<
From version < 20.3 >
edited by Xiaoling
on 2022/05/23 09:08
To version < 35.6 >
edited by Xiaoling
on 2022/06/02 15:49
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -18,40 +18,42 @@
18 18  
19 19  (((
20 20  (((
21 -The Dragino RS485-LN is a RS485 to LoRaWAN Converter. It converts the RS485 signal into LoRaWAN wireless signal which simplify the IoT installation and reduce the installation/maintaining cost.
21 +The Dragino RS485-LN is a (% style="color:blue" %)**RS485 to LoRaWAN Converter**(%%). It converts the RS485 signal into LoRaWAN wireless signal which simplify the IoT installation and reduce the installation/maintaining cost.
22 22  )))
23 23  
24 24  (((
25 -RS485-LN allows user to monitor / control RS485 devices and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
25 +RS485-LN allows user to (% style="color:blue" %)**monitor / control RS485 devices**(%%) and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
26 26  )))
27 27  
28 28  (((
29 -For data uplink, RS485-LN sends user-defined commands to RS485 devices and gets the return from the RS485 devices. RS485-LN will process these returns according to user-define rules to get the final payload and upload to LoRaWAN server.
29 +(% style="color:blue" %)**For data uplink**(%%), RS485-LN sends user-defined commands to RS485 devices and gets the return from the RS485 devices. RS485-LN will process these returns according to user-define rules to get the final payload and upload to LoRaWAN server.
30 30  )))
31 31  
32 32  (((
33 -For data downlink, RS485-LN runs in LoRaWAN Class C. When there downlink commands from LoRaWAN server, RS485-LN will forward the commands from LoRaWAN server to RS485 devices.
33 +(% style="color:blue" %)**For data downlink**(%%), RS485-LN runs in LoRaWAN Class C. When there downlink commands from LoRaWAN server, RS485-LN will forward the commands from LoRaWAN server to RS485 devices.
34 +
35 +(% style="color:blue" %)**Demo Dashboard for RS485-LN**(%%) connect to two energy meters: [[https:~~/~~/app.datacake.de/dashboard/d/58844a26-378d-4c5a-aaf5-b5b5b153447a>>url:https://app.datacake.de/dashboard/d/58844a26-378d-4c5a-aaf5-b5b5b153447a]]
34 34  )))
35 35  )))
36 36  
37 37  [[image:1653267211009-519.png||height="419" width="724"]]
38 38  
41 +
39 39  == 1.2 Specifications ==
40 40  
44 +
41 41  **Hardware System:**
42 42  
43 43  * STM32L072CZT6 MCU
44 -* SX1276/78 Wireless Chip
48 +* SX1276/78 Wireless Chip 
45 45  * Power Consumption (exclude RS485 device):
46 46  ** Idle: 32mA@12v
47 -
48 -*
49 49  ** 20dB Transmit: 65mA@12v
50 50  
51 51  **Interface for Model:**
52 52  
53 53  * RS485
54 -* Power Input 7~~ 24V DC.
56 +* Power Input 7~~ 24V DC. 
55 55  
56 56  **LoRa Spec:**
57 57  
... ... @@ -98,6 +98,7 @@
98 98  
99 99  [[RS485-LN Image files – Download link and Change log>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/]]
100 100  
103 +
101 101  == 1.6 Hardware Change log ==
102 102  
103 103  (((
... ... @@ -105,6 +105,8 @@
105 105  v1.2: Add External Interrupt Pin.
106 106  
107 107  v1.0: Release
111 +
112 +
108 108  )))
109 109  )))
110 110  
... ... @@ -121,6 +121,8 @@
121 121  )))
122 122  
123 123  [[image:1653268091319-405.png]]
129 +
130 +
124 124  )))
125 125  
126 126  = 3. Operation Mode =
... ... @@ -128,7 +128,9 @@
128 128  == 3.1 How it works? ==
129 129  
130 130  (((
131 -The RS485-BL is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the RS485-BL. It will auto join the network via OTAA.
