Last modified by Xiaoling on 2025/04/23 15:56

From version 20.2
edited by Xiaoling
on 2022/05/23 09:08
Change comment: There is no comment for this version
To version 35.5
edited by Xiaoling
on 2022/06/02 15:48
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -18,40 +18,42 @@
18 18  
19 19  (((
20 20  (((
21 -The Dragino RS485-LN is a RS485 to LoRaWAN Converter. It converts the RS485 signal into LoRaWAN wireless signal which simplify the IoT installation and reduce the installation/maintaining cost.
21 +The Dragino RS485-LN is a (% style="color:blue" %)**RS485 to LoRaWAN Converter**(%%). It converts the RS485 signal into LoRaWAN wireless signal which simplify the IoT installation and reduce the installation/maintaining cost.
22 22  )))
23 23  
24 24  (((
25 -RS485-LN allows user to monitor / control RS485 devices and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
25 +RS485-LN allows user to (% style="color:blue" %)**monitor / control RS485 devices**(%%) and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
26 26  )))
27 27  
28 28  (((
29 -For data uplink, RS485-LN sends user-defined commands to RS485 devices and gets the return from the RS485 devices. RS485-LN will process these returns according to user-define rules to get the final payload and upload to LoRaWAN server.
29 +(% style="color:blue" %)**For data uplink**(%%), RS485-LN sends user-defined commands to RS485 devices and gets the return from the RS485 devices. RS485-LN will process these returns according to user-define rules to get the final payload and upload to LoRaWAN server.
30 30  )))
31 31  
32 32  (((
33 -For data downlink, RS485-LN runs in LoRaWAN Class C. When there downlink commands from LoRaWAN server, RS485-LN will forward the commands from LoRaWAN server to RS485 devices.
33 +(% style="color:blue" %)**For data downlink**(%%), RS485-LN runs in LoRaWAN Class C. When there downlink commands from LoRaWAN server, RS485-LN will forward the commands from LoRaWAN server to RS485 devices.
34 +
35 +(% style="color:blue" %)**Demo Dashboard for RS485-LN**(%%) connect to two energy meters: [[https:~~/~~/app.datacake.de/dashboard/d/58844a26-378d-4c5a-aaf5-b5b5b153447a>>url:https://app.datacake.de/dashboard/d/58844a26-378d-4c5a-aaf5-b5b5b153447a]]
34 34  )))
35 35  )))
36 36  
37 37  [[image:1653267211009-519.png||height="419" width="724"]]
38 38  
41 +
39 39  == 1.2 Specifications ==
40 40  
44 +
41 41  **Hardware System:**
42 42  
43 43  * STM32L072CZT6 MCU
44 -* SX1276/78 Wireless Chip
48 +* SX1276/78 Wireless Chip 
45 45  * Power Consumption (exclude RS485 device):
46 46  ** Idle: 32mA@12v
47 -
48 -*
49 49  ** 20dB Transmit: 65mA@12v
50 50  
51 51  **Interface for Model:**
52 52  
53 53  * RS485
54 -* Power Input 7~~ 24V DC.
56 +* Power Input 7~~ 24V DC. 
55 55  
56 56  **LoRa Spec:**
57 57  
... ... @@ -74,6 +74,7 @@
74 74  * Automatic RF Sense and CAD with ultra-fast AFC.
75 75  * Packet engine up to 256 bytes with CRC.
76 76  
79 +
77 77  == 1.3 Features ==
78 78  
79 79  * LoRaWAN Class A & Class C protocol (default Class C)
... ... @@ -85,6 +85,7 @@
85 85  * Support Modbus protocol
86 86  * Support Interrupt uplink (Since hardware version v1.2)
87 87  
91 +
88 88  == 1.4 Applications ==
89 89  
90 90  * Smart Buildings & Home Automation
... ... @@ -94,10 +94,12 @@
94 94  * Smart Cities
95 95  * Smart Factory
96 96  
101 +
97 97  == 1.5 Firmware Change log ==
98 98  
99 99  [[RS485-LN Image files – Download link and Change log>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/]]
100 100  
106 +
101 101  == 1.6 Hardware Change log ==
102 102  
103 103  (((
... ... @@ -105,6 +105,8 @@
105 105  v1.2: Add External Interrupt Pin.
