Changes for page RS485-LN – RS485 to LoRaWAN Converter User Manual
Last modified by Karry Zhuang on 2025/03/06 16:34
Summary
-
Page properties (1 modified, 0 added, 0 removed)
-
Attachments (0 modified, 9 added, 0 removed)
Details
- Page properties
-
- Content
-
... ... @@ -18,19 +18,21 @@ 18 18 19 19 ((( 20 20 ((( 21 -The Dragino RS485-LN is a RS485 to LoRaWAN Converter. It converts the RS485 signal into LoRaWAN wireless signal which simplify the IoT installation and reduce the installation/maintaining cost. 21 +The Dragino RS485-LN is a (% style="color:blue" %)**RS485 to LoRaWAN Converter**(%%). It converts the RS485 signal into LoRaWAN wireless signal which simplify the IoT installation and reduce the installation/maintaining cost. 22 22 ))) 23 23 24 24 ((( 25 -RS485-LN allows user to monitor / control RS485 devices and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on. 25 +RS485-LN allows user to (% style="color:blue" %)**monitor / control RS485 devices**(%%) and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on. 26 26 ))) 27 27 28 28 ((( 29 -For data uplink, RS485-LN sends user-defined commands to RS485 devices and gets the return from the RS485 devices. RS485-LN will process these returns according to user-define rules to get the final payload and upload to LoRaWAN server. 29 +(% style="color:blue" %)**For data uplink**(%%), RS485-LN sends user-defined commands to RS485 devices and gets the return from the RS485 devices. RS485-LN will process these returns according to user-define rules to get the final payload and upload to LoRaWAN server. 30 30 ))) 31 31 32 32 ((( 33 -For data downlink, RS485-LN runs in LoRaWAN Class C. When there downlink commands from LoRaWAN server, RS485-LN will forward the commands from LoRaWAN server to RS485 devices. 33 +(% style="color:blue" %)**For data downlink**(%%), RS485-LN runs in LoRaWAN Class C. When there downlink commands from LoRaWAN server, RS485-LN will forward the commands from LoRaWAN server to RS485 devices. 34 + 35 +(% style="color:blue" %)**Demo Dashboard for RS485-LN**(%%) connect to two energy meters: [[https:~~/~~/app.datacake.de/dashboard/d/58844a26-378d-4c5a-aaf5-b5b5b153447a>>url:https://app.datacake.de/dashboard/d/58844a26-378d-4c5a-aaf5-b5b5b153447a]] 34 34 ))) 35 35 ))) 36 36 ... ... @@ -41,7 +41,7 @@ 41 41 **Hardware System:** 42 42 43 43 * STM32L072CZT6 MCU 44 -* SX1276/78 Wireless Chip 46 +* SX1276/78 Wireless Chip 45 45 * Power Consumption (exclude RS485 device): 46 46 ** Idle: 32mA@12v 47 47 ... ... @@ -51,7 +51,7 @@ 51 51 **Interface for Model:** 52 52 53 53 * RS485 54 -* Power Input 7~~ 24V DC. 56 +* Power Input 7~~ 24V DC. 55 55 56 56 **LoRa Spec:** 57 57 ... ... @@ -160,6 +160,7 @@ 160 160 [[image:1652953462722-299.png]] 161 161 162 162 ((( 165 +((( 163 163 User can enter this key in their LoRaWAN Server portal. Below is TTN V3 screen shot: 164 164 ))) 165 165 ... ... @@ -166,13 +166,11 @@ 166 166 ((( 167 167 Add APP EUI in the application. 168 168 ))) 172 +))) 169 169 170 - 171 - 172 - 173 173 [[image:image-20220519174512-1.png]] 174 174 175 -[[image:image-20220519174512-2.png||height="32 8" width="731"]]176 +[[image:image-20220519174512-2.png||height="323" width="720"]] 176 176 177 177 [[image:image-20220519174512-3.png||height="556" width="724"]] 178 178 ... ... @@ -188,7 +188,7 @@ 188 188 189 189 190 190 ((( 191 -**Step 2**: Power on RS485- BL and it will auto join to the TTN V3 network. After join success, it will start to upload message to TTN V3 and user can see in the panel.192 +**Step 2**: Power on RS485-LN and it will auto join to the TTN V3 network. After join success, it will start to upload message to TTN V3 and user can see in the panel. 192 192 ))) 193 193 194 194 [[image:1652953568895-172.png||height="232" width="724"]] ... ... @@ -196,23 +196,19 @@ 196 196 == 3.3 Configure Commands to read data == 197 197 198 198 ((( 199 -There are plenty of RS485 and TTL level devices in the market and each device has different command to read the valid data. To support these devices in flexible, RS485-BL supports flexible command set. User can use [[AT Commands or LoRaWAN Downlink>>path:#AT_COMMAND]] Command to configure how RS485-BL should read the sensor and how to handle the return from RS485 or TTL sensors. 