138 +The RS485-LN is configured as LoRaWAN OTAA Class C mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the RS485-LN. It will auto join the network via OTAA.
139 +
140 +
132 132  )))
133 133  
134 134  == 3.2 Example to join LoRaWAN network ==
... ... @@ -135,27 +135,37 @@
135 135  
136 136  Here shows an example for how to join the TTN V3 Network. Below is the network structure, we use [[LG308>>url:http://www.dragino.com/products/lora-lorawan-gateway/item/140-lg308.html]] as LoRaWAN gateway here. 
137 137  
138 -[[image:1652953414711-647.png||height="337" width="723"]]
147 +[[image:1653268155545-638.png||height="334" width="724"]]
139 139  
149 +
140 140  (((
141 -The RS485-BL in this example connected to two RS485 devices for demonstration, user can connect to other RS485 devices via the same method.
151 +(((
152 +The RS485-LN in this example connected to two RS485 devices for demonstration, user can connect to other RS485 devices via the same method. The connection is as below:
142 142  )))
143 143  
144 144  (((
145 -The LG308 is already set to connect to [[TTN V3 network >>url:https://www.thethingsnetwork.org/]]. So what we need to now is only configure the TTN V3:
156 +485A+ and 485B- of the sensor are connected to RS485A and RA485B of RS485-LN respectively.
146 146  )))
147 147  
159 +[[image:1653268227651-549.png||height="592" width="720"]]
160 +
148 148  (((
149 -**Step 1**: Create a device in TTN V3 with the OTAA keys from RS485-BL.
162 +The LG308 is already set to connect to [[TTN V3 network >>path:eu1.cloud.thethings.network/]]. So what we need to now is only configure the TTN V3:
150 150  )))
151 151  
152 152  (((
153 -Each RS485-BL is shipped with a sticker with unique device EUI:
166 +**Step 1**: Create a device in TTN V3 with the OTAA keys from RS485-LN.
154 154  )))
155 155  
169 +(((
170 +Each RS485-LN is shipped with a sticker with unique device EUI:
171 +)))
172 +)))
173 +
156 156  [[image:1652953462722-299.png]]
157 157  
158 158  (((
177 +(((
159 159  User can enter this key in their LoRaWAN Server portal. Below is TTN V3 screen shot:
160 160  )))
161 161  
... ... @@ -162,13 +162,11 @@
162 162  (((
163 163  Add APP EUI in the application.
164 164  )))
184 +)))
165 165  
166 -
167 -
168 -
169 169  [[image:image-20220519174512-1.png]]
170 170  
171 -[[image:image-20220519174512-2.png||height="328" width="731"]]
188 +[[image:image-20220519174512-2.png||height="323" width="720"]]
172 172  
173 173  [[image:image-20220519174512-3.png||height="556" width="724"]]
174 174  
... ... @@ -184,44 +184,43 @@
184 184  
185 185  
186 186  (((
187 -**Step 2**: Power on RS485-BL and it will auto join to the TTN V3 network. After join success, it will start to upload message to TTN V3 and user can see in the panel.
204 +**Step 2**: Power on RS485-LN and it will auto join to the TTN V3 network. After join success, it will start to upload message to TTN V3 and user can see in the panel.
188 188  )))
189 189  
190 190  [[image:1652953568895-172.png||height="232" width="724"]]
191 191  
209 +
192 192  == 3.3 Configure Commands to read data ==
193 193  
194 194  (((
195 -There are plenty of RS485 and TTL level devices in the market and each device has different command to read the valid data. To support these devices in flexible, RS485-BL supports flexible command set. User can use [[AT Commands or LoRaWAN Downlink>>path:#AT_COMMAND]] Command to configure how RS485-BL should read the sensor and how to handle the return from RS485 or TTL sensors.