106 106  
107 107  v1.0: Release
114 +
115 +
108 108  )))
109 109  )))
110 110  
... ... @@ -116,9 +116,13 @@
116 116  * Power Source VIN to RS485-LN VIN+
117 117  * Power Source GND to RS485-LN VIN-
118 118  
127 +(((
119 119  Once there is power, the RS485-LN will be on.
129 +)))
120 120  
121 121  [[image:1653268091319-405.png]]
132 +
133 +
122 122  )))
123 123  
124 124  = 3. Operation Mode =
... ... @@ -126,7 +126,9 @@
126 126  == 3.1 How it works? ==
127 127  
128 128  (((
129 -The RS485-BL is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the RS485-BL. It will auto join the network via OTAA.
141 +The RS485-LN is configured as LoRaWAN OTAA Class C mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the RS485-LN. It will auto join the network via OTAA.
142 +
143 +
130 130  )))
131 131  
132 132  == 3.2 Example to join LoRaWAN network ==
... ... @@ -133,27 +133,37 @@
133 133  
134 134  Here shows an example for how to join the TTN V3 Network. Below is the network structure, we use [[LG308>>url:http://www.dragino.com/products/lora-lorawan-gateway/item/140-lg308.html]] as LoRaWAN gateway here. 
135 135  
136 -[[image:1652953414711-647.png||height="337" width="723"]]
150 +[[image:1653268155545-638.png||height="334" width="724"]]
137 137  
152 +
138 138  (((
139 -The RS485-BL in this example connected to two RS485 devices for demonstration, user can connect to other RS485 devices via the same method.
154 +(((
155 +The RS485-LN in this example connected to two RS485 devices for demonstration, user can connect to other RS485 devices via the same method. The connection is as below:
140 140  )))
141 141  
142 142  (((
143 -The LG308 is already set to connect to [[TTN V3 network >>url:https://www.thethingsnetwork.org/]]. So what we need to now is only configure the TTN V3:
159 +485A+ and 485B- of the sensor are connected to RS485A and RA485B of RS485-LN respectively.
144 144  )))
145 145  
162 +[[image:1653268227651-549.png||height="592" width="720"]]
163 +
146 146  (((
147 -**Step 1**: Create a device in TTN V3 with the OTAA keys from RS485-BL.
165 +The LG308 is already set to connect to [[TTN V3 network >>path:eu1.cloud.thethings.network/]]. So what we need to now is only configure the TTN V3:
148 148  )))
149 149  
150 150  (((
151 -Each RS485-BL is shipped with a sticker with unique device EUI:
169 +**Step 1**: Create a device in TTN V3 with the OTAA keys from RS485-LN.
152 152  )))
153 153  
172 +(((
173 +Each RS485-LN is shipped with a sticker with unique device EUI:
174 +)))
175 +)))
176 +
154 154  [[image:1652953462722-299.png]]
155 155  
156 156  (((
180 +(((
157 157  User can enter this key in their LoRaWAN Server portal. Below is TTN V3 screen shot:
158 158  )))
159 159  
... ... @@ -160,13 +160,11 @@
160 160  (((
161 161  Add APP EUI in the application.
162 162  )))
187 +)))
163 163  
164 -
165 -
166 -
167 167  [[image:image-20220519174512-1.png]]
168 168  
169 -[[image:image-20220519174512-2.png||height="328" width="731"]]
191 +[[image:image-20220519174512-2.png||height="323" width="720"]]
170 170  
171 171  [[image:image-20220519174512-3.png||height="556" width="724"]]
172 172  
... ... @@ -182,44 +182,43 @@
182 182  
183 183  
184 184  (((
185 -**Step 2**: Power on RS485-BL and it will auto join to the TTN V3 network. After join success, it will start to upload message to TTN V3 and user can see in the panel.
207 +**Step 2**: Power on RS485-LN and it will auto join to the TTN V3 network. After join success, it will start to upload message to TTN V3 and user can see in the panel.