200 +((( 201 +There are plenty of RS485 devices in the market and each device has different command to read the valid data. To support these devices in flexible, RS485-LN supports flexible command set. User can use [[AT Commands>>path:#AT_COMMAND]] or LoRaWAN Downlink Command to configure what commands RS485-LN should send for each sampling and how to handle the return from RS485 devices. 200 200 ))) 201 201 204 +((( 205 +(% style="color:red" %)Note: below description and commands are for firmware version >v1.1, if you have firmware version v1.0. Please check the [[user manual v1.0>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/&file=RS485-LN_UserManual_v1.0.1.pdf]] or upgrade the firmware to v1.1 206 +))) 207 +))) 208 + 202 202 === 3.3.1 onfigure UART settings for RS485 or TTL communication === 203 203 204 -RS485- BLcan connect to eitherRS485sensorsorTTLsensor.User need to specifywhattype ofsensorneedtoconnect.211 +To use RS485-LN to read data from RS485 sensors, connect the RS485-LN A/B traces to the sensors. And user need to make sure RS485-LN use the match UART setting to access the sensors. The related commands for UART settings are: 205 205 206 -**~1. RS485-MODBUS mode:** 207 - 208 -AT+MOD=1 ~/~/ Support RS485-MODBUS type sensors. User can connect multiply RS485 , Modbus sensors to the A / B pins. 209 - 210 -**2. TTL mode:** 211 - 212 -AT+MOD=2 ~/~/ Support TTL Level sensors, User can connect one TTL Sensor to the TXD/RXD/GND pins. 213 - 214 -RS485-BL default UART settings is **9600, no parity, stop bit 1**. If the sensor has a different settings, user can change the RS485-BL setting to match. 215 - 216 216 (% border="1" style="background-color:#ffffcc; color:green; width:795px" %) 217 217 |((( 218 218 **AT Commands** ... ... @@ -237,13 +237,7 @@ 237 237 |((( 238 238 AT+PARITY 239 239 )))|(% style="width:285px" %)((( 240 -((( 241 241 Set UART parity (for RS485 connection) 242 -))) 243 - 244 -((( 245 -Default Value is: no parity. 246 -))) 247 247 )))|(% style="width:347px" %)((( 248 248 ((( 249 249 AT+PARITY=0 ... ... @@ -261,7 +261,7 @@ 261 261 ))) 262 262 263 263 ((( 264 - DefaultValue is: 1bit.255 + 265 265 ))) 266 266 )))|(% style="width:347px" %)((( 267 267 ((( ... ... @@ -280,12 +280,10 @@ 280 280 === 3.3.2 Configure sensors === 281 281 282 282 ((( 283 -Some sensors might need to configure before normal operation. User can configure such sensor via PC or through RS485-BL AT Commands (% style="color:#4f81bd" %)**AT+CFGDEV**. 284 -))) 285 - 286 286 ((( 287 - When user issue an (% style="color:#4f81bd" %)**AT+CFGDEV**(%%)command,Each (% style="color:#4f81bd" %)**AT+CFGDEV**(%%)the RS485 or TTLsensors. This command will only run when user input it and won’t run during each sampling.275 +Some sensors might need to configure before normal operation. User can configure such sensor via PC and RS485 adapter or through RS485-LN AT Commands (% style="color:#4f81bd" %)**AT+CFGDEV**(%%). Each (% style="color:#4f81bd" %)**AT+CFGDEV **(%%)equals to send a RS485 command to sensors. This command will only run when user input it and won’t run during each sampling. 288 288 ))) 277 +))) 289 289 290 290 (% border="1" style="background-color:#ffffcc; color:green; width:806px" %) 291 291 |**AT Commands**|(% style="width:418px" %)**Description**|(% style="width:256px" %)**Example** ... ... @@ -297,8 +297,6 @@ 297 297 mm: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command 298 298 )))|(% style="width:256px" %)AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m 299 299 300 -Detail of AT+CFGDEV command see [[AT+CFGDEV detail>>path:#AT_CFGDEV]]. 301 - 302 302 === 3.3.3 Configure read commands for each sampling === 303 303 304 304 ((( ... ... @@ -380,11 +380,17 @@ 380 380 **m: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command** 381 381 ))) 382 382 370 +((( 383 383 For example, if we have a RS485 sensor. The command to get sensor value is: 01 03 0B B8 00 02 46 0A. Where 01 03 0B B8 00 02 is the Modbus command to read the register 0B B8 where stored the sensor value. The 46 0A is the CRC-16/MODBUS which calculate manually. 372 +))) 384 384 374 +((( 385 385 In the RS485-BL, we should use this command AT+COMMAND1=01 03 0B B8 00 02,1 for the same. 376 +))) 386 386 378 +((( 387 387 **AT+SEARCHx**: This command defines how to handle the return from AT+COMMANDx. 