213 +(((
214 +There are plenty of RS485 devices in the market and each device has different command to read the valid data. To support these devices in flexible, RS485-LN supports flexible command set. User can use [[AT Commands>>path:#AT_COMMAND]] or LoRaWAN Downlink Command to configure what commands RS485-LN should send for each sampling and how to handle the return from RS485 devices.
196 196  )))
197 197  
198 -=== 3.3.1 onfigure UART settings for RS485 or TTL communication ===
217 +(((
218 +(% style="color:red" %)Note: below description and commands are for firmware version >v1.1, if you have firmware version v1.0. Please check the [[user manual v1.0>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/&file=RS485-LN_UserManual_v1.0.1.pdf]] or upgrade the firmware to v1.1
199 199  
200 -RS485-BL can connect to either RS485 sensors or TTL sensor. User need to specify what type of sensor need to connect.
220 +
221 +)))
222 +)))
201 201  
202 -**~1. RS485-MODBUS mode:**
224 +=== 3.3.1 onfigure UART settings for RS485 or TTL communication ===
203 203  
204 -AT+MOD=1 ~/~/ Support RS485-MODBUS type sensors. User can connect multiply RS485 , Modbus sensors to the A / B pins.
226 +To use RS485-LN to read data from RS485 sensors, connect the RS485-LN A/B traces to the sensors. And user need to make sure RS485-LN use the match UART setting to access the sensors. The related commands for UART settings are:
205 205  
206 -**2. TTL mode:**
207 -
208 -AT+MOD=2 ~/~/ Support TTL Level sensors, User can connect one TTL Sensor to the TXD/RXD/GND pins.
209 -
210 -RS485-BL default UART settings is **9600, no parity, stop bit 1**. If the sensor has a different settings, user can change the RS485-BL setting to match.
211 -
212 -(% border="1" style="background-color:#ffffcc; color:green; width:795px" %)
213 -|(((
228 +(% border="1" style="background-color:#ffffcc; color:green; width:782px" %)
229 +|(% style="width:128px" %)(((
214 214  **AT Commands**
215 -)))|(% style="width:285px" %)(((
231 +)))|(% style="width:305px" %)(((
216 216  **Description**
217 -)))|(% style="width:347px" %)(((
233 +)))|(% style="width:346px" %)(((
218 218  **Example**
219 219  )))
220 -|(((
236 +|(% style="width:128px" %)(((
221 221  AT+BAUDR
222 -)))|(% style="width:285px" %)(((
238 +)))|(% style="width:305px" %)(((
223 223  Set the baud rate (for RS485 connection). Default Value is: 9600.
224 -)))|(% style="width:347px" %)(((
240 +)))|(% style="width:346px" %)(((
225 225  (((
226 226  AT+BAUDR=9600
227 227  )))
... ... @@ -230,18 +230,12 @@
230 230  Options: (1200,2400,4800,14400,19200,115200)
231 231  )))
232 232  )))
233 -|(((
249 +|(% style="width:128px" %)(((
234 234  AT+PARITY
235 -)))|(% style="width:285px" %)(((
236 -(((
251 +)))|(% style="width:305px" %)(((
237 237  Set UART parity (for RS485 connection)
238 -)))
239 -
253 +)))|(% style="width:346px" %)(((
240 240  (((
241 -Default Value is: no parity.
242 -)))
243 -)))|(% style="width:347px" %)(((
244 -(((
245 245  AT+PARITY=0
246 246  )))
247 247  
... ... @@ -249,17 +249,17 @@
249 249  Option: 0: no parity, 1: odd parity, 2: even parity
250 250  )))
251 251  )))
252 -|(((
262 +|(% style="width:128px" %)(((
253 253  AT+STOPBIT
254 -)))|(% style="width:285px" %)(((
264 +)))|(% style="width:305px" %)(((
255 255  (((
256 256  Set serial stopbit (for RS485 connection)
257 257  )))
258 258  
259 259  (((
260 -Default Value is: 1bit.