186 186  )))
187 187  
188 188  [[image:1652953568895-172.png||height="232" width="724"]]
189 189  
212 +
190 190  == 3.3 Configure Commands to read data ==
191 191  
192 192  (((
193 -There are plenty of RS485 and TTL level devices in the market and each device has different command to read the valid data. To support these devices in flexible, RS485-BL supports flexible command set. User can use [[AT Commands or LoRaWAN Downlink>>path:#AT_COMMAND]] Command to configure how RS485-BL should read the sensor and how to handle the return from RS485 or TTL sensors.
216 +(((
217 +There are plenty of RS485 devices in the market and each device has different command to read the valid data. To support these devices in flexible, RS485-LN supports flexible command set. User can use [[AT Commands>>path:#AT_COMMAND]] or LoRaWAN Downlink Command to configure what commands RS485-LN should send for each sampling and how to handle the return from RS485 devices.
194 194  )))
195 195  
196 -=== 3.3.1 onfigure UART settings for RS485 or TTL communication ===
220 +(((
221 +(% style="color:red" %)Note: below description and commands are for firmware version >v1.1, if you have firmware version v1.0. Please check the [[user manual v1.0>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/&file=RS485-LN_UserManual_v1.0.1.pdf]] or upgrade the firmware to v1.1
197 197  
198 -RS485-BL can connect to either RS485 sensors or TTL sensor. User need to specify what type of sensor need to connect.
223 +
224 +)))
225 +)))
199 199  
200 -**~1. RS485-MODBUS mode:**
227 +=== 3.3.1 onfigure UART settings for RS485 or TTL communication ===
201 201  
202 -AT+MOD=1 ~/~/ Support RS485-MODBUS type sensors. User can connect multiply RS485 , Modbus sensors to the A / B pins.
229 +To use RS485-LN to read data from RS485 sensors, connect the RS485-LN A/B traces to the sensors. And user need to make sure RS485-LN use the match UART setting to access the sensors. The related commands for UART settings are:
203 203  
204 -**2. TTL mode:**
205 -
206 -AT+MOD=2 ~/~/ Support TTL Level sensors, User can connect one TTL Sensor to the TXD/RXD/GND pins.
207 -
208 -RS485-BL default UART settings is **9600, no parity, stop bit 1**. If the sensor has a different settings, user can change the RS485-BL setting to match.
209 -
210 -(% border="1" style="background-color:#ffffcc; color:green; width:795px" %)
211 -|(((
231 +(% border="1" style="background-color:#ffffcc; color:green; width:782px" %)
232 +|(% style="width:128px" %)(((
212 212  **AT Commands**
213 -)))|(% style="width:285px" %)(((
234 +)))|(% style="width:305px" %)(((
214 214  **Description**
215 -)))|(% style="width:347px" %)(((
236 +)))|(% style="width:346px" %)(((
216 216  **Example**
217 217  )))
218 -|(((
239 +|(% style="width:128px" %)(((
219 219  AT+BAUDR
220 -)))|(% style="width:285px" %)(((
241 +)))|(% style="width:305px" %)(((
221 221  Set the baud rate (for RS485 connection). Default Value is: 9600.
222 -)))|(% style="width:347px" %)(((
243 +)))|(% style="width:346px" %)(((
223 223  (((
224 224  AT+BAUDR=9600
225 225  )))
... ... @@ -228,18 +228,12 @@
228 228  Options: (1200,2400,4800,14400,19200,115200)
229 229  )))
230 230  )))
231 -|(((
252 +|(% style="width:128px" %)(((
232 232  AT+PARITY
233 -)))|(% style="width:285px" %)(((
234 -(((
254 +)))|(% style="width:305px" %)(((
235 235  Set UART parity (for RS485 connection)
236 -)))
237 -
256 +)))|(% style="width:346px" %)(((
238 238  (((
239 -Default Value is: no parity.