380 +))) 388 388 389 389 (% border="1" class="table-bordered" %) 390 390 |((( ... ... @@ -396,26 +396,24 @@ 396 396 397 397 ))) 398 398 399 -Examples: 392 +**Examples:** 400 400 401 -1. For a return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49 394 +~1. For a return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49 402 402 403 403 If we set AT+SEARCH1=1,1E 56 34. (max 5 bytes for prefix) 404 404 405 -The valid data will be all bytes after 1E 56 34 , so it is 2e 30 58 5f 36 41 30 31 00 49 398 +The valid data will be all bytes after 1E 56 34 , so it is (% style="background-color:yellow" %)** 2e 30 58 5f 36 41 30 31 00 49** 406 406 407 -[[image:16529 54654347-831.png]]400 +[[image:1653269403619-508.png]] 408 408 402 +2. For a return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49 409 409 410 -1. For a return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49 411 - 412 412 If we set AT+SEARCH1=2, 1E 56 34+31 00 49 413 413 414 -Device will search the bytes between 1E 56 34 and 31 00 49. So it is 2e 30 58 5f 36 41 30 406 +Device will search the bytes between 1E 56 34 and 31 00 49. So it is (% style="background-color:yellow" %)** 2e 30 58 5f 36 41 30** 415 415 416 -[[image: file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image014.png]]408 +[[image:1653269438444-278.png]] 417 417 418 - 419 419 **AT+DATACUTx : **This command defines how to handle the return from AT+COMMANDx, max return length is 45 bytes. 420 420 421 421 |((( ... ... @@ -430,94 +430,95 @@ 430 430 431 431 * Grab bytes: 432 432 433 -[[image: file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image015.png]]424 +[[image:1653269551753-223.png||height="311" width="717"]] 434 434 435 435 * Grab a section. 436 436 437 -[[image: file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image016.png]]428 +[[image:1653269568276-930.png||height="325" width="718"]] 438 438 439 439 * Grab different sections. 440 440 441 -[[image: file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image017.png]]432 +[[image:1653269593172-426.png||height="303" width="725"]] 442 442 434 +(% style="color:red" %)**Note:** 443 443 444 -Note: 445 - 446 446 AT+SEARCHx and AT+DATACUTx can be used together, if both commands are set, RS485-BL will first process AT+SEARCHx on the return string and get a temporary string, and then process AT+DATACUTx on this temporary string to get the final payload. In this case, AT+DATACUTx need to set to format AT+DATACUTx=0,xx,xx where the return bytes set to 0. 447 447 448 448 Example: 449 449 450 -AT+COMMAND1=11 01 1E D0,0 440 +(% style="color:red" %)AT+COMMAND1=11 01 1E D0,0 451 451 452 -AT+SEARCH1=1,1E 56 34 442 +(% style="color:red" %)AT+SEARCH1=1,1E 56 34 453 453 454 -AT+DATACUT1=0,2,1~~5 444 +(% style="color:red" %)AT+DATACUT1=0,2,1~~5 455 455 456 -Return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49 446 +(% style="color:red" %)Return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49 457 457 458 -String after SEARCH command: 2e 30 58 5f 36 41 30 31 00 49 448 +(% style="color:red" %)String after SEARCH command: 2e 30 58 5f 36 41 30 31 00 49 459 459 460 -Valid payload after DataCUT command: 2e 30 58 5f 36 450 +(% style="color:red" %)Valid payload after DataCUT command: 2e 30 58 5f 36 461 461 462 -[[image: file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image018.png]]452 +[[image:1653269618463-608.png]] 463 463 454 +=== 3.3.4 Compose the uplink payload === 464 464 465 - 466 - 467 -1. 468 -11. 469 -111. Compose the uplink payload 470 - 456 +((( 471 471 Through AT+COMMANDx and AT+DATACUTx we got valid value from each RS485 commands, Assume these valid value are RETURN1, RETURN2, .., to RETURNx. The next step is how to compose the LoRa Uplink Payload by these RETURNs. The command is **AT+DATAUP.** 458 +))) 472 472 460 +((( 461 +(% style="color:#4f81bd" %)**Examples: AT+DATAUP=0** 462 +))) 473 473 474 -**Examples: AT+DATAUP=0** 464 +((( 465 +Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**A SIGNLE UPLINK**. 466 +))) 475 475 476 -Compose the uplink payload with value returns in sequence and send with **A SIGNLE UPLINK**. 