270 +
261 261  )))
262 -)))|(% style="width:347px" %)(((
272 +)))|(% style="width:346px" %)(((
263 263  (((
264 264  AT+STOPBIT=0 for 1bit
265 265  )))
... ... @@ -276,12 +276,10 @@
276 276  === 3.3.2 Configure sensors ===
277 277  
278 278  (((
279 -Some sensors might need to configure before normal operation. User can configure such sensor via PC or through RS485-BL AT Commands (% style="color:#4f81bd" %)**AT+CFGDEV**.
280 -)))
281 -
282 282  (((
283 -When user issue an (% style="color:#4f81bd" %)**AT+CFGDEV**(%%) command, Each (% style="color:#4f81bd" %)**AT+CFGDEV**(%%) equals to send a command to the RS485 or TTL sensors. This command will only run when user input it and won’t run during each sampling.
290 +Some sensors might need to configure before normal operation. User can configure such sensor via PC and RS485 adapter or through RS485-LN AT Commands (% style="color:#4f81bd" %)**AT+CFGDEV**(%%). Each (% style="color:#4f81bd" %)**AT+CFGDEV **(%%)equals to send a RS485 command to sensors. This command will only run when user input it and won’t run during each sampling.
284 284  )))
292 +)))
285 285  
286 286  (% border="1" style="background-color:#ffffcc; color:green; width:806px" %)
287 287  |**AT Commands**|(% style="width:418px" %)**Description**|(% style="width:256px" %)**Example**
... ... @@ -293,82 +293,37 @@
293 293  mm: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command
294 294  )))|(% style="width:256px" %)AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m
295 295  
296 -Detail of AT+CFGDEV command see [[AT+CFGDEV detail>>path:#AT_CFGDEV]].
297 -
298 298  === 3.3.3 Configure read commands for each sampling ===
299 299  
300 300  (((
301 -RS485-BL is a battery powered device; it will sleep most of time. And wake up on each period and read RS485 / TTL sensor data and uplink.
302 -)))
307 +During each sampling, we need confirm what commands we need to send to the RS485 sensors to read data. After the RS485 sensors send back the value, it normally include some bytes and we only need a few from them for a shorten payload.
303 303  
304 -(((
305 -During each sampling, we need to confirm what commands we need to send to the sensors to read data. After the RS485/TTL sensors send back the value, it normally includes some bytes and we only need a few from them for a shorten payload.
306 -)))
307 -
308 -(((
309 309  To save the LoRaWAN network bandwidth, we might need to read data from different sensors and combine their valid value into a short payload.
310 -)))
311 311  
312 -(((
313 313  This section describes how to achieve above goals.
314 -)))
315 315  
316 -(((
317 -During each sampling, the RS485-BL can support 15 commands to read sensors. And combine the return to one or several uplink payloads.
318 -)))
313 +During each sampling, the RS485-LN can support 15 commands to read sensors. And combine the return to one or several uplink payloads.
319 319  
320 -(((
321 -**Command from RS485-BL to Sensor:**
322 -)))
323 323  
324 -(((
325 -RS485-BL can send out pre-set max 15 strings via **AT+COMMAD1**, **ATCOMMAND2**,…, to **AT+COMMANDF** . All commands are of same grammar.
326 -)))
316 +**Each RS485 commands include two parts:**
327 327  
328 -(((
329 -**Handle return from sensors to RS485-BL**:
330 -)))
318 +~1. What commands RS485-LN will send to the RS485 sensors. There are total 15 commands from **AT+COMMAD1**, **ATCOMMAND2**,…, to **AT+COMMANDF**. All commands are of same grammar.
331 331  
332 -(((
333 -After RS485-BL send out a string to sensor, RS485-BL will wait for the return from RS485 or TTL sensor. And user can specify how to handle the return, by **AT+DATACUT or AT+SEARCH commands**
334 -)))
320 +2. How to get wanted value the from RS485 sensors returns from by 1). There are total 15 AT Commands to handle the return, commands are **AT+DATACUT1**,**AT+DATACUT2**,…, **AT+DATACUTF** corresponding to the commands from 1). All commands are of same grammar.