240 -)))
241 -)))|(% style="width:347px" %)(((
242 -(((
243 243  AT+PARITY=0
244 244  )))
245 245  
... ... @@ -247,17 +247,17 @@
247 247  Option: 0: no parity, 1: odd parity, 2: even parity
248 248  )))
249 249  )))
250 -|(((
265 +|(% style="width:128px" %)(((
251 251  AT+STOPBIT
252 -)))|(% style="width:285px" %)(((
267 +)))|(% style="width:305px" %)(((
253 253  (((
254 254  Set serial stopbit (for RS485 connection)
255 255  )))
256 256  
257 257  (((
258 -Default Value is: 1bit.
273 +
259 259  )))
260 -)))|(% style="width:347px" %)(((
275 +)))|(% style="width:346px" %)(((
261 261  (((
262 262  AT+STOPBIT=0 for 1bit
263 263  )))
... ... @@ -271,15 +271,14 @@
271 271  )))
272 272  )))
273 273  
289 +
274 274  === 3.3.2 Configure sensors ===
275 275  
276 276  (((
277 -Some sensors might need to configure before normal operation. User can configure such sensor via PC or through RS485-BL AT Commands (% style="color:#4f81bd" %)**AT+CFGDEV**.
278 -)))
279 -
280 280  (((
281 -When user issue an (% style="color:#4f81bd" %)**AT+CFGDEV**(%%) command, Each (% style="color:#4f81bd" %)**AT+CFGDEV**(%%) equals to send a command to the RS485 or TTL sensors. This command will only run when user input it and won’t run during each sampling.
294 +Some sensors might need to configure before normal operation. User can configure such sensor via PC and RS485 adapter or through RS485-LN AT Commands (% style="color:#4f81bd" %)**AT+CFGDEV**(%%). Each (% style="color:#4f81bd" %)**AT+CFGDEV **(%%)equals to send a RS485 command to sensors. This command will only run when user input it and won’t run during each sampling.
282 282  )))
296 +)))
283 283  
284 284  (% border="1" style="background-color:#ffffcc; color:green; width:806px" %)
285 285  |**AT Commands**|(% style="width:418px" %)**Description**|(% style="width:256px" %)**Example**
... ... @@ -291,82 +291,38 @@
291 291  mm: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command
292 292  )))|(% style="width:256px" %)AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m
293 293  
294 -Detail of AT+CFGDEV command see [[AT+CFGDEV detail>>path:#AT_CFGDEV]].
295 295  
296 296  === 3.3.3 Configure read commands for each sampling ===
297 297  
298 298  (((
299 -RS485-BL is a battery powered device; it will sleep most of time. And wake up on each period and read RS485 / TTL sensor data and uplink.
300 -)))
312 +During each sampling, we need confirm what commands we need to send to the RS485 sensors to read data. After the RS485 sensors send back the value, it normally include some bytes and we only need a few from them for a shorten payload.
301 301  
302 -(((
303 -During each sampling, we need to confirm what commands we need to send to the sensors to read data. After the RS485/TTL sensors send back the value, it normally includes some bytes and we only need a few from them for a shorten payload.
304 -)))
305 -
306 -(((
307 307  To save the LoRaWAN network bandwidth, we might need to read data from different sensors and combine their valid value into a short payload.
308 -)))
309 309  
310 -(((
311 311  This section describes how to achieve above goals.
312 -)))
313 313  
314 -(((
315 -During each sampling, the RS485-BL can support 15 commands to read sensors. And combine the return to one or several uplink payloads.
316 -)))
318 +During each sampling, the RS485-LN can support 15 commands to read sensors. And combine the return to one or several uplink payloads.
317 317  
318 -(((
319 -**Command from RS485-BL to Sensor:**
320 -)))
321 321  
322 -(((
323 -RS485-BL can send out pre-set max 15 strings via **AT+COMMAD1**, **ATCOMMAND2**,…, to **AT+COMMANDF** . All commands are of same grammar.
324 -)))
321 +**Each RS485 commands include two parts:**
325 325  
326 -(((
327 -**Handle return from sensors to RS485-BL**:
328 -)))
323 +~1. What commands RS485-LN will send to the RS485 sensors. There are total 15 commands from **AT+COMMAD1**, **ATCOMMAND2**,…, to **AT+COMMANDF**. All commands are of same grammar.
