = 46 max valid date).
529 529  
522 +=== 3.3.5 Uplink on demand ===
530 530  
531 -
532 -1.
533 -11.
534 -111. Uplink on demand
535 -
536 536  Except uplink periodically, RS485-BL is able to uplink on demand. The server sends downlink command to RS485-BL and RS485 will uplink data base on the command.
537 537  
538 538  Downlink control command:
1653269403619-508.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +27.8 KB
Content
1653269438444-278.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +26.6 KB
Content
1653269551753-223.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +138.7 KB
Content
1653269568276-930.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +131.4 KB
Content
1653269593172-426.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +142.6 KB
Content
1653269618463-608.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +27.7 KB
Content
1653269759169-150.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +294.0 KB
Content
1653269916228-732.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +143.3 KB
Content
1653270130359-810.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +197.8 KB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0