335 335  
336 -* (((
337 -**AT+DATACUT**
338 -)))
322 +3. Some RS485 device might has longer delay on reply, so user can use AT+CMDDL to set the timeout for getting reply after the RS485 command is sent. For example **AT+CMDDL1=1000** to send the open time to 1000ms
339 339  
340 -(((
341 -When the return value from sensor have fix length and we know which position the valid value we should get, we can use AT+DATACUT command.
342 -)))
343 343  
344 -* (((
345 -**AT+SEARCH**
346 -)))
347 -
348 -(((
349 -When the return value from sensor is dynamic length and we are not sure which bytes the valid data is, instead, we know what value the valid value following. We can use AT+SEARCH to search the valid value in the return string.
350 -)))
351 -
352 -(((
353 -**Define wait timeout:**
354 -)))
355 -
356 -(((
357 -Some RS485 device might has longer delay on reply, so user can use AT+CMDDL to set the timeout for getting reply after the RS485 command is sent. For example, AT+CMDDL1=1000 to send the open time to 1000ms
358 -)))
359 -
360 -(((
361 361  After we got the valid value from each RS485 commands, we need to combine them together with the command **AT+DATAUP**.
362 -)))
363 363  
364 -**Examples:**
365 365  
366 366  Below are examples for the how above AT Commands works.
367 367  
368 -**AT+COMMANDx : **This command will be sent to RS485/TTL devices during each sampling, Max command length is 14 bytes. The grammar is:
369 369  
370 -(% border="1" class="table-bordered" %)
371 -|(((
331 +**AT+COMMANDx : **This command will be sent to RS485 devices during each sampling, Max command length is 14 bytes. The grammar is:
332 +
333 +(% border="1" style="background-color:#4bacc6; color:white; width:499px" %)
334 +|(% style="width:496px" %)(((
372 372  **AT+COMMANDx=xx xx xx xx xx xx xx xx xx xx xx xx,m**
373 373  
374 374  **xx xx xx xx xx xx xx xx xx xx xx xx: The RS485 command to be sent**
... ... @@ -378,43 +378,13 @@
378 378  
379 379  For example, if we have a RS485 sensor. The command to get sensor value is: 01 03 0B B8 00 02 46 0A. Where 01 03 0B B8 00 02 is the Modbus command to read the register 0B B8 where stored the sensor value. The 46 0A is the CRC-16/MODBUS which calculate manually.
380 380  
381 -In the RS485-BL, we should use this command AT+COMMAND1=01 03 0B B8 00 02,1 for the same.
344 +In the RS485-LN, we should use this command AT+COMMAND1=01 03 0B B8 00 02,1 for the same.
382 382  
383 -**AT+SEARCHx**: This command defines how to handle the return from AT+COMMANDx.
384 384  
385 -(% border="1" class="table-bordered" %)
386 -|(((
387 -**AT+SEARCHx=aa,xx xx xx xx xx**
388 -
389 -* **aa: 1: prefix match mode; 2: prefix and suffix match mode**
390 -* **xx xx xx xx xx: match string. Max 5 bytes for prefix and 5 bytes for suffix**
391 -
392 -
393 -)))
394 -
395 -Examples:
396 -
397 -1. For a return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
398 -
399 -If we set AT+SEARCH1=1,1E 56 34.      (max 5 bytes for prefix)
400 -
401 -The valid data will be all bytes after 1E 56 34 , so it is 2e 30 58 5f 36 41 30 31 00 49
402 -
403 -[[image:1652954654347-831.png]]
404 -
405 -
406 -1. For a return string from AT+COMMAND1:  16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
407 -
408 -If we set AT+SEARCH1=2, 1E 56 34+31 00 49
409 -
410 -Device will search the bytes between 1E 56 34 and 31 00 49. So it is 2e 30 58 5f 36 41 30
411 -
412 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image014.png]]
413 -
414 -
415 415  **AT+DATACUTx : **This command defines how to handle the return from AT+COMMANDx, max return length is 45 bytes.