329 329  
330 -(((
331 -After RS485-BL send out a string to sensor, RS485-BL will wait for the return from RS485 or TTL sensor. And user can specify how to handle the return, by **AT+DATACUT or AT+SEARCH commands**
332 -)))
325 +2. How to get wanted value the from RS485 sensors returns from by 1). There are total 15 AT Commands to handle the return, commands are **AT+DATACUT1**,**AT+DATACUT2**,…, **AT+DATACUTF** corresponding to the commands from 1). All commands are of same grammar.
333 333  
334 -* (((
335 -**AT+DATACUT**
336 -)))
327 +3. Some RS485 device might has longer delay on reply, so user can use AT+CMDDL to set the timeout for getting reply after the RS485 command is sent. For example **AT+CMDDL1=1000** to send the open time to 1000ms
337 337  
338 -(((
339 -When the return value from sensor have fix length and we know which position the valid value we should get, we can use AT+DATACUT command.
340 -)))
341 341  
342 -* (((
343 -**AT+SEARCH**
344 -)))
345 -
346 -(((
347 -When the return value from sensor is dynamic length and we are not sure which bytes the valid data is, instead, we know what value the valid value following. We can use AT+SEARCH to search the valid value in the return string.
348 -)))
349 -
350 -(((
351 -**Define wait timeout:**
352 -)))
353 -
354 -(((
355 -Some RS485 device might has longer delay on reply, so user can use AT+CMDDL to set the timeout for getting reply after the RS485 command is sent. For example, AT+CMDDL1=1000 to send the open time to 1000ms
356 -)))
357 -
358 -(((
359 359  After we got the valid value from each RS485 commands, we need to combine them together with the command **AT+DATAUP**.
360 -)))
361 361  
362 -**Examples:**
363 363  
364 364  Below are examples for the how above AT Commands works.
365 365  
366 -**AT+COMMANDx : **This command will be sent to RS485/TTL devices during each sampling, Max command length is 14 bytes. The grammar is:
367 367  
368 -(% border="1" class="table-bordered" %)
369 -|(((
336 +**AT+COMMANDx : **This command will be sent to RS485 devices during each sampling, Max command length is 14 bytes. The grammar is:
337 +
338 +(% border="1" style="background-color:#4bacc6; color:white; width:499px" %)
339 +|(% style="width:496px" %)(((
370 370  **AT+COMMANDx=xx xx xx xx xx xx xx xx xx xx xx xx,m**
371 371  
372 372  **xx xx xx xx xx xx xx xx xx xx xx xx: The RS485 command to be sent**
... ... @@ -376,43 +376,13 @@
376 376  
377 377  For example, if we have a RS485 sensor. The command to get sensor value is: 01 03 0B B8 00 02 46 0A. Where 01 03 0B B8 00 02 is the Modbus command to read the register 0B B8 where stored the sensor value. The 46 0A is the CRC-16/MODBUS which calculate manually.
378 378  
379 -In the RS485-BL, we should use this command AT+COMMAND1=01 03 0B B8 00 02,1 for the same.
349 +In the RS485-LN, we should use this command AT+COMMAND1=01 03 0B B8 00 02,1 for the same.
380 380  
381 -**AT+SEARCHx**: This command defines how to handle the return from AT+COMMANDx.
382 382  
383 -(% border="1" class="table-bordered" %)
384 -|(((
385 -**AT+SEARCHx=aa,xx xx xx xx xx**
386 -
387 -* **aa: 1: prefix match mode; 2: prefix and suffix match mode**
388 -* **xx xx xx xx xx: match string. Max 5 bytes for prefix and 5 bytes for suffix**
389 -
390 -
391 -)))
392 -
393 -Examples:
394 -
395 -1. For a return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
396 -
397 -If we set AT+SEARCH1=1,1E 56 34.      (max 5 bytes for prefix)
398 -
399 -The valid data will be all bytes after 1E 56 34 , so it is 2e 30 58 5f 36 41 30 31 00 49
400 -
401 -[[image:1652954654347-831.png]]
402 -
403 -
404 -1. For a return string from AT+COMMAND1:  16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
405 -
406 -If we set AT+SEARCH1=2, 1E 56 34+31 00 49
407 -
408 -Device will search the bytes between 1E 56 34 and 31 00 49. So it is 2e 30 58 5f 36 41 30
409 -
410 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image014.png]]
411 -
412 -
413 413  **AT+DATACUTx : **This command defines how to handle the return from AT+COMMANDx, max return length is 45 bytes.