477 - 468 +((( 478 478 Final Payload is 470 +))) 479 479 480 -Battery Info+PAYVER + VALID Value from RETURN1 + Valid Value from RETURN2 + … + RETURNx 472 +((( 473 +(% style="color:#4f81bd" %)**Battery Info+PAYVER + VALID Value from RETURN1 + Valid Value from RETURN2 + … + RETURNx** 474 +))) 481 481 476 +((( 482 482 Where PAYVER is defined by AT+PAYVER, below is an example screen shot. 478 +))) 483 483 484 -[[image: file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image019.png]]480 +[[image:1653269759169-150.png||height="513" width="716"]] 485 485 482 +(% style="color:#4f81bd" %)**Examples: AT+DATAUP=1** 486 486 484 +Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**Multiply UPLINKs**. 487 487 488 -**Examples: AT+DATAUP=1** 489 - 490 -Compose the uplink payload with value returns in sequence and send with **Multiply UPLINKs**. 491 - 492 492 Final Payload is 493 493 494 -Battery Info+PAYVER + PAYLOAD COUNT + PAYLOAD# + DATA 488 +(% style="color:#4f81bd" %)**Battery Info+PAYVER + PAYLOAD COUNT + PAYLOAD# + DATA** 495 495 496 496 1. Battery Info (2 bytes): Battery voltage 497 497 1. PAYVER (1 byte): Defined by AT+PAYVER 498 498 1. PAYLOAD COUNT (1 byte): Total how many uplinks of this sampling. 499 499 1. PAYLOAD# (1 byte): Number of this uplink. (from 0,1,2,3…,to PAYLOAD COUNT) 500 -1. DATA: Valid value: max 6 bytes(US915 version here, [[Notice*!>>path:#max_byte]]) for each uplink so each uplink <= 11 bytes. For the last uplink, DATA will might less than 6 bytes494 +1. DATA: Valid value: max 6 bytes(US915 version here, Notice*!) for each uplink so each uplink <= 11 bytes. For the last uplink, DATA will might less than 6 bytes 501 501 502 -[[image: file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]496 +[[image:1653269916228-732.png||height="433" width="711"]] 503 503 504 504 505 505 So totally there will be 3 uplinks for this sampling, each uplink includes 6 bytes DATA 506 506 507 -DATA1=RETURN1 Valid Value = 20 20 0a 33 90 41 501 +DATA1=RETURN1 Valid Value = (% style="background-color:green; color:white" %)20 20 0a 33 90 41 508 508 509 -DATA2=1^^st^^ ~~ 6^^th^^ byte of Valid value of RETURN10= 02 aa 05 81 0a 20 503 +DATA2=1^^st^^ ~~ 6^^th^^ byte of Valid value of RETURN10=(% style="background-color:green; color:white" %) 02 aa 05 81 0a 20 510 510 511 -DATA3=7^^th^^ ~~ 11^^th^^ bytes of Valid value of RETURN10 = 20 20 20 2d 30 505 +DATA3=7^^th^^ ~~ 11^^th^^ bytes of Valid value of RETURN10 = (% style="background-color:green; color:white" %)20 20 20 2d 30 512 512 513 - 514 - 515 515 Below are the uplink payloads: 516 516 517 -[[image: file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image021.png]]509 +[[image:1653270130359-810.png]] 518 518 519 519 520 -Notice: the Max bytes is according to the max support bytes in different Frequency Bands for lowest SF. As below: 512 +(% style="color:red" %)**Notice: the Max bytes is according to the max support bytes in different Frequency Bands for lowest SF. As below:** 521 521 522 522 ~* For AU915/AS923 bands, if UplinkDwell time=0, max 51 bytes for each uplink ( so 51 -5 = 46 max valid date) 523 523 ... ... @@ -527,12 +527,8 @@ 527 527 528 528 ~* For all other bands: max 51 bytes for each uplink ( so 51 -5 = 46 max valid date). 529 529 522 +=== 3.3.5 Uplink on demand === 530 530 531 - 532 -1. 533 -11. 534 -111. Uplink on demand 535 - 536 536 Except uplink periodically, RS485-BL is able to uplink on demand. The server sends downlink command to RS485-BL and RS485 will uplink data base on the command. 537 537 538 538 Downlink control command:
- 1653269403619-508.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +27.8 KB - Content
- 1653269438444-278.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +26.6 KB - Content
- 1653269551753-223.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +138.7 KB - Content
- 1653269568276-930.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +131.4 KB - Content
- 1653269593172-426.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +142.6 KB - Content
- 1653269618463-608.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +27.7 KB - Content
- 1653269759169-150.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +294.0 KB - Content
- 1653269916228-732.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +143.3 KB - Content
- 1653270130359-810.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +197.8 KB - Content