416 416  
417 -|(((
349 +(% border="1" style="background-color:#4bacc6; color:white; width:725px" %)
350 +|(% style="width:722px" %)(((
418 418  **AT+DATACUTx=a,b,c**
419 419  
420 420  * **a: length for the return of AT+COMMAND**
... ... @@ -422,98 +422,90 @@
422 422  * **c: define the position for valid value.  **
423 423  )))
424 424  
425 -Examples:
358 +**Examples:**
426 426  
427 427  * Grab bytes:
428 428  
429 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image015.png]]
362 +[[image:image-20220602153621-1.png]]
430 430  
364 +
431 431  * Grab a section.
432 432  
433 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image016.png]]
367 +[[image:image-20220602153621-2.png]]
434 434  
369 +
435 435  * Grab different sections.
436 436  
437 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image017.png]]
372 +[[image:image-20220602153621-3.png]]
438 438  
374 +
375 +)))
439 439  
440 -Note:
377 +=== 3.3.4 Compose the uplink payload ===
441 441  
442 -AT+SEARCHx and AT+DATACUTx can be used together, if both commands are set, RS485-BL will first process AT+SEARCHx on the return string and get a temporary string, and then process AT+DATACUTx on this temporary string to get the final payload. In this case, AT+DATACUTx need to set to format AT+DATACUTx=0,xx,xx where the return bytes set to 0.
443 -
444 -Example:
445 -
446 -AT+COMMAND1=11 01 1E D0,0
447 -
448 -AT+SEARCH1=1,1E 56 34
449 -
450 -AT+DATACUT1=0,2,1~~5
451 -
452 -Return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
453 -
454 -String after SEARCH command: 2e 30 58 5f 36 41 30 31 00 49
455 -
456 -Valid payload after DataCUT command: 2e 30 58 5f 36
457 -
458 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image018.png]]
459 -
460 -
461 -
462 -
463 -1.
464 -11.
465 -111. Compose the uplink payload
466 -
379 +(((
467 467  Through AT+COMMANDx and AT+DATACUTx we got valid value from each RS485 commands, Assume these valid value are RETURN1, RETURN2, .., to RETURNx. The next step is how to compose the LoRa Uplink Payload by these RETURNs. The command is **AT+DATAUP.**
468 468  
382 +
383 +)))
469 469  
470 -**Examples: AT+DATAUP=0**
385 +(((
386 +(% style="color:#037691" %)**Examples: AT+DATAUP=0**
471 471  
472 -Compose the uplink payload with value returns in sequence and send with **A SIGNLE UPLINK**.
388 +
389 +)))
473 473  
391 +(((
392 +Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**A SIGNLE UPLINK**.
393 +)))
394 +
395 +(((
474 474  Final Payload is
397 +)))
475 475  
476 -Battery Info+PAYVER + VALID Value from RETURN1 + Valid Value from RETURN2 + … + RETURNx
399 +(((
400 +(% style="color:#4f81bd" %)**Battery Info+PAYVER + VALID Value from RETURN1 + Valid Value from RETURN2 + … + RETURNx**
401 +)))
477 477  
403 +(((
478 478  Where PAYVER is defined by AT+PAYVER, below is an example screen shot.
405 +)))
479 479  
480 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image019.png]]
407 +[[image:1653269759169-150.png||height="513" width="716"]]
481 481  
482 482  
410 +(% style="color:#037691" %)**Examples: AT+DATAUP=1**
483 483  
484 -**Examples: AT+DATAUP=1**
485 485  
486 -Compose the uplink payload with value returns in sequence and send with **Multiply UPLINKs**.
413 +Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**Multiply UPLINKs**.