414 414  
415 -|(((
354 +(% border="1" style="background-color:#4bacc6; color:white; width:725px" %)
355 +|(% style="width:722px" %)(((
416 416  **AT+DATACUTx=a,b,c**
417 417  
418 418  * **a: length for the return of AT+COMMAND**
... ... @@ -420,98 +420,90 @@
420 420  * **c: define the position for valid value.  **
421 421  )))
422 422  
423 -Examples:
363 +**Examples:**
424 424  
425 425  * Grab bytes:
426 426  
427 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image015.png]]
367 +[[image:image-20220602153621-1.png]]
428 428  
369 +
429 429  * Grab a section.
430 430  
431 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image016.png]]
372 +[[image:image-20220602153621-2.png]]
432 432  
374 +
433 433  * Grab different sections.
434 434  
435 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image017.png]]
377 +[[image:image-20220602153621-3.png]]
436 436  
379 +
380 +)))
437 437  
438 -Note:
382 +=== 3.3.4 Compose the uplink payload ===
439 439  
440 -AT+SEARCHx and AT+DATACUTx can be used together, if both commands are set, RS485-BL will first process AT+SEARCHx on the return string and get a temporary string, and then process AT+DATACUTx on this temporary string to get the final payload. In this case, AT+DATACUTx need to set to format AT+DATACUTx=0,xx,xx where the return bytes set to 0.
441 -
442 -Example:
443 -
444 -AT+COMMAND1=11 01 1E D0,0
445 -
446 -AT+SEARCH1=1,1E 56 34
447 -
448 -AT+DATACUT1=0,2,1~~5
449 -
450 -Return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
451 -
452 -String after SEARCH command: 2e 30 58 5f 36 41 30 31 00 49
453 -
454 -Valid payload after DataCUT command: 2e 30 58 5f 36
455 -
456 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image018.png]]
457 -
458 -
459 -
460 -
461 -1.
462 -11.
463 -111. Compose the uplink payload
464 -
384 +(((
465 465  Through AT+COMMANDx and AT+DATACUTx we got valid value from each RS485 commands, Assume these valid value are RETURN1, RETURN2, .., to RETURNx. The next step is how to compose the LoRa Uplink Payload by these RETURNs. The command is **AT+DATAUP.**
466 466  
387 +
388 +)))
467 467  
468 -**Examples: AT+DATAUP=0**
390 +(((
391 +(% style="color:#037691" %)**Examples: AT+DATAUP=0**
469 469  
470 -Compose the uplink payload with value returns in sequence and send with **A SIGNLE UPLINK**.
393 +
394 +)))
471 471  
396 +(((
397 +Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**A SIGNLE UPLINK**.
398 +)))
399 +
400 +(((
472 472  Final Payload is
402 +)))
473 473  
474 -Battery Info+PAYVER + VALID Value from RETURN1 + Valid Value from RETURN2 + … + RETURNx
404 +(((
405 +(% style="color:#4f81bd" %)**Battery Info+PAYVER + VALID Value from RETURN1 + Valid Value from RETURN2 + … + RETURNx**
406 +)))
475 475  
408 +(((
476 476  Where PAYVER is defined by AT+PAYVER, below is an example screen shot.
410 +)))
477 477  
478 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image019.png]]
412 +[[image:1653269759169-150.png||height="513" width="716"]]
479 479  
480 480  
415 +(% style="color:#4f81bd" %)**Examples: AT+DATAUP=1**
481 481  
482 -**Examples: AT+DATAUP=1**
483 483  
484 -Compose the uplink payload with value returns in sequence and send with **Multiply UPLINKs**.
418 +Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**Multiply UPLINKs**.