487 487  
488 488  Final Payload is
489 489  
490 -Battery Info+PAYVER + PAYLOAD COUNT + PAYLOAD# + DATA
417 +(% style="color:#4f81bd" %)**Battery Info+PAYVER + PAYLOAD COUNT + PAYLOAD# + DATA**
491 491  
492 492  1. Battery Info (2 bytes): Battery voltage
493 493  1. PAYVER (1 byte): Defined by AT+PAYVER
494 494  1. PAYLOAD COUNT (1 byte): Total how many uplinks of this sampling.
495 495  1. PAYLOAD# (1 byte): Number of this uplink. (from 0,1,2,3…,to PAYLOAD COUNT)
496 -1. DATA: Valid value: max 6 bytes(US915 version here, [[Notice*!>>path:#max_byte]]) for each uplink so each uplink <= 11 bytes. For the last uplink, DATA will might less than 6 bytes
423 +1. DATA: Valid value: max 6 bytes(US915 version here, Notice*!) for each uplink so each uplink <= 11 bytes. For the last uplink, DATA will might less than 6 bytes
497 497  
498 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
425 +[[image:1653269916228-732.png||height="433" width="711"]]
499 499  
500 500  
501 501  So totally there will be 3 uplinks for this sampling, each uplink includes 6 bytes DATA
502 502  
503 -DATA1=RETURN1 Valid Value = 20 20 0a 33 90 41
430 +DATA1=RETURN1 Valid Value = (% style="background-color:green; color:white" %)20 20 0a 33 90 41
504 504  
505 -DATA2=1^^st^^ ~~ 6^^th^^ byte of Valid value of RETURN10= 02 aa 05 81 0a 20
432 +DATA2=1^^st^^ ~~ 6^^th^^ byte of Valid value of RETURN10=(% style="background-color:green; color:white" %) 02 aa 05 81 0a 20
506 506  
507 -DATA3=7^^th^^ ~~ 11^^th^^ bytes of Valid value of RETURN10 = 20 20 20 2d 30
434 +DATA3=7^^th^^ ~~ 11^^th^^ bytes of Valid value of RETURN10 = (% style="background-color:green; color:white" %)20 20 20 2d 30
508 508  
509 -
510 -
511 511  Below are the uplink payloads:
512 512  
513 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image021.png]]
438 +[[image:1653270130359-810.png]]
514 514  
515 515  
516 -Notice: the Max bytes is according to the max support bytes in different Frequency Bands for lowest SF. As below:
441 +(% style="color:red" %)**Notice: the Max bytes is according to the max support bytes in different Frequency Bands for lowest SF. As below:**
517 517  
518 518   ~* For AU915/AS923 bands, if UplinkDwell time=0, max 51 bytes for each uplink ( so 51 -5 = 46 max valid date)
519 519  
... ... @@ -523,12 +523,8 @@
523 523  
524 524   ~* For all other bands: max 51 bytes for each uplink  ( so 51 -5 = 46 max valid date).
525 525  
451 +=== 3.3.5 Uplink on demand ===
526 526  
527 -
528 -1.
529 -11.
530 -111. Uplink on demand
531 -
532 532  Except uplink periodically, RS485-BL is able to uplink on demand. The server sends downlink command to RS485-BL and RS485 will uplink data base on the command.
533 533  
534 534  Downlink control command:
1653268155545-638.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +113.7 KB
Content
1653268227651-549.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +1.3 MB
Content
1653269403619-508.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +27.8 KB
Content
1653269438444-278.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +26.6 KB
Content
1653269551753-223.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +138.7 KB
Content
1653269568276-930.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +131.4 KB
Content
1653269593172-426.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +142.6 KB
Content
1653269618463-608.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +27.7 KB
Content
1653269759169-150.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +294.0 KB
Content
1653269916228-732.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +143.3 KB
Content
1653270130359-810.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +197.8 KB
Content
image-20220602153621-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +23.4 KB
Content
image-20220602153621-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +22.2 KB
Content
image-20220602153621-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +22.3 KB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0