485 485  
486 486  Final Payload is
487 487  
488 -Battery Info+PAYVER + PAYLOAD COUNT + PAYLOAD# + DATA
422 +(% style="color:#4f81bd" %)**Battery Info+PAYVER + PAYLOAD COUNT + PAYLOAD# + DATA**
489 489  
490 490  1. Battery Info (2 bytes): Battery voltage
491 491  1. PAYVER (1 byte): Defined by AT+PAYVER
492 492  1. PAYLOAD COUNT (1 byte): Total how many uplinks of this sampling.
493 493  1. PAYLOAD# (1 byte): Number of this uplink. (from 0,1,2,3…,to PAYLOAD COUNT)
494 -1. DATA: Valid value: max 6 bytes(US915 version here, [[Notice*!>>path:#max_byte]]) for each uplink so each uplink <= 11 bytes. For the last uplink, DATA will might less than 6 bytes
428 +1. DATA: Valid value: max 6 bytes(US915 version here, Notice*!) for each uplink so each uplink <= 11 bytes. For the last uplink, DATA will might less than 6 bytes
495 495  
496 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
430 +[[image:1653269916228-732.png||height="433" width="711"]]
497 497  
498 498  
499 499  So totally there will be 3 uplinks for this sampling, each uplink includes 6 bytes DATA
500 500  
501 -DATA1=RETURN1 Valid Value = 20 20 0a 33 90 41
435 +DATA1=RETURN1 Valid Value = (% style="background-color:green; color:white" %)20 20 0a 33 90 41
502 502  
503 -DATA2=1^^st^^ ~~ 6^^th^^ byte of Valid value of RETURN10= 02 aa 05 81 0a 20
437 +DATA2=1^^st^^ ~~ 6^^th^^ byte of Valid value of RETURN10=(% style="background-color:green; color:white" %) 02 aa 05 81 0a 20
504 504  
505 -DATA3=7^^th^^ ~~ 11^^th^^ bytes of Valid value of RETURN10 = 20 20 20 2d 30
439 +DATA3=7^^th^^ ~~ 11^^th^^ bytes of Valid value of RETURN10 = (% style="background-color:green; color:white" %)20 20 20 2d 30
506 506  
507 -
508 -
509 509  Below are the uplink payloads:
510 510  
511 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image021.png]]
443 +[[image:1653270130359-810.png]]
512 512  
513 513  
514 -Notice: the Max bytes is according to the max support bytes in different Frequency Bands for lowest SF. As below:
446 +(% style="color:red" %)**Notice: the Max bytes is according to the max support bytes in different Frequency Bands for lowest SF. As below:**
515 515  
516 516   ~* For AU915/AS923 bands, if UplinkDwell time=0, max 51 bytes for each uplink ( so 51 -5 = 46 max valid date)
517 517  
... ... @@ -521,12 +521,8 @@
521 521  
522 522   ~* For all other bands: max 51 bytes for each uplink  ( so 51 -5 = 46 max valid date).
523 523  
456 +=== 3.3.5 Uplink on demand ===
524 524  
525 -
526 -1.
527 -11.
528 -111. Uplink on demand
529 -
530 530  Except uplink periodically, RS485-BL is able to uplink on demand. The server sends downlink command to RS485-BL and RS485 will uplink data base on the command.
531 531  
532 532  Downlink control command:
... ... @@ -537,8 +537,8 @@
537 537  
538 538  
539 539  
540 -1.
541 -11.
468 +1.
469 +11.
542 542  111. Uplink on Interrupt
543 543  
544 544  Put the interrupt sensor between 3.3v_out and GPIO ext.[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image022.png]]
... ... @@ -552,7 +552,7 @@
552 552  AT+INTMOD=3  Interrupt trigger by rising edge.
553 553  
554 554  
555 -1.
483 +1.
556 556  11. Uplink Payload
557 557  
558 558  |**Size(bytes)**|**2**|**1**|**Length depends on the return from the commands**
... ... @@ -614,15 +614,15 @@
614 614  
615 615  * **Sensor Related Commands**: These commands are special designed for RS485-BL.  User can see these commands below:
616 616  
617 -1.
618 -11.
545 +1.
546 +11.
619 619  111. Common Commands:
620 620  
621 621  They should be available for each of Dragino Sensors, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: [[http:~~/~~/wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands>>url:http://wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands]]
622 622  
623 623  
624 -1.
625 -11.
552 +1.
553 +11.
626 626  111. Sensor related commands:
627 627  
628 628  ==== Choose Device Type (RS485 or TTL) ====
... ... @@ -928,13 +928,13 @@
928 928  
929 929  
930 930  
931 -1.
859 +1.
932 932  11. Buttons
933 933  
934 934  |**Button**|**Feature**
935 935  |**RST**|Reboot RS485-BL
936 936  
937 -1.
865 +1.
938 938  11. +3V3 Output
939 939  
940 940  RS485-BL has a Controllable +3V3 output, user can use this output to power external sensor.
... ... @@ -952,7 +952,7 @@
952 952  By default, the AT+3V3T=0. This is a special case, means the +3V3 output is always on at any time
953 953  
954 954  
955 -1.
883 +1.
956 956  11. +5V Output
957 957  
958 958  RS485-BL has a Controllable +5V output, user can use this output to power external sensor.
... ... @@ -972,13 +972,13 @@
972 972  
973 973  
974 974  
975 -1.
903 +1.
976 976  11. LEDs
977 977  
978 978  |**LEDs**|**Feature**
979 979  |**LED1**|Blink when device transmit a packet.
980 980  
981 -1.
909 +1.
982 982  11. Switch Jumper
983 983  
984 984  |**Switch Jumper**|**Feature**
... ... @@ -1024,7 +1024,7 @@
1024 1024  
1025 1025  
1026 1026  
1027 -1.
955 +1.
1028 1028  11. Common AT Command Sequence
1029 1029  111. Multi-channel ABP mode (Use with SX1301/LG308)
1030 1030  
... ... @@ -1043,8 +1043,8 @@
1043 1043  
1044 1044  ATZ
1045 1045  
1046 -1.
1047 -11.
974 +1.
975 +11.
1048 1048  111. Single-channel ABP mode (Use with LG01/LG02)
1049 1049  
1050 1050  AT+FDR   Reset Parameters to Factory Default, Keys Reserve
... ... @@ -1119,7 +1119,7 @@
1119 1119  [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image035.png]] [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image036.png]]
1120 1120  
1121 1121  
1122 -1.
1050 +1.
1123 1123  11. How to change the LoRa Frequency Bands/Region?
1124 1124  
1125 1125  User can follow the introduction for [[how to upgrade image>>path:#upgrade_image]]. When download the images, choose the required image file for download.
... ... @@ -1126,7 +1126,7 @@
1126 1126  
1127 1127  
1128 1128  
1129 -1.
1057 +1.
1130 1130  11. How many RS485-Slave can RS485-BL connects?
1131 1131  
1132 1132  The RS485-BL can support max 32 RS485 devices. Each uplink command of RS485-BL can support max 16 different RS485 command. So RS485-BL can support max 16 RS485 devices pre-program in the device for uplink. For other devices no pre-program, user can use the [[downlink message (type code 0xA8) to poll their info>>path:#downlink_A8]].
... ... @@ -1143,7 +1143,7 @@
1143 1143  
1144 1144  
1145 1145  
1146 -1.
1074 +1.
1147 1147  11. Why I can’t join TTN V3 in US915 /AU915 bands?
1148 1148  
1149 1149  It might about the channels mapping. Please see for detail.
1653268155545-638.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +113.7 KB
Content
1653268227651-549.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +1.3 MB
Content
1653269403619-508.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +27.8 KB
Content
1653269438444-278.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +26.6 KB
Content
1653269551753-223.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +138.7 KB
Content
1653269568276-930.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +131.4 KB
Content
1653269593172-426.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +142.6 KB
Content
1653269618463-608.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +27.7 KB
Content
1653269759169-150.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +294.0 KB
Content
1653269916228-732.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +143.3 KB
Content
1653270130359-810.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +197.8 KB
Content
image-20220602153621-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +23.4 KB
Content
image-20220602153621-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +22.2 KB
Content
image-20220602153621-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +22.3